
unisys

ClearPath Application Development

Solutions

ClearPath OS 2200 IDE

for Eclipse

Application Development Guide

for Java EE Projects

ClearPath OS 2200 Release 13.1

February 2012 3839 3831–002

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related information
described herein is only furnished pursuant and subject to the terms and conditions of a duly executed agreement to
purchase or lease equipment or to license software. The only warranties made by Unisys, if any, with respect to the
products described in this document are set forth in such agreement. Unisys cannot accept any financial or other
responsibility that may be the result of your use of the information in this document or software material, including
direct, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the
laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Notice to U.S. Government End Users: This is commercial computer software or hardware documentation developed
at private expense. Use, reproduction, or disclosure by the Government is subject to the terms of Unisys standard
commercial license for the products, and where applicable, the restricted/limited rights provisions of the contract
data rights clauses.

Unisys and ClearPath are registered trademarks of Unisys Corporation in the United States and other countries.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademark of their
respective owners.
J2EE is a trademark of Oracle in the United States and other countries.
JBoss® is a registered trademark and JBoss Application Server™ is a trademark of Red Hat, Inc. and its subsidiaries
in the U.S. and other countries.
Eclipse is a trademark of Eclipse Foundation, Inc.
All other brands and products referenced in this document are acknowledged to be the trademarks or registered
trademarks of their respective holders.

3839 3831–002 iii

Contents

Section 1. Getting Started

Documentation Updates ... 1–2

1.1. Office Supply Store Overview .. 1–3

1.1.1. Database Schema .. 1–3
1.1.2. J2EE Components in Office Supply Store 1–5
1.1.3. Beans in Office Supply Store .. 1–6

Section 2. Configuring Eclipse IDE to Use JBoss Application
Server

2.1. Opening a Java EE Perspective .. 2–1
2.2. Updating Eclipse 2200 with JBoss Community and

RedHat JBoss Enterprise Middleware 2–2

2.3. Creating a Java EE Project .. 2–4

2.4. Creating Enterprise JavaBeans ... 2–5

2.4.1. Typing Versus Browsing to Names..................................... 2–6
2.4.2. Naming Beans ... 2–7
2.5. Creating Business Method for the EJB Project 2–7

2.6. Configuring JBoss AS as the Deployment Server..................... 2–9

2.7. Running JBoss AS .. 2–9

2.7.1. Starting JBoss AS .. 2–9
2.7.2. Cleaning the Project .. 2–10
2.7.3. Stopping JBoss AS .. 2–10
2.8. Building a Test Client ... 2–10

2.9. Resolving Compilation Errors .. 2–12

2.10. Testing the Project ... 2–13

2.11. Troubleshooting the Project .. 2–13

2.12. Hot-Deploying the Project ... 2–14

Section 3. Loading the Hypersonic Database

3.1. Scripts for Loading and Populating the Database 3–1
3.2. Script for Purging the Database .. 3–3

3.3. Opening the Console .. 3–3

3.4. Creating and Populating the Database .. 3–4

3.5. Verifying the Database..3–5

3.6. Viewing the Database Using Data Source Explorer 3–6

3.7. Generating DDL Scripts ... 3–8

Contents

iv 3839 3831–002

Section 4. Loading the Relational Database Server Database

4.1. Testing the Database .. 4–1
4.2. Creating and Populating the Database ... 4–1
4.2.1. Modifying the Add Stream... 4–1
4.2.2. Uploading the Add Stream .. 4–4
4.3. Accessing Relational Database Server .. 4–5

4.4. Setting Up Drivers to Access the Database 4–5

4.5. Setting Up Data Source Explorer to View the
Database ... 4–5

4.6. Viewing the Database Using Data Source Explorer 4–7

Section 5. Running Java Applications on the OS 2200 System

5.1. Configuring Connections .. 5–1
5.1.1. Setting up Host Accounts .. 5–1
5.1.2. Setting up Connections .. 5–2
5.1.3. Recording Log-In Scripts .. 5–2
5.2. Starting a Telnet Session ...5–3

5.2.1. Using Preconfigured Connections5–3
5.2.2. Creating Connections Manually ... 5–4
5.2.3. Switching between Command Line Modes 5–4
5.3. Preparing the OS 2200 IDE for Eclipse Java Project5–5

5.3.1. Creating OS 2200 IDE for Eclipse Directories5–5
5.3.2. Creating New Java Projects ..5–5
5.3.3. Creating Source Class Folders ... 5–6
5.3.4. Creating Application Class Files .. 5–6
5.4. Running the Java Application ... 5–8

5.4.1. Running the Java Application Remotely on OS
2200 IDE for Eclipse ... 5–8

5.4.2. Running the Java Application Remotely on OS
2200 IDE for Eclipse JProcessor 5–9

5.5. Debugging the Java Application ... 5–10

5.5.1. Debugging the Java Application Remotely from
OS 2200 IDE for Eclipse Server 5–10

5.5.2. Debugging the Java Application Remotely from
OS 2200 JProcessor ... 5–12

5.6. Troubleshooting Errors ... 5–13

Section 6. Creating an Enterprise Application Development
Model

6.1. Overview of J2EE Technology and Concepts............................. 6–1
6.2. J2EE Components .. 6–1
6.3. J2EE Services and Supporting Technologies 6–2

6.4. J2EE Distributed Architecture .. 6–3

6.4.1. Process Flow .. 6–3
6.4.2. Naming Services .. 6–4
6.4.3. Java Naming and Directory Interface

Architecture ... 6–4
6.5. Java EE Components .. 6–4

 Contents

3839 3831–002 v

6.5.1. Java EE APIs ... 6–6
6.5.2. Java EE Communication Technologies 6–7
6.6. Java EE Clients .. 6–7

6.6.1. Web Clients ... 6–7
6.6.2. Application Clients .. 6–8
6.7. Web Components ... 6–8

6.8. Business Components .. 6–10

6.8.1. Types of Enterprise Beans .. 6–10
6.8.2. Enterprise Beans Versus JavaBeans 6–10
6.9. Enterprise Information System Tier .. 6–11
6.10. Java EE Containers ... 6–11
6.11. Packaging for Deployment .. 6–12

6.12. Java EE Platform Roles ... 6–14

Section 7. Creating Stateless Session Beans

7.1. Accessing Office Supply Store ... 7–1
7.1.1. Session Facade Pattern .. 7–2
7.1.2. Authenticating Users ... 7–2
7.1.3. Bean Business Methods .. 7–2
7.1.4. Remote and Local Access to Beans 7–2
7.1.5. Java Programming Using DAO ... 7–2
7.2. Tasks .. 7–3

7.2.1. Creating a Java EE Project ... 7–3
7.2.2. Creating Stateless Session Bean Structures 7–3
7.2.3. Using Dependency Injection through Resource

Name ... 7–4
Adding Business Methods ... 7–4
7.2.4. Making a Stateless Session Bean as Java

Persistence and Creating a POJO Class........................ 7–5
7.2.5. Creating a Test Client .. 7–7
7.2.6. Creating the hsql-ds.xml File ...7–8
7.2.7. Testing the Bean .. 7–9

Section 8. Creating Bean-Managed Persistence Entity Beans

8.1. Accessing Office Supply Store ... 8–1
8.1.1. Unique Identifiers ...8–2
8.1.2. Local Access ..8–2
8.1.3. Session Facade Pattern ..8–2
8.1.4. UserAccess Methods ...8–2
8.2. Tasks ..8–2

8.2.1. Creating a BMP Entity Bean Structure 8–3
8.2.2. Modifying the Code to Create a BMP Bean 8–3
8.2.3. Creating DAO Implementation Classes 8–6
8.2.4. Modifying StoreInventoryBean .. 8–10
8.2.5. Creating a Test Client .. 8–12
8.2.6. Testing the Bean ..8–14
8.3. Creating Another BMP Entity Bean ... 8–15

Contents

vi 3839 3831–002

Section 9. Creating Container-Managed Persistence Entity
Beans

9.1. Accessing Office Supply Store ... 9–1
9.1.1 Unique Identifiers ... 9–1
9.2 Tasks .. 9–2

9.2.1 Creating a Java Persistence Entity Bean
Structure ... 9–3

9.2.2 Creating the Java Persistence Bean Code and
the POJO Class ... 9–3

9.2.3 Adding Finder Methods ... 9–6
9.2.4 Adding Data Methods .. 9–6
9.2.5 Callback Methods in EJB 3.0 .. 9–6
9.2.6 Creating the JPA persistence.xml File 9–7
9.2.7 Adding Inventory Access Methods 9–9
9.2.8 Creating a Test Client ... 9–9
9.2.9 Testing the Bean .. 9–11

Section 10. Creating Web Client Servlets

10.1. Accessing Office Supply Store ... 10–1
10.1.1. Types of Web Clients .. 10–2
10.1.2. Web Client Pattern ... 10–2
10.2. Tasks .. 10–2

10.2.1. Creating a Web Project ... 10–2
10.2.2. Creating a Servlet ... 10–3
10.2.3. Adding Remote Business Method 10–3
10.2.4. Modifying the Servlet for the Project 10–4
10.2.5. Implementing Helper Methods .. 10–6
10.2.6. Testing the Servlet ..10–11

Section 11. Creating Web Client JavaServer Pages

11.1. Accessing Office Supply Store .. 11–1
11.2. Tasks .. 11–2

11.2.1. Creating JavaServer Pages .. 11–2
11.2.2. Modifying the Servlet for the JSP 11–3
11.2.3. Displaying Inventory .. 11–9
11.2.4. Deploying Web Client Components 11–9
11.2.5. Testing Web Client Components 11–9

Section 12. Creating Web Services

12.1. Web Services Overview .. 12–1

Section 13. Creating Message-Driven Beans

13.1. Accessing Office Supply Store ... 13–1
13.1.1. Test Applications .. 13–2
13.1.2. Remote and Local Access to Beans 13–2

 Contents

3839 3831–002 vii

13.2. Tasks .. 13–2

13.2.1. Creating a Message-Driven Bean Structure 13–2
13.2.2. Creating Immutable Value Objects 13–5
13.2.3. Implementing onMessage Method 13–6
13.2.4. Creating a Test Client .. 13–8
13.2.5. Testing the Bean ...13–11

Appendix A. Best Practices

A.1. Importing Eclipse IDE Projects .. A–1
A.2. Using Eclipse IDE ... A–1
A.2.1. Workspace Preferences.. A–1
A.2.2. Sharing Projects or Workspaces ... A–2
A.2.3. Unrelated Projects .. A–2
A.2.4. Removing Workspaces ... A–2
A.3. Using JavaDoc and XDoclet ... A–2

A.3.1. Coding JavaDoc and XDoclet ... A–2
A.3.2. XDoclet Grammar Documentation A–3
A.4. Deploying Jar Files with JBoss Application Server A–3

Appendix B. Troubleshooting

B.1. Compilation Errors ... B–1
B.2. JBoss AS Startup Errors ... B–1
B.2.1. Port Number Conflicts .. B–1
B.2.2. Deployment Errors ... B–1

Appendix C. Web Services Standards

C.1. Web Services Standards .. C–1
C.2. Using SOAP and WSDL.. C–2

C.3. Web Services in the Java EE Environment C–2

Glossary ... 1

Index ... 1

Contents

viii 3839 3831–002

3839 3831–002 ix

Figures

1–1. Office Supply Store Application Architecture .. 1–5

2–1. Java EE Perspective .. 2–2
2–2. EJB Project ... 2–6
2–3. Interface Module for the MySampleEJB Project ... 2–7
2–4. Create method in the Remote and Local Modules of the

MySampleEJB Project ..2–8
2–5. Compilation Errors in Test Client ... 2–11
2–6. Running the Test Client .. 2–13
2–7. Hot-Deploying the Project ... 2–14

3–1. Script to Load Hypersonic Database Schema .. 3–2
3–2. Script to Populate Hypersonic Database .. 3–3
3–3. Script to Delete Hypersonic Database Tables... 3–3
3–4. HSQL Database Manager with Data ...3–5
3–5. Hypersonic Database Contents .. 3–7

4–1. Add Stream to Populate Relational Database Server Database (cont.) 4–2
4–1. Add Stream to Populate Relational Database Server Database 4–4
4–2. Uploading the Add Stream .. 4–4
4–3. Relational Database Server Database Contents ... 4–7

5–1. Creating a Class File ... 5–7
5–2. Eclipse IDE Debug Output ... 5–11
5–3. JProcessor IP Address ... 5–12

6–1. J2EE Components .. 6–2
6–2. J2EE Distributed Architecture .. 6–3
6–3. Java EE Components .. 6–5
6–4. Web Components and Communication .. 6–9
6–5. Java EE Containers and Additional Containers ... 6–12
6–6. Java EE Component Packaging .. 6–13

7–1. Stateless Session Bean in Office Supply Store ... 7–1
7–2. Server Trace Lines ... 7–10
7–3. Client Trace Output.. 7–10

8–1. BMP Beans in Office Supply Store .. 8–1
8–2. Server Output from BMP Beans ..8–14
8–3. Client Output from BMP Beans ..8–14

9–1. Java Persistence in Office Supply Store .. 9–2
9–2. Server Output from Java Persistence Beans ... 9–11

Figures

x 3839 3831–002

9–3. Client Output from Java Persistence Beans ... 9–11

10–1. Web Client Servlets in Office Supply Store .. 10–1
10–2. Office Supply Store Inventory from the Servlet .. 10–12

11–1. Web Client Servlets and JSPs in Office Supply Store ... 11–1
11–2. Office Supply Store Inventory from the JSP ...11–10

13–1. MDB Beans in Office Supply Store ... 13–1
13–2. MDB Contents .. 13–3
13–3. Client Output from the MDB ..13–11

B–1. Items to Delete in the Deployment Folder ... B–2

3839 3831–002 xi

Tables

1–1. OSupplyStore Database Schema ... 1–4
1–2. Beans for Office Supply Store .. 1–6

Tables

xii 3839 3831–002

3839 3831–002 1–1

Section 1
Getting Started

The Eclipse platform (www.eclipse.org/platform) is one of the most useful integrated
development tools available to a developer. Its built-in functionality is generic, open,
and extensible by plug-ins. With the appropriate plug-ins, it can be used to develop
applications in Java and many other programming languages. Plug-ins are available that
support development activities ranging from design, development, and debugging to
deployment of both simple and multitiered applications.

This guide is based on the J2EE™ tutorial that is owned and copyrighted by TUSC
Computer Systems Pty Ltd. (www.tusc.com.au).

Purpose

This guide describes how to build Java Platform, Enterprise Edition (Java EE)
components, using the ClearPath OS 2200 IDE for Eclipse™ package as the Integrated
Development Environment (IDE). It contains instructions for building and testing each
component, along with completed examples.

Audience

This guide is for Java developers who write Java EE applications using Web Tools and
deploying to a JBoss Application Server™ (JBoss AS).

Prerequisites

This guide assumes that you are familiar with the OS 2200 IDE for Eclipse environment
and application development concepts. You should have a working knowledge of Java
technology, XML, and Java EE technology, along with some exposure to SQL, JDBC
concepts, and attribute-oriented programming (XDoclet).

The exercises in this guide assume that you installed all the components that are
identified in the ClearPath OS 2200 IDE for Eclipse™ Installation Guide.

http://www.eclipse.org/platform
http://www.tusc.com.au

Getting Started

1–2 3839 3831–002

Unzip the file eclipse-2200-appl-dev-guide.zip to get the following subfolders and files,
besides this guide:

• Database Scripts. Contains scripts for populating the databases for the examples
in this guide, including the Hypersonic and Relational Database Server databases.

• Database Drivers. Contains drivers for viewing the Relational Database Server
database with Data Source Explorer.

• Examples. Contains additional subfolders with complete Eclipse IDE workspaces
for each section in this guide. Examples are numbered to match the sections to
which they refer. To load these workspaces without errors, you might have to
change project class path entries to match your Eclipse IDE environment.

Documentation Updates
This document contains all the information that was available at the time of
publication. Changes identified after release of this document are included in problem
list entry (PLE) 18837421. To obtain a copy of the PLE, contact your Unisys
representative or access the current PLE from the Unisys Product Support Web site:

http://www.support.unisys.com/all/ple/18837421

Note: If you are not logged into the Product Support site, you will be asked to do
so.

Notation Conventions

This guide uses the following notation conventions:

Convention Description

Italic font Used for names of variables to which values must be assigned.

Bold font Used to

• Emphasize items such as the names of objects on windows and
dialog boxes, key names, and commands that are identified in
text.

• Identify code that users must replace in some examples.

Monospace
font

Used for examples and system output, such as prompt signs and
responses to commands.

[] Used to enclose optional fields or subfields.

> Represents command line prompt.

http://www.support.unisys.com/all/ple/18837421

 Getting Started

3839 3831–002 1–3

Accessing Menu Options

Throughout this guide, the instructions direct you to right-click selected objects in the
Java EE project window to reduce the number of mouse clicks for accessing menu
options. You can also access options using the main menu.

Right-click refers to the right button on a right-handed mouse. If you are using a
left-handed mouse, use the left button of the mouse.

You can access menu options from other perspectives, such as the Java perspective.
However, the menu items documented in this guide are different from those of other
perspectives. Typically, you must navigate through more menu options if you are not
in the Java EE perspective.

1.1. Office Supply Store Overview
The Office Supply Store is a Java project that provides the examples in this guide. As
you learn how to create the various Java EE components, you build them into the
project to perform specific functions. As each component is developed and
integrated, the project becomes more complex and useful.

The Office Supply Store can serve as a prototype as you develop projects to suit your
own business needs.

1.1.1. Database Schema

The procedures in the components use a database schema, called OSupplyStore, that
consists of the following tables:

• UserAccess authenticates all customers, suppliers, and managers for online
access to Office Supply Store applications.

• StoreCustomer records details of customers who bought an item at least once.

• StoreManager records details of managers who run the Office Supply Store;
currently, this table contains only one manager.

• StoreSupplier records details of suppliers who sell items to the Office Supply
Store in response to requests sent to these suppliers from an Office Supply Store
manager as the need arises.

• StoreInventory maintains an inventory of store items.

Table 1–1 describes the database schema.

Getting Started

1–4 3839 3831–002

Table 1–1. OSupplyStore Database Schema

Table Name Column Name Size Other

UserAccess UserName VARCHAR(20)

 Password VARCHAR(8)

 StoreAccessID VARCHAR(8) NOT NULL PRIMARY KEY

StoreCustomer CustomerID VARCHAR(8) NOT NULL PRIMARY KEY

 LName VARCHAR(18)

 FName VARCHAR(18)

 StreetAddress VARCHAR(28)

 City VARCHAR(28)

 State VARCHAR(2)

 ZipCode VARCHAR(5)

 Notes VARCHAR(40)

StoreManager ManagerID VARCHAR(8) NOT NULL PRIMARY KEY

 LName VARCHAR(18)

 FName VARCHAR(18)

 StreetAddress VARCHAR(28)

 City VARCHAR(28)

 State VARCHAR(2)

 ZipCode VARCHAR(5)

 Notes VARCHAR(40)

StoreSupplier SupplierID VARCHAR(8) NOT NULL PRIMARY KEY

 CompanyName VARCHAR(18)

 StreetAddress VARCHAR(28)

 City VARCHAR(28)

 State VARCHAR(2)

 ZipCode VARCHAR(5)

 Notes VARCHAR(40)

StoreInventory ItemID VARCHAR(10) NOT NULL PRIMARY KEY

 SupplierID VARCHAR(8)

 Description VARCHAR(40)

 QtyOnHand INTEGER

 Price DECIMAL(12,2)

 Getting Started

3839 3831–002 1–5

1.1.2. J2EE Components in Office Supply Store

To access data from the database and perform business operations, the Office Supply
Store example uses various Java 2 Platform, Enterprise Edition (J2EE) components,
including session, entity, and message-driven Enterprise JavaBeans (EJB) components,
along with Web clients that use servlets and JavaServer Pages (JSP).

Figure 1–1 illustrates the Office Supply Store application architecture. Pieces of this
architecture are illustrated in each section that describes a component.

Figure 1–1. Office Supply Store Application Architecture

In the Office Supply Store application

• For Web clients, requests are sent by servlets or JavaServer Pages (JSP) to beans
using Remote Method Invocation (RMI).

• For Java clients, requests are made to entity beans using Java middleware
technology: RMI or Java Message Service (JMS).

• Stateless and bean-managed persistence (BMP) entity beans access data from the
database using data access objects (DAO), which are wrappers for Java Database
Connectivity (JDBC) code.

• Container-managed persistence (CMP) entity beans do not require a DAO, because
the container manages communication between the beans and the database. This
feature is very powerful.

Getting Started

1–6 3839 3831–002

1.1.3. Beans in Office Supply Store

Beans are independent Java program modules that are called by an application in the
Java environment (refer to 6.6). JavaBeans are used primarily for developing user
interfaces in the client. Entity beans and message-driven beans are Enterprise
JavaBeans (EJB) components on the server.

The Office Supply Store implements the following beans:

• UserAccess is a stateless session bean. A session bean exposes its interface to
the presentation tier while encapsulating complex business interactions with the
other beans. UserAccess forms the backbone of the application and enables the
Office Supply Store customers, suppliers, and managers to log in to the system.

• StoreCustomer, StoreManager, StoreInventory, and StoreSupplier are entity
beans, which process data. Once authenticated, users request information about
Office Supply Store customers, managers, inventory, and suppliers using the
various interfaces in UserAccess. These interfaces invoke methods on the entity
beans, which supply the requested information.

• RequestStoreItems and DeliverStoreItems are message-driven beans, which pass
requests and results between UserAccess and end users. RequestStoreItems and
DeliverStoreItems are message-driven beans that listen for messages from a JMS
producer and transfer the messages to appropriate beans.

Table 1–2 identifies all beans that are implemented in the Office Supply Store, together
with their public behaviors (type) and methods.

Table 1–2. Beans for Office Supply Store

Bean Name Type Methods

UserAccessBean Session verifyUser()

getStoreCustomerData()

getStoreManagerData()

getStoreSupplierData()

getStoreInventoryData()

getAllItems()

getOutOfStockInventory()

getStoreInventoryBySupplier()

ejbCreate()

setSessionContext()

unsetSessionContext()

StoreCustomerBean Entity getStoreCustomerData()

ejbFindByPrimaryKey()

StoreManagerBean Entity getStoreManagerData()

ejbFindByPrimaryKey()

 Getting Started

3839 3831–002 1–7

Table 1–2. Beans for Office Supply Store

Bean Name Type Methods

StoreInventoryBean Entity ejbCreate()

getStoreInventoryData()

addToInventory()

StoreSupplierBean Entity ejbCreate()

getStoreSupplierData()

requestInventoryItem()

setEntityContext()

unsetEntityContext()

RequestStoreItemsBean Message onMessage()

DeliverStoreItemsBean Message onMessage()

The exercises in this guide develop these beans, build them into the Office Supply
Store application, and test the results.

Getting Started

1–8 3839 3831–002

3839 3831–002 2–1

Section 2
Configuring Eclipse IDE to Use JBoss
Application Server

A simple enterprise bean (EJB) is used to deploy the components of the Office Supply
Store. Before constructing the enterprise bean, ensure that the JBoss Application
Server (JBoss AS) is installed and configured as described in the ClearPath OS 2200
IDE for Eclipse™ Installation Guide.

2.1. Opening a Java EE Perspective
To open a Java EE perspective

1. Start Eclipse IDE. (If you create a new workspace, you must reconfigure WTP;
refer to the ClearPath OS 2200 IDE for Eclipse™ Installation Guide for
configuring WTP to use JBoss AS and XDoclet.)

2. On the Window menu, point to Open Perspective and click Other.

The Open Perspective dialog box appears.

3. Click Java EE (default) and then click OK.

A Java EE perspective window appears.

Close unnecessary windows, such as Welcome and Outline, to allow more viewing
room.

Configuring Eclipse IDE to Use JBoss Application Server

2–2 3839 3831–002

Figure 2–1 illustrates the user interface (UI) for an open Java EE perspective. The
procedures in this guide refer to the various parts of the UI as needed.

Figure 2–1. Java EE Perspective

2.2. Updating Eclipse 2200 with JBoss Community
and RedHat JBoss Enterprise Middleware
To update Eclipse 2200 with JBoss community and RedHat JBoss Enterprise
middleware

1. On the Eclipse Window menu, click Preferences.

The Preferences dialog box appears.

2. Double-click the Server node in the left side of the pane to expand the Server
node and select Runtime Environments.

3. Click Add in the Preferences dialog box.

The New Server Runtime Environment dialog box appears.

4. Click Download addtitional server adapters hyperlink.

The Install New Extension dialog box appears and starts populating with the
available server adapters.

5. Select JBossAS Tools (JBoss by Red Hat) and click Next.

6. Accept the license agreement in the Review License page and click Finish.

 Configuring Eclipse IDE to Use JBoss Application Server

3839 3831–002 2–3

7. Click OK in the Install Extension dialog box to confirm JBossAS download.

The Preferences dialog box appears. It might take a while to download the
update. Click OK in the Security Warning window that might appear during the
update process.

8. Click Restart Now in the Software Updates window to restart the Eclipse.

9. To load the Server view from Eclipse, click the Windows menu, select Show
View, and then select Other.

The Show View dialog box appears.

10. Type Servers in the Show View dialog box.

The tree view is reduced to the Servers selection.

11. Select Servers and click OK.

The Servers view is displayed in the Java EE perspective.

12. Right-click in the Servers view, click New, and then select Server.

The New Server dialog box appears. In addition to the default JBoss server type
that comes with Eclipse, the JBoss Community and JBoss Enterprise Middleware
server types are also available.

13. Expand either JBoss Community or JBoss Enterprise Middleware and
select the appropriate JBoss server type. JBoss Enterprise Middleware
JBoss 4.3 and JBoss 5.x are equivalent to the recent OS 2200 IDE for Eclipse
JBoss releases.

The server host name options are: localhost, 127.0.0.1, the DNS name or IP
address, or 0.0.0.0. Refer to the “Glossary” for more information about IP
addresses. Refer to the JBoss Application Server™ for ClearPath OS 2200
Installation, Administration, and Programming Guide for information on JBoss
bind address considerations.

14. Click Next.

15. Click Browse (next to the Home Directory) and navigate to the location where
JBoss is installed. If this location is the local installation of JBoss Application
Server for ClearPath OS 2200 IDE for Eclipse, navigate to the jboss511u or
jboss430GAu level.

16. Click OK.

17. In the New Server dialog box, the Configuration list is populated with the list
of JBoss server instances, that the selected JBoss Home Directory provides.
Select the required JBoss server configuration from the list.

18. Click JRE to select a version of JRE and select the required version of JRE from
the Installed JRE list, and click OK.

The available JRE options are based on the JBoss Runtime Name you selected.
If the JBoss Home Directory is a local installation of the JBoss Application Server
for ClearPath OS 2200 IDE for Eclipse, refer to the JBoss Application Server™ for
ClearPath OS 2200 for information on required Java levels.

19. Click Next in the New Server dialog box.

Configuring Eclipse IDE to Use JBoss Application Server

2–4 3839 3831–002

Note: If you are maintaining JBoss server outside the Eclipse then select the
Server is externally managed. Assume server is started checkbox. This
option available only with Indigo Release.

20. Select one of the following:

• To deploy the application on a local system, select Local from the Server
Behavior list.

• To deploy the application to a remote system, select Remote System
deployment from the Server Behavior list.

This enables the Host, Remote Server Home and Remote Server
Configuration boxes. Enter the required information in the respective boxes.

The JBoss server adapter supports remote deployment through Secure Shell
(SSH) and Secure Copy (SCP), and the server adapter publishes individual files as
well as individual folders. A new JBoss Tools Runtimes preference page is
available that enables you to configure any server run time found in a list of
directories.

21. Click Next.

The New Server dialog box appears.

22. To add one or more resources to the project, select the required resources from
the Available list and click Add. The selected resources are moved to the
Configured list.

23. Click Finish.

2.3. Creating a Java EE Project
A Java EE project is a collection of Java projects that compose the various tiers of an
application. You can create some or all projects, at once or as needed, using a Java EE
project wizard. Refer to the “Glossary” for more information about Java EE.

To create a Java EE project using the wizard

1. On the File menu, point to New and click Project.

The New Project wizard appears.

2. Expand Java EE and click Enterprise Application Project, and then click
Next.

The New EAR Application Project wizard appears.

3. Type the project name (MySample in this example) in the Project Name box and
select one of the following:

• If the Target runtime list is not empty, select the appropriate Target runtime
server.

• If the Target runtime list is empty, click New runtime next to the list and
select the appropriate JBoss version. Select the appropriate JRE and
Application Server Directory from the New Server Runtime
Environment dialog box and click Finish.

 Configuring Eclipse IDE to Use JBoss Application Server

3839 3831–002 2–5

4. Verify that EAR version 5.0 is selected in the New EAR Application Project wizard
and click Next.

 Note: By default, the Default Configuration is selected. You might need to
change the Default Configuration to a predefined configuration. To use a
predefined configuration for your project, select a configuration from the
Configuration list, and click Modify to do the following:

• To customize the project facets, select the required check boxes (next to
the facets) and select a version number for each facet. For more information
about the facet, select the required facet in the Details tab. You can also
choose a preset combination of facets from the Configurations list.

• To limit your project to be compatible with one or more runtimes, click the
Show Runtimes and select the runtimes that you want the project to be
compatible with.

5. Select the Generate Application.xml deployment descriptor check box
and click New Module.

The New Java EE Module wizard appears.

6. Clear the Web module and Connector module check boxes and click Finish,
leaving the Create default modules, Application client module, and EJB
module check boxes selected.

Following a short pause for the wizard to create the projects, the names of the
client and EJB projects are populated.

 Note: The Web module and connector module are not required to create these
EJB and application client module.

7. Click Finish.

It is common for the empty EJB project to be in error. The error disappears when an
enterprise bean is created.

2.4. Creating Enterprise JavaBeans
Enterprise JavaBeans (EJB) is a server-side component architecture that simplifies the
process of building an enterprise-class distributed component application in Java.
Using EJB, you can write scalable, reliable, and secure applications without writing
complex distributed component framework. Stock trading systems, banking systems,
and customer call centers are some examples that use EJB. Refer to Section 6,
“Business Components,” for information on EJB.

To create the enterprise javabean in the Java EE project

1. Right-click MySampleEJB on the Project Explorer tab, point to New, and click
Other.

The New dialog box for selecting a wizard appears.

2. Expand EJB, click Session Bean (EJB3.x), and then click Next.

The Create EJB 3.x Session Bean wizard appears.

Configuring Eclipse IDE to Use JBoss Application Server

2–6 3839 3831–002

3. Type us.com.unisys in the Java package box. (Refer to 2.4.1 for information
about typing versus browsing to values.)

4. Type MySampleBean in the Class Name box. (Refer to 2.4.2 for information
about naming beans.)

5. Select the Remote check box under Create business interface (the Local
check box is selected by default).

6. Click Next and then click Finish.

Note: If “Permgen (out of memory)” error occurs, perform the following steps:

1. On the Run menu, click Run Configuration.

 The Run Configurations wizard appears.

2. On the Arguments tab, change the VM arguments parameters value to
“-Xms128m -Xmx512m”.

Figure 2–2 illustrates the EJB project, all the classes, and interfaces generated from
the single session bean.

Figure 2–2. EJB Project

2.4.1. Typing Versus Browsing to Names

In many procedures throughout this guide, you cannot browse to a name because it is
not yet defined. Browsing requires creating the item previously in a separate step.
Once an item is created, its name is defined in a list for browsing.

 Configuring Eclipse IDE to Use JBoss Application Server

3839 3831–002 2–7

2.4.2. Naming Beans

The Create EnterpriseJavaBean wizard forces the bean class name to end with Bean.
Other generated classes also have specific suffixes, as specified throughout this
guide.

To avoid confusion with generated classes, do not use any of the following suffixes as
the name of your bean: Bean, EJB, Home, Local, or Session.

2.5. Creating Business Method for the EJB Project
To create a business method for the EJB project

1. Open MySampleBeanlocal or MySampleBeanRemote interface and declare a
method called create() as follows:

public void create();

Figure 2–3 illustrates the Create method in the Interface Module for the
MySampleEJB Project.

Figure 2–3. Interface Module for the MySampleEJB Project

2. Open MySampleBean class and write the implementation for create() method as
follows:

public void create()

{

 System.out.println("EJB project created");

}

Configuring Eclipse IDE to Use JBoss Application Server

2–8 3839 3831–002

Figure 2–4 illustrates the Create method in the Remote and Local modules of the
MySampleEJB Project.

Figure 2–4. Create method in the Remote and Local Modules of the MySampleEJB

Project

 Configuring Eclipse IDE to Use JBoss Application Server

3839 3831–002 2–9

2.6. Configuring JBoss AS as the Deployment
Server
Note: Before configuring JBoss AS as the deployment server, ensure that the
Server view is active in your Java EE perspective. To load the Server view in
Eclipse, click the Window menu, point to Show View, and click Servers.

To configure JBoss AS as the application server for deploying the bean, perform the
following steps:

• If there are any instances of a server configured in the project, perform the
following steps:

a. Right-click the required server and click Add and Remove.

The Add and Remove dialog box appears.

− To add one or more resources to the project, select the required
resources from the Available list and click Add. The selected
resources are moved to the Configured list.

− To remove one or more resouces from the JBoss deployment,
select the required resources from the Configured list and click
Remove. The selected resources are moved to the Available
list.

b. Click Finish.

• If there are no instances of server configured in the project, follow the steps
9 through 21 of section 2.2.

2.7. Running JBoss AS
You can start JBoss AS from either Eclipse IDE or a command prompt (refer to 3.3).
Starting from Eclipse IDE is recommended because debugging and deploying the
application is easier.

2.7.1. Starting JBoss AS

To start JBoss AS from Eclipse IDE, right-click the JBoss root node on the Servers
tab and click Start.

The startup process displays the Console tab. JBoss AS starts and then displays the
Servers tab when JBoss AS is running.

Note: If the “unable to run JBoss within 50 sec” error occurs, open Server (JBoss
v4.2 at local host), click timeouts, and increase the start and stop time values.

Configuring Eclipse IDE to Use JBoss Application Server

2–10 3839 3831–002

2.7.2. Cleaning the Project

Examine the Console tab for deployment errors. JBoss AS can start successfully
even if the bean fails to deploy. If the bean fails to deploy, clean the project, as
follows:

1. Stop JBoss AS.

2. Click Clean on the Project menu.

3. Start JBoss AS.

Refer to Appendix A if the bean still fails to deploy properly.

2.7.3. Stopping JBoss AS

To stop JBoss AS from Eclipse IDE, right-click the JBoss root node on the Servers
tab and click Stop.

2.8. Building a Test Client
To build a test client

1. Right-click MySampleClient on the Project Explorer tab, point to New, and
click Class.

2. Type test in the Package box.

3. Type TestClient in the Name box.

4. Be sure public is selected in the Modifiers list.

5. Select public static void main(String[] args) method stub.

Inherited abstract methods is already selected.

6. Click Finish.

TestClient.java code file is created.

7. Add the following code in the TestClient.java code file:

package test;

import java.util.Properties;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import us.com.unisys.MySampleBeanRemote;

public class TestClient {

 public static void main(String[] args) {

 try {

 Properties props = new Properties();

 props.setProperty("java.naming.factory.initial",

"org.jnp.interfaces.NamingContextFactory");

 props.setProperty("java.naming.factory.url.pkgs", "org.jboss.

naming");

 Configuring Eclipse IDE to Use JBoss Application Server

3839 3831–002 2–11

 props.setProperty("java.naming.provider.url", "127.0.0.1:1099

");

 InitialContext ctx = new InitialContext(props);

 MySampleBeanRemote bean = (MySampleBeanRemote)

 ctx.lookup("MySampleEJB/MySampleBean/remote");

 bean.create();

 } catch (NamingException e) {

 e.printStackTrace();

 }

 }

}

The client contains compilation errors because the client project depends on the EJB
project.

Figure 2–5 illustrates the compilation errors in Test client.

Figure 2–5. Compilation Errors in Test Client

Configuring Eclipse IDE to Use JBoss Application Server

2–12 3839 3831–002

2.9. Resolving Compilation Errors
To add an EJB project dependency and resolve compilation errors in the client project

1. On the Project Explorer tab, right-click the MySampleClient and click
Properties.

The Properties for MySampleClient dialog box opens.

2. Click Java Build Path.

3. Click Add on the Projects tab.

The Required Project Selection dialog box opens.

4. Select MySampleEJB to add a project dependency and click OK.

5. Click OK to close the Properties for MySampleClient dialog box.

6. If the TestClient code contains an error at the MySampleBeanRemote line within
the try block, click the cross mark for that line and double-click Fix Project
Setup.

The Project Setup Fixes wizard appears.

7. Click OK.

The test client should now compile cleanly.

 Configuring Eclipse IDE to Use JBoss Application Server

3839 3831–002 2–13

2.10. Testing the Project
To start JBoss from Eclipse IDE, right-click the JBoss root node on the Servers tab
and click Start.

The startup process displays the Console tab. JBoss starts and then displays the
Servers tab when JBoss is running.

To run the test, right-click TestClient.java on the Project Explorer tab, point to
Run as, and click Java Application. Figure 2–6 shows the output window.

Figure 2–6. Running the Test Client

2.11. Troubleshooting the Project
The test client might fail as some of the files might not have been compiled properly
or it might contain old class files. As the first step, you must clean all the projects.

To clean all the projects

1. On the Project menu, click Clean...

The Clean window appears.

2. Select Clean all projects and click OK.

See Appendix A for best practices and Appendix B for additional troubleshooting tips.

Configuring Eclipse IDE to Use JBoss Application Server

2–14 3839 3831–002

2.12. Hot-Deploying the Project
Hot-deployment means deploying while JBoss AS is running.

To hot-deploy the project, modify the bean by editing the code so that you know you
are executing the revised bean and save the file.

Figure 2–7 illustrates the updated project state.

Figure 2–7. Hot-Deploying the Project

Run the test client again and note the change in the trace output, showing that you are
exercising the modified bean.

3839 3831–002 3–1

Section 3
Loading the Hypersonic Database

The schema for the Office Supply Store inventory consists of five tables. Load the
schema and data into the embedded Hypersonic database using the following scripts:

• OSStoreSchema.script. Creates the database schema.

• OSStoreInsertData.script. Populates the tables with data.

• OSStoreDropTables.script. Drops and deletes all tables in this example.

Note: The Hypersonic database is used for demonstration purposes only and is not
considered to be of enterprise quality.

3.1. Scripts for Loading and Populating the
Database
The OSStoreSchema and OSStoreInsertData scripts (refer to Figure 3–1 and Figure 3–
2) load and populate the embedded Hypersonic database. Refer to 3.4 to run the
scripts.

Loading the Hypersonic Database

3–2 3839 3831–002

OSStoreSchema.script

CREATE TABLE USERACCESS(STOREACCESSID VARCHAR(8) NOT NULL PRIMARY KEY,

USERNAME VARCHAR(20),PASSWORD VARCHAR(8))

CREATE TABLE STORECUSTOMER(CUSTOMERID VARCHAR(8) NOT NULL PRIMARY KEY,

FNAME VARCHAR(18),LNAME VARCHAR(18),STREETADDRESS VARCHAR(28),CITY VARCHAR(28),

STATE VARCHAR(2),ZIPCODE VARCHAR(5),NOTES VARCHAR(40))

CREATE TABLE STORESUPPLIER(SUPPLIERID VARCHAR(8) NOT NULL PRIMARY KEY,

COMPANYNAME VARCHAR(18),STREETADDRESS VARCHAR(28),CITY VARCHAR(28),STATE VARCHAR(2),

ZIPCODE VARCHAR(5),NOTES VARCHAR(40))

CREATE TABLE STOREMANAGER(MANAGERID VARCHAR(8) NOT NULL PRIMARY KEY,

FNAME VARCHAR(18),LNAME VARCHAR(18),STREETADDRESS VARCHAR(28),CITY VARCHAR(28),

STATE VARCHAR(2),ZIPCODE VARCHAR(5),NOTES VARCHAR(40))

CREATE TABLE STOREINVENTORY(ITEMNUM VARCHAR(10) NOT NULL PRIMARY KEY,

SUPPLIERID VARCHAR(8),DESCRIPTION VARCHAR(40),QTYONHAND INTEGER,PRICE DECIMAL(12,2) N

OT NULL)

Figure 3–1. Script to Load Hypersonic Database Schema

OSStoreInsertData.script

INSERT INTO USERACCESS(STOREACCESSID,USERNAME,PASSWORD)

 VALUES(’USER1’,’FRANK1’,’PASSWD1’)

INSERT INTO USERACCESS(STOREACCESSID,USERNAME,PASSWORD)

 VALUES(’USER2’,’ANN123’,’PASSWD2’)

INSERT INTO USERACCESS(STOREACCESSID,USERNAME,PASSWORD)

 VALUES(’USER3’,’PAUL12’,’PASSWD3’)

INSERT INTO USERACCESS(STOREACCESSID,USERNAME,PASSWORD)

 VALUES(’USER4’,’SAND12’,’PASSWD4’)

INSERT INTO USERACCESS(STOREACCESSID,USERNAME,PASSWORD)

 VALUES(’USER5’,’SUE123’,’PASSWD5’)

INSERT INTO USERACCESS(STOREACCESSID,USERNAME,PASSWORD)

 VALUES(’USER6’,’DAN123’,’PASSWD6’)

INSERT INTO STORECUSTOMER(CUSTOMERID,FNAME,LNAME,STREETADDRESS,CITY,STATE,ZIPCODE,NOT

ES)

 VALUES(’CUST1’,’Frank’,’Jones’,’123 Main St.’,’Minneapolis’,’MN’,54101,’Likes Sony products.’)

INSERT INTO STORECUSTOMER(CUSTOMERID,FNAME,LNAME,STREETADDRESS,CITY,STATE,ZIPCODE,NOT

ES)

 VALUES(’CUST2’,’Ann’,’Thomas’,’3456 1st St.’,’Minneapolis’,’MN’,’54112’,’Big customer, be nice!’)

INSERT INTO STORECUSTOMER(CUSTOMERID,FNAME,LNAME,STREETADDRESS,CITY,STATE,ZIPCODE,NOT

ES)

 VALUES(’CUST3’,’Paul’,’Stephens’,’9876 Pine Rd.’,’Anoka’,’MN’,’53111’,’New client.’)

INSERT INTO STORESUPPLIER(SUPPLIERID,COMPANYNAME,STREETADDRESS,CITY,STATE,ZIPCODE,NOT

ES)

 Loading the Hypersonic Database

3839 3831–002 3–3

 VALUES(’SUPL1’,’Anderson Supply’,’101 Front St.’,’Roseville’,’MN’,’55113’,’Electronics’)

INSERT INTO STORESUPPLIER(SUPPLIERID,COMPANYNAME,STREETADDRESS,CITY,STATE,ZIPCODE,NOT

ES)

 VALUES(’SUPL2’,’Peters Papers’,’456 Brown Ave.’,’St. Paul’,’MN’,’55101’,’Paper Supplies’)

INSERT INTO STOREMANAGER(MANAGERID,FNAME,LNAME,STREETADDRESS,CITY,STATE,ZIPCODE,NOTES

)

 VALUES(’MANAGE1’,’Daniel’,’Nelson’,’3 Dodge Rd.’,’Minneapolis’,’MN’,’54111’,’The Boss.’)

INSERT INTO STOREINVENTORY(ITEMNUM,SUPPLIERID,DESCRIPTION,QTYONHAND,PRICE)

 VALUES(’ITEM1’,’SUPL1’,’SAMSUNG PDA’,0,245.95)

INSERT INTO STOREINVENTORY(ITEMNUM,SUPPLIERID,DESCRIPTION,QTYONHAND,PRICE)

 VALUES(’ITEM2’,’SUPL1’,’HP SCANNER’,190,110.50)

INSERT INTO STOREINVENTORY(ITEMNUM,SUPPLIERID,DESCRIPTION,QTYONHAND,PRICE)

 VALUES(’ITEM3’,’SUPL2’,’EPSON PRINTER’,90,200.10)

INSERT INTO STOREINVENTORY(ITEMNUM,SUPPLIERID,DESCRIPTION,QTYONHAND,PRICE)

 VALUES(’ITEM4’,’SUPL1’,’KODAK CAMERA’,0,345.00)

Figure 3–2. Script to Populate Hypersonic Database

3.2. Script for Purging the Database
The OSStoreDropTables script (refer to Figure 3–3) deletes tables in the database. Run
this script when you want to purge the database and start again.

OSStoreDropTables.script

DROP TABLE STOREINVENTORY

DROP TABLE STORESUPPLIER

DROP TABLE STOREMANAGER

DROP TABLE STORECUSTOMER

DROP TABLE USERACCESS

Figure 3–3. Script to Delete Hypersonic Database Tables

3.3. Opening the Console
The HSQL Database Manager window is the console for the embedded Hypersonic
database. The console is used to access schemas and do other database management
operations.

To open the console

1. Start JBoss AS from the command prompt window. Using command prompt,
open the drive in which JBoss is present and enter the following commands:

C:\>cd\jboss\bin

C:\jboss\bin>run

JBoss AS starts.

Loading the Hypersonic Database

3–4 3839 3831–002

2. Refer to Appendix A for troubleshooting tips.

3. Enter the following URL in your Web browser:

http://localhost:8080/jmx-console

The JBoss JMX Management Console window appears.

4. Under the jboss subheading, click database=localDB,service=Hypersonic.

The JMX MBean View page appears on the MBean Inspector window.

5. Scroll to startDatabaseManager (an MBean operation near the bottom of the
page) and click Invoke.

Close the DataBaseManagerSwing Font Selection Dialog dialog box if it
appears.

The HSQL Database Manager window (console) appears. (If you do not see the
console, check the taskbar. The console might be hidden behind the browser
window.)

3.4. Creating and Populating the Database
If you perform these procedures more than once, you must first remove the
previously created tables by running the OSStoreDropTables.script script (refer to
3.1).

To create and populate the database

1. Click Open Script on the File menu of the HSQL Database Manager console.

The Open Script dialog box opens.

2. Select the directory containing the script files in the Look in list, select
OSStoreSchema.script, and click Open.

3. Click Execute SQL Statement on the console.

4. Click Refresh Tree on the View menu to see the results from the script.

5. Click Open Script on the File menu.

The Open Script dialog box opens.

6. Select the directory containing the script files in the Look in list, select
OSStoreInsertData.script, and click Open.

7. Click Execute SQL Statement on the console.

8. Click Refresh Tree on the View menu to see the results from the script.

9. Click Commit on the Options menu to commit the changes.

 If Commit is not visible, select the Autocommit mode check box from the
Options menu.

http://localhost:8080/jmx-console

 Loading the Hypersonic Database

3839 3831–002 3–5

3.5. Verifying the Database
To verify the database by running a database query

1. Click Clear SQL Statement on the console.

2. Enter the following query in the box:

SELECT * FROM USERACCESS

3. Click Execute SQL Statement on the console.

Figure 3–4 illustrates the console with data.

Figure 3–4. HSQL Database Manager with Data

Loading the Hypersonic Database

3–6 3839 3831–002

3.6. Viewing the Database Using Data Source
Explorer
JBoss AS must not be running during the following procedure. If JBoss AS is running,
an error appears when you try to connect to the Hypersonic database.

To view the Office Supply Store database with Data Source Explorer

1. Open a Java EE perspective in Eclipse IDE.

Refer to 2.1 for the steps.

2. Right-click Databases in the Data Source Explorer pane and click New.

The New Connection Profile dialog box for selecting a wizard appears.

3. Select HSQLDB under Connection Profile types.

4. Type OfficeSupplyStore-Hypersonic in the Name box and click Next.

5. Click the button next to the driver list.

6. Perform the following in the New Driver Definition dialog box that is displayed:

a. Select the HSQLDB JDBC DRIVER in the Name/Type tab.

HSQLDB JDBC DRIVER appears in the Driver Name box.

b. Click Jar List tab, click Add Jar/Zip, browse to hsqldb.jar, and click Open.

If hsqldb.jar is already present under Driver File(s), click Edit Jar/Zip to
modify the driver file.

c. Modify the Connection URL to jdbc:hsqldb:C:\jboss-4.2.3.GA\
server\default\data\hypersonic\localDB.

d. Specify localDB for the database in the Database Name box and click OK.

e. Select HSQLDB JDBC Driver in the Drivers dialog box and click OK.

7. Type sa in the User name box (under the properties pane in General tab),
leaving the Password box blank and click Next.

Notes:

• Click Test Connection, if you want to verify whether you are able to
connect to the server.

• Click OK, if the Ping Failed dialog box is displayed. From the command
prompt window, enter Ctrl+C to stop JBoss server. The connection is
made successfully.

8. Click Finish.

The new connection, OfficeSupplyStore-Hypersonic, is added under
Databases.

9. Right-click OfficeSupplyStore-Hypersonic and click Connect.

 Loading the Hypersonic Database

3839 3831–002 3–7

10. Expand localDB, Catalogs, PUBLIC, Schemas, Tables, and then
STORECUSTOMER.

The structure of the Store Customer table is displayed.

11. Right-click STORECUSTOMER, point to Data and click Sample Contents.

The SQL Results pane appears with the SQL select statement generated in the
Status tab.

12. Click the Result1 tab to view the data of the Store Customer table.

Figure 3–5 illustrates the data for the Store Customer table in the SQL Results pane.

Figure 3–5. Hypersonic Database Contents

Loading the Hypersonic Database

3–8 3839 3831–002

3.7. Generating DDL Scripts
You can generate customized DDL scripts for the tables in the database. To generate a
DDL script for the Store Customer table, perform the following steps:

1. Right-click STORECUSTOMER in the Data Source Explorer pane and click
Generate DDL.

2. Select the model elements and objects that you want to include in the DDL script,
and click Next.

3. Click Browse to select an existing Java project (MySample in this example).

The corresponding .sql file name is populated in the File name box.

Note: If a Java project is not available, refer to 5.3.2 for the procedure to create
a Java project.

4. Click Next and then click Finish.

The DDL script is generated in the .sql file you specified.

5. Double-click the .sql file on the Project Explorer tab.

The file opens in the Connection profile view.

6. Select HSQLDB_1.8 from the Type list, OfficeSupplyStore-Hypersonic from
the Name list, and database name from the Database list, where database name
is the name you specified for the database in 3.6.

7. Select the query you want to execute, right-click, and click Execute Current
Text.

The query is executed and the result is displayed in the SQL Results view.

3839 3831–002 4–1

Section 4
Loading the Relational Database Server
Database

For demonstration purposes, this section uses OS 2200 application group 3 and an
administrator user-id of jvmtst in all procedures. Make appropriate changes if you use
a different application group or have a different administrator user-id. Refer to 4.2 for
the items that you might have to change.

4.1. Testing the Database
The Office Supply Store schema and database must be loaded only once. To
determine if the Relational Database Server database is already populated, log on to
the OS 2200 host using Telnet or a UTS emulator and enter the following commands:

>@dd,e ,,udssrc

>Report schema osupplystore.

If the output displays the name of the schema and user-id of the administrator, skip
the steps that populate the database. If the following message appears, perform all
steps:

*WARNING UREP1715: UREP cannot find the report entity.

4.2. Creating and Populating the Database

4.2.1. Modifying the Add Stream

An add stream is provided to create the Office Supply Store schema and populate the
database. The add stream is located in folder/file: database scripts/setup2200. In the
following copy, the items you might have to modify appear in bold font.

WARNING

End-of-line terminators in OS 2200 source files must be LF (line feed)
characters. If you edit the file with Eclipse IDE or on the OS 2200 system,
end-of-line terminators are correct. Windows editors, such as Notepad or
Wordpad, insert CR (carriage return) and LF (line feed) characters at the end
of each line, causing the add stream to work incorrectly on the OS 2200
system.

Loading the Relational Database Server Database

4–2 3839 3831–002

@ .

@ . DELETE ALL STORAGE areas, tables, schemas

@ . ---

@DD,E

process STORAGE-AREA StoreSupplier FOR SCHEMA OSupplyStore delete.

process STORAGE-AREA StoreCustomer FOR SCHEMA OSupplyStore delete.

process STORAGE-AREA StoreManager FOR SCHEMA OSupplyStore delete.

process STORAGE-AREA StoreInventory FOR SCHEMA OSupplyStore delete.

process STORAGE-AREA UserAccess FOR SCHEMA OSupplyStore delete.

exit.

@xqt,e syslib*rsa.rsac-coivp

drop table OSupplyStore.StoreSupplier ;

drop table OSupplyStore.StoreCustomer ;

drop table OSupplyStore.StoreManager ;

drop table OSupplyStore.StoreInventory ;

drop table OSupplyStore.UserAccess ;

COMMIT thread;

Exit;

@DD,E

delete schema OSupplyStore .

exit.

@ .

@ . Create Schema

@ . -------------

@XQT SYSLIB*RSA.RSAC-COIVP

ECHO ON;

BEGIN THREAD FOR UDSSRC UPDATE;

CREATE SCHEMA OSupplyStore AUTHORIZATION jvmtst

 CREATE TABLE StoreSupplier

 (SupplierID character(8) NOT NULL PRIMARY KEY,

 CompanyName character(18),

 StreetAddress character(28),

 City character(28),

 State character(2),

 ZipCode character(5),

 Notes character(40))

 GRANT ALL PRIVILEGES ON StoreSupplier TO PUBLIC

 CREATE TABLE StoreCustomer

 (CustomerID character(8) NOT NULL PRIMARY KEY,

 FName character(18),

 LName character(18),

 StreetAddress character(28),

 City character(28),

 State character(2),

 ZipCode character(5),

 Notes character(40))

 GRANT ALL PRIVILEGES ON StoreCustomer TO PUBLIC

Figure 4–1. Add Stream to Populate Relational Database Server Database (cont.)

 Loading the Relational Database Server Database

3839 3831–002 4–3

 CREATE TABLE StoreManager

 (ManagerID character(8) NOT NULL PRIMARY KEY,

 FName character(18),

 LName character(18),

 StreetAddress character(28),

 City character(28),

 State character(2),

 ZipCode character(5),

 Notes character(40))

 GRANT ALL PRIVILEGES ON StoreManager TO PUBLIC

 CREATE TABLE StoreInventory

 (ItemID character(10) NOT NULL PRIMARY KEY,

 SupplierID character(8),

 Description character(40),

 QtyOnHand INTEGER,

 Price DECIMAL(12,2) NOT NULL)

 GRANT ALL PRIVILEGES ON StoreInventory TO PUBLIC

 CREATE TABLE UserAccess

 (UserName character(20),

 Password character(8),

 StoreAccessID character(8) NOT NULL PRIMARY KEY)

 GRANT ALL PRIVILEGES ON UserAccess TO PUBLIC ;

COMMIT;

EXIT;

@ .

@ . Insert some data

@ . ----------------

@xqt syslib*rsa.rsac-coivp

echo on;

begin thread for UDSSRC update;

INSERT INTO OSupplyStore.UserAccess VALUES (’FRANK1’,’PASSWD1’,’USER1’);

INSERT INTO OSupplyStore.UserAccess VALUES (’ANN123’,’PASSWD2’,’USER2’);

INSERT INTO OSupplyStore.UserAccess VALUES (’PAUL12’,’PASSWD3’,’USER3’);

INSERT INTO OSupplyStore.UserAccess VALUES (’SAND12’,’PASSWD4’,’USER4’);

INSERT INTO OSupplyStore.UserAccess VALUES (’SUE123’,’PASSWD5’,’USER5’);

INSERT INTO OSupplyStore.UserAccess VALUES (’DAN123’,’PASSWD6’,’USER6’);

INSERT INTO OSupplyStore.StoreCustomer VALUES (’CUST1’

 ,’Frank’,’Jones’,’123 Main St.’,’Minneapolis’,’MN’,’54101’

 ,’Likes Sony products.’);

INSERT INTO OSupplyStore.StoreCustomer VALUES (’CUST2’

 ,’Ann’,’Thomas’,’3456 1st St.’,’Minneapolis’,’MN’,’54112’

 ,’Big customer, be nice!’);

INSERT INTO OSupplyStore.StoreCustomer VALUES (’CUST3’

 ,’Paul’,’Stephens’,’9876 Pine Rd.’,’Anoka’,’MN’,’53111’

 ,’New client.’);

INSERT INTO OSupplyStore.StoreSupplier VALUES (’SUPL1’,’Anderson Supply’

 ,’101 Front St.’,’Roseville’,’MN’,’55113’,’Electronics’);

Figure 4–1. Add Stream to Populate Relational Database Server Database (cont.)

Loading the Relational Database Server Database

4–4 3839 3831–002

INSERT INTO OSupplyStore.StoreSupplier VALUES (’SUPL2’,’Peters Papers’

 ,’456 Brown Ave.’,’St. Paul’,’MN’,’55101’,’Paper Supplies’);

INSERT INTO OSupplyStore.StoreManager VALUES (’MANAGE1’

 ,’Daniel’,’Nelson’,’3 Dodge Rd.’,’Minneapolis’,’MN’,’54111’,’The Boss’);

INSERT INTO OSupplyStore.StoreInventory VALUES (’ITEM1’,’SUPL1’

 ,’SAMSUMG PDA’,0,245.95);

INSERT INTO OSupplyStore.StoreInventory VALUES (’ITEM2’,’SUPL2’

 ,’HP SCANNER’,18,110.50);

INSERT INTO OSupplyStore.StoreInventory VALUES (’ITEM3’,’SUPL2’

 ,’EPSON PRINTER’,32,200.10);

INSERT INTO OSupplyStore.StoreInventory VALUES (’ITEM4’,’SUPL1’

 ,’KODAK CAMERA’,0,345.55);

commit;

end thread;

exit;

@end

Figure 4–1. Add Stream to Populate Relational Database Server Database

4.2.2. Uploading the Add Stream

Upload the add stream to the OS 2200 system using FTP or CIFS/SMB. If the OS 2200
file system is not mounted as a drive using CIFS/SMB, use FTP. Open a command
prompt window and perform the following, using your log-in, file source, and
destination:

U:\>ftp rs02
Connected to rs02.rsvl.unisys.com.

220 1100JD1100 Service ready for new user.

User (rs02.rsvl.unisys.com:(none)): dps

331 User name okay, need password.

Password: *******

332 Need account for login.
Account: 164153

230 User logged in, proceed.

ftp> put "d:\app guide 3.1\database scripts\setup2200" dps*temp.setup2200

200 Command okay.

150 File status okay; about to open data connection.
226 Closing data connection; requested file action successful.

ftp: 4437 bytes sent in 0.00Seconds 4437000.00Kbytes/sec.

Figure 4–2. Uploading the Add Stream

 Loading the Relational Database Server Database

3839 3831–002 4–5

4.3. Accessing Relational Database Server
Open a Telnet session to your OS 2200 site, logon using a user-id that has access to
the Relational Database Server application environment that you wish to use (this
example uses the user-id jvmtst, which is the administrator of application group 3).

Enter the following command in the Telnet session (assuming you uploaded the file to
the same location as in 4.2.2). After the add stream completes, the schema and tables
are created.

@add dps*temp.setup2200

Run the dde command to check whether the command is successful (refer to 4.1) and
terminate the Telnet session.

4.4. Setting Up Drivers to Access the Database
To set up drivers to access the Relational Database Server, download the appropriate
drivers from the OS 2200 system and, for convenience, place it in the C:\Database
Drivers folder. In this example, download the drivers for application group 3 using
CIFS/SMB, as follows:

a. Using Windows File Explorer, mount the share name OS 2200 on the
OS 2200 system that you are going to access.

b. Browse to the uds$$src/jdbc$client folder, where src is application group 3.

c. Copy the files rdmsdriver.jar and unisys-jca.jar to the Database Drivers folder.

Note: It is important to retrieve the correct rdmsdriver.jar. Different OS 2200
systems and different application groups can require different rdmsdriver.jar
files.

For more information on setting up drivers, refer to the Relational JDBC Driver for
ClearPath OS 2200 User Guide.

4.5. Setting Up Data Source Explorer to View the
Database
To set up Data Source Explorer to view the Office Supply Store database

1. Open a Java EE perspective in the Eclipse IDE.

Refer to 2.1 for the steps.

2. Right-click Database connections in the Data Source Explorer pane and click
New.

The New Connection Profile dialog box appears.

3. Select Generic JDBC Connection from the New Connection Profile dialog
box.

4. Type RDMS-OSupplyStore in the Name box and click Next.

Loading the Relational Database Server Database

4–6 3839 3831–002

5. Click the button next to the Drivers list.

The New Driver Definition dialog box appears.

a. Select Generic JDBC Driver from the Available Driver Templates list.

Generic JDBC Driver appears in the Driver Name box.

b. Click Jar List.

c. Browse to the files unisys-jca.jar and rdmsdriver.jar that you copied to
c:\Database Drivers in 4.4, and then click Open.

d. Type jdbc:rdms:host=name; port=1544; varchar=varchar;
schema=OSupplyStore in the Connection URL box

where

name is the name of your OS 2200 host.

1544 is the default port number for application group 3; your port number can
differ if you are using an application group other than 3 or are not using the
default port.

e. Select Driver Class.

A button appears in the right pane.

f. Click the button.

The Available Classes from Jar List dialog box appears.

g. Click Browse to select the class paths. Select
com.unisys.os2200.rdms.jdbc.RdmsDriver and click OK.

h. Click OK to close the Edit Driver Definition and Driver Definition dialog
boxes.

6. Select Generic JDBC Driver from the Drivers list.

7. Type your user name and password in the User name and Password boxes,
and click Next.

Note: Click Test Connection if you want to verify whether you are able to
connect to the server.

8. Click Finish.

The new connection, RDMS-OSupplyStore, is added under Database
connections.

 Loading the Relational Database Server Database

3839 3831–002 4–7

4.6. Viewing the Database Using Data Source
Explorer
Before attempting to connect to the Relational Database Server using JDBC, ensure
that the JDBC server for OS 2200 is running. Contact your system administrator for
instructions on how to obtain this information.

To view the contents of the Office Supply Store database using Data Source Explorer

1. Expand RDMS-OSupplyStore.

2. Expand the database name, Schemas, OSupplyStore, Tables, and then
STORECUSTOMER.

The structure of the Store Customer table is displayed.

3. Right-click STORECUSTOMER, point to Data, and click Sample Contents.

The SQL Results pane appears with the SQL select statement generated in the
Status tab.

4. Click the Results1 tab to view the data of the Store Customer table.

Note: The Result1 tab is not visible if there is no data in the Customer table.

Figure 4–3 illustrates the data for the Store Customer table in the SQL Results pane.

Figure 4–3. Relational Database Server Database Contents

You can also generate customized DDL scripts for the tables in the database. Refer to
3.7 for the procedure.

Loading the Relational Database Server Database

4–8 3839 3831–002

3839 3831–002 5–1

Section 5
Running Java Applications on the
OS 2200 System

Using Eclipse IDE, you can set up Java applications on an OS 2200 system to run and
debug them remotely.

5.1. Configuring Connections
To prepare for running Java applications on an OS 2200 IDE for Eclipse system, you
must set up host accounts, connections, and log-in scripts.

5.1.1. Setting up Host Accounts

Host accounts are needed to log on to the OS 2200 IDE for Eclipse . To create a new
host account

1. Start Eclipse IDE.

2. Click Telnet .

The New Telnet connection window for managing host and connections appears.

3. Select Configured and click New Connection.

The Connections Settings dialog box appears.

4. Type the host name, user-id, and password in the Host, User ID, and Password
boxes.

5. Retype the password in the Retype box.

6. Optionally, select the Save Password check box to save the password on the
system for future use of the host account.

Saving the password causes it to persist between Eclipse IDE sessions. If you do
not save the password, the password is retained only in memory and is discarded
when Eclipse IDE closes. Local office policies determine whether you can save
passwords on your disk. Passwords are saved in private file space, however, and
another user with administrative privileges can see your password.

7. Select the OS 2200 operating system option if it is not already selected.

8. Enter the required name in the Connection Name box.

The name is displayed in the Telnet wizard.

9. Click OK and then click Finish.

Running Java Applications on the OS 2200 System

5–2 3839 3831–002

10. Enter the password in the Host Prompt window that is displayed.

11. Click OK.

You are now connected to the OS 2200 host.

5.1.2. Setting up Connections

Connections are associated with host accounts. Each host account can have any
number of connections. To create a new connection

1. Click Telnet icon on the toolbar.

The Telnet window for managing host and connections appears.

2. Select Configured and click New Connection.

The Connections Settings dialog box appears.

3. Select the required account in the Host Accounts list.

4. Enter the required name for the account in the Connection Name box.

The name is displayed in the Telnet wizard.

5. If necessary, change the default entries in the Port Number and Prompt
Character boxes. (In most cases, you do not need to change these values. If the
specified port is an SSL port, select the SSL Port check-box.)

6. If your OS 2200 IDE for Eclipse log-in has no prompts other than for user-id and
password, click OK. If your log-in requires project-id, account, account index, and
so forth, complete the procedure in 5.3 and then click OK.

5.1.3. Recording Log-In Scripts

Log-in scripts enable Telnet sessions to log in automatically. To record a log-in script
for the host account and connection

1. Click Record.

If you have an existing script, a warning is displayed asking if you are sure; if you
click OK, existing scripts are deleted.

2. Click OK.

If no scripts are needed, you receive a notice.

3. Click OK.

4. Answer each prompt as it appears and click OK.

The prompts and your responses are recorded and attached to the connection as
a script. They are also displayed in the Telnet Connection Settings dialog box.

 Running Java Applications on the OS 2200 System

3839 3831–002 5–3

5. If one of the host prompts needs to be edited manually (such as its timestamp)

a. Select the prompt and click Edit.

The host prompt is displayed in the editing area.

b. Edit the host prompt and response as needed and click Replace.

The Host prompt and response are updated with the new values.

c. Clear the contents in the Host Prompt and Response boxes and then click
Record.

Otherwise, add the values present in these boxes and then click Record.

5.2. Starting a Telnet Session

5.2.1. Using Preconfigured Connections

To start a Telnet session using preconfigured connections (refer to 5.1) in the Telnet
wizard

1. On the File menu, point to New and click Other.

The Select a wizard dialog box appears.

2. Expand Telnet and click Telnet Connection.

3. Click Next.

If you already configured a set of connections, the list of connections is displayed
in Configured Connections.

4. Select Configured to use one of your preconfigured connections.

5. Select the desired connection and click Finish.

The resulting Telnet window automatically logs on to the system using the predefined
user-id, password, and any log-in scripts that you defined. Some prompts can occur if

• You did not save the password.

• The password is expired.

• The log-in scripts are incorrect.

The Telnet wizard saves the most recent log-in entries and uses them in new Eclipse
IDE sessions.

You can also create a new host account by clicking New Connection.

Running Java Applications on the OS 2200 System

5–4 3839 3831–002

5.2.2. Creating Connections Manually

If no connections are configured or if you wish to connect to a system that is not
listed

1. Launch the Telnet wizard as in 5.2.1. In step 4, leave the selection as Manual.

2. Type the host name.

3. Change the port number if your Telnet server uses a nonstandard port number. If
the specified port is an SSL port, select the SSL Port check-box.

4. Select a character set from the Character Conversion list, if required.

Note: Telnet supports character set translation, which includes the Japanese
character set and 7-bit character sets supported by ISO-646. When a character
set is selected, any occurrences of the selected characters in Telnet traffic are
translated to Unicode before being displayed.

5. Click Finish.

The Telnet dialog box appears.

6. Answer the prompts for user-id, password, and possibly other values, depending
on the system to which you are connecting.

5.2.3. Switching between Command Line Modes

A connected Telnet session has two command line modes.

• The duplex command line mode, represented by the following double-arrow icon:

The duplex command line sends each character to the host as it is typed. The
character is then echoed by the host and placed on the screen. The only editing
allowed in duplex mode is the use of backspace. The duplex command line mode
is the default mode when connecting to a UNIX host and it is typically used when
control characters need to be sent to the host.

• The buffered command line mode, represented by the following single-arrow icon:

The buffered command line only transmits the command line when the Enter key
is pressed. The line is buffered until the Enter key is encountered. Typical
workstation editing, such as insert, delete, cut, and paste, is allowed in the middle
of the line. The buffered command line mode is the default mode when
connecting to an OS 2200 IDE for Eclipse host.

To access the command line modes, right-click an empty area on the Telnet console.

 Running Java Applications on the OS 2200 System

3839 3831–002 5–5

5.3. Preparing the OS 2200 IDE for Eclipse Java
Project

5.3.1. Creating OS 2200 IDE for Eclipse Directories

To create a directory on the target OS 2200 IDE for Eclipse system using a Telnet
session

1. Start a Telnet Session in Eclipse IDE (refer to 5.2).

2. On the OS 2200 IDE for Eclipse system, create a network-visible name for the CIFS
directory using a CIFS utility script that is similar to the following:

@cifsut
cd /java
mkdir <your-name>Workspace
share /java/<your-name>Workspace <your-name>WorkArea

where <your-name> is your name or some other identifier that makes the folder
unique on the system.

3. On your workstation, use Windows Explorer to map a network drive to the
OS 2200 IDE for Eclipse shared name (<your-name>WorkArea) of the CIFS
directory. This directory contains your Java program source code file and its class
file. For example if the host name is HostA and the share name is TestWorkArea,
enter the following path:

\\HostA\TestWorkArea

4. Click Connect using a different user name.

The Connect As dialog box appears.

5. Type your OS 2200 IDE for Eclipse user-id and password in the User name and
Password boxes and click OK.

6. Click Finish.

Note: Every OS 2200 IDE for Eclipse project has a Telnet session associated
with it, which is represented by the following icon:

 The icon is enabled when an OS 2200 IDE for Eclipse project is selected.

5.3.2. Creating New Java Projects

To create a new Java project

1. On the File menu, point to New and click Project.

The New Project wizard appears.

2. Select Java Project and click Next.

3. Type DebugTest1 in the Project name box.

4. Select Create project from existing source.

Running Java Applications on the OS 2200 System

5–6 3839 3831–002

5. Click Browse.

The Browse for Folder dialog box appears.

6. Select the mapped drive for TestWorkArea from the list and click OK.

The drive letter for the project appears in the Directory box.

7. Click Finish.

5.3.3. Creating Source Class Folders

By default, the Java source folder named src is created in the DebugTest1 project. If it
is not created by default, perform the following steps to create a folder for the Java
source:

1. From Eclipse IDE Package Explorer, select and right-click DebugTest1, point to
New, and click Source Folder.

The New Source Folder dialog box appears.

2. Type src in the Folder name dialog box and click Finish.

5.3.4. Creating Application Class Files

To create a new class file for the application

1. From Eclipse IDE Package Explorer, select and right-click DebugTest1, point to
New, and click Class.

The New Java Class wizard appears.

2. Type DebugTest1 in the Name box.

3. Be sure public is selected in the Modifiers list.

4. Select the public static void main(String[] args) check box.

5. Click Finish.

6. Edit the main() method of the DebugTest1 class to add the lines in Figure 5–1.

 Running Java Applications on the OS 2200 System

3839 3831–002 5–7

Figure 5–1. Creating a Class File

7. Save the updated file.

8. Double-click the left margin of the second println statement to add a breakpoint.

The following symbol appears:

Running Java Applications on the OS 2200 System

5–8 3839 3831–002

5.4. Running the Java Application

5.4.1. Running the Java Application Remotely on OS 2200 IDE
for Eclipse

To run the Java application remotely on OS 2200 IDE for Eclipse, create the Java
project in Eclipse and perform the following steps:

1. On the File menu, click New and then click Project.

The New Project wizard appears.

2. Type Java Project in the Wizards box, select Java Project from the available
options, and click Next.

The New Java Project wizard appears.

3. Type the required project name in the Project name box. For example,
sampleProject.

4. Click Next and then click Finish.

The sampleProject is created.

5. Right-click the src folder of sampleProject you just created, click New, and then
click Other.

The New wizard appears.

6. Type class in the Wizards box, select Class from the Java node, and then click
Next.

The New Java Class wizard appears.

7. Type the required Java class name in the Name box (for example DebugTest1)
and click Finish.

The New Java class file (DebugTest1.java file in this example) is created.

8. Add the following code in the DebugTest1.java file which you created:

public class DebugTest1 {
 public static void main(String[] arg) {
 System.out.println("Begin Java ...");
 int i = 99;
 System.out.println("The value of i : is " + i);
 System.out.println("End of Java...");
 }
}

9. Right-click the sample project (created in step 3) and click on Properties.

 The Properties for sample Project wizard appears.

10. Browse to the location in your system under Resources in the wizard, open the
bin folder, and copy the DebugTest1.class file.

11. Map the Network drive with the OS 2200 IDE for Eclipse server (RS02) and paste
the DebugTest1.class file to the mapped drive.

 Running Java Applications on the OS 2200 System

3839 3831–002 5–9

12. Log on to the OS 2200 IDE for Eclipse server (RS02) using the Telnet icon on the
toolbar.

The RS02 pane is displayed at the bottom of the Eclipse window.

13. Type the following command to run the DebugTest1 program on RS02:

@’java -cp file DebugTest1

where –cp is used to set the classpath if the program is kept in a different
directory.

The following output appears in the Console tab:

Begin Java ...
The value of i : is 99
End of Java..

5.4.2. Running the Java Application Remotely on OS 2200 IDE
for Eclipse JProcessor

Perform one of the following steps to run the Java application remotely on OS 2200
IDE for Eclipse JProcessor:

• If the OS 2200 IDE for Eclipse server is mounted with JProcessor, run the
following command through the Telnet window:

@’jpjava -cp file DebugTest1

• If the OS 2200 IDE for Eclipse server is not mounted with JProcessor, run the
following command through the Telnet window:

 @cifsut
 set CURRENTDIRECTORY=~/mnt/file
 @eof
 @’icmount /file /home/IC-your2200userid/mnt/file
 @’jpjava DebugTest1

 where

• File is the directory name.

• your2200userid is the IP address of the JProcessor.

• DebugTest1 is the java program that you created in step 7 of Section 5.4.1 (this
file is saved on the OS 2200 IDE for Eclipse server, RS02).

For more information on mounting the JProcessor, refer to the ClearPath Specialty
Engine for OS 2200 Installation and Servicing Guide.

Running Java Applications on the OS 2200 System

5–10 3839 3831–002

5.5. Debugging the Java Application

5.5.1. Debugging the Java Application Remotely from OS 2200
IDE for Eclipse Server

To debug the java application remotely on OS 2200 IDE for Eclipse server

1. Enter the following statement in the Telnet window:

@’java -Xdebug -Xrunjdwp:transport=dt_socket,address=8000,server=y,suspen
d=y -cp file DebugTest1

 where

• -Xdebug enables debugging support in Virtual Machine

• The Java Debug Wire Protocol (jdwp) defines the format of information and
requests transfer between the process being debugged and the debugger.

• address is the transport address for the connection

− If server = n, attempt to attach to debugger application at this address.

− If server = y, listen for a connection at this address.

− If suspend = y, suspend this Java Virtual Machine before the main class
loads.

The port address must be unique (8000, in this example). If a port address is in
use, a verbose ER ABORT$ message appears.

• DebugTest1 is the Java program that you created in step 7 of Section 5.4.1

 The output window should display the following:

 Listening for transport dt_socket at address: 8000

2. Open the DebugTest1.java file under sampleProject from Eclipse and verify its
code. The code should be similar to the following:

public class DebugTest1 {
 public static void main(String[] arg) {
 System.out.println("Begin Debug ...");
 int i = 99;
 System.out.println("The value of i : is " + i);
 System.out.println("End of Debug...");
 }
}

3. Right-click the left margin of the DebugTest1.java file code and click Toggle
Breakpoint to add a breakpoint.

4. On the Run menu, click Debug Configurations.

 The Debug Configurations window appears.

 Running Java Applications on the OS 2200 System

3839 3831–002 5–11

5. Double-click the Remote Java Application node in the left pane and then
select Connection Type Standard (Socket Attach) in the right side of the
pane.

6. Type the host system name in the Host box.

 If your OS 2200 IDE for Eclipse system uses JProcessor, type the IP address of
JProcessor system instead of the OS 2200 IDE for Eclipse system.

7. Type 8000 in the Port box, the same port address as specified in step 1.

8. Click Apply and then click Debug.

9. Click Yes in the Confirm Perspective Switch window.

 The Eclipse IDE switches to the Debug perspective.

After you enter the debugging information, you can reuse the remote debug
configuration to restart the debugging. Debug as necessary and click the following
icon on the toolbar or press F8 to resume:

The debug output appears on the Console tab, as shown in Figure 5–2.

Figure 5–2. Eclipse IDE Debug Output

Running Java Applications on the OS 2200 System

5–12 3839 3831–002

5.5.2. Debugging the Java Application Remotely from OS 2200
JProcessor

Before you begin debugging, determine the IP address of the JProcessor that is
connected to the OS 2200 IDE for Eclipse server. Enter the following statement in the
Telnet or INFOConnect window:

@icadmin

The window will switch to the Interconnect ICADMIN Command Choices. Enter the
following command to determine the IP Address:

list_processor

The output window displays the IP address of the JProcessor connected to the
OS 2200 IDE for Eclipse server as illustrated in Figure 5–3:

 Type Num IC-Mode host:port Qualifier\J-name
 JPROCESSOR 1 DEFAULT 192.61.252.148:22719 JPR1
 JPROCESSOR 3 DEFAULT 192.61.229.93:22719 JPR3
 JPROCESSOR 4 DEFAULT 192.61.229.94:22719 JPR4
 JPROCESSOR 5 DEFAULT 192.61.213.5:22719 JPR5

Figure 5–3. JProcessor IP Address

To debug the java application remotely on OS 2200 IDE for Eclipse JProcessor

1. Enter the following statement in the Telnet window:

@’jpjava -Xdebug -Xrunjdwp:transport=dt_socket,address=8000,server=y,susp
end=y -cp file DebugTest1

2. Follow steps 2 through 5 of section 5.5.1 and type your OS 2200 IDE for Eclipse
system JProcessor IP address (that you determined before debugging) in the
Host box.

3. Type 8000 in the Port box, the same port address as specified in step 1.

5. Click Apply and then click Debug.

6. Click Yes in the Confirm Perspective Switch window.

The Eclipse IDE switches to the Debug perspective.

After you enter the debugging information, you can reuse the remote debug
configuration to restart the debugging. Debug as necessary and click the following
icon on the toolbar or press F8 to resume:

The following debug output appears on the Console tab:

Listening for transport dt_socket at address: 8000
 Begin Debug ...
 The value of i : is 99

 End of Debug...

 Running Java Applications on the OS 2200 System

3839 3831–002 5–13

5.6. Troubleshooting Errors
The following errors can occur when running Java applications remotely on an
OS 2200 IDE for Eclipse system:

• A launching error message appears stating that the connection to the remote VM
failed. Possible reasons and solutions are

• The remote application might not be ready to accept the connection from the
Eclipse IDE debugger. Wait a few seconds and try again.

• You might not have configured the OS 2200 or Eclipse IDE correctly. Correct
the Eclipse IDE debugging parameters and check the start parameters for the
JVM on the OS 2200 site.

• The program is not waiting on the port you specified.

• The JVM is not configured for the host IP address that you are attempting to use.

Running Java Applications on the OS 2200 System

5–14 3839 3831–002

3839 3831–002 6–1

Section 6
Creating an Enterprise Application
Development Model

An Enterprise application is a business application which is developed to satisfy the
business needs of the enterprise. It can be deployed on a variety of platforms across
networks. Java EE technology provides a framework for creating a simple
development model.

6.1. Overview of J2EE Technology and Concepts
A simple development model for enterprise applications that uses J2EE technology is
a component-based application model. The components use services that are
provided by the container. Without the container, these services typically need to be
incorporated in the application code.

J2EE technology is multitiered architecture for implementing enterprise-class
applications such as

• Web applications

• Client/server applications

The J2EE model is not ideal for all scenarios. For example, a light-weight Java
technology solution, such as servlets or JavaServer Pages (JSP), can be a better
solution for a small scale application.

6.2. J2EE Components
J2EE applications consist of different components. A J2EE component is a self-
contained functional software unit that

• Is assembled into a J2EE application with its helper classes and files

• Communicates with other components in the application

Creating an Enterprise Application Development Model

6–2 3839 3831–002

The J2EE specification defines the following primary J2EE components:

• Application clients and Web clients, including applets, are components that run on
the client.

• Java servlet and JavaServer Pages (JSP) technology components are Web
components that run on the Web server.

• Enterprise JavaBeans (EJB) components (also known as enterprise beans) are
business components that run on the application server.

Figure 6–1 illustrates these components and environments.

Figure 6–1. J2EE Components

J2EE components are assembled into a J2EE application, verified to be well formed
and in compliance with the J2EE specification, and deployed to production, where they
are run and managed by a J2EE application server, such as JBoss AS.

6.3. J2EE Services and Supporting Technologies
In addition to the primary components, other standard services and supporting
technologies are

• Java Database Connectivity (JDBC) technology. Provides access to relational
database systems.

• Java Transaction API (JTA) and Java Transaction Service (JTS). Provide transaction
support for Java EE components.

• Java Message Service (JMS). Provides asynchronous communication between
J2EE components.

• Java Naming and Directory Interface (JNDI). Provides naming and directory access.

 Creating an Enterprise Application Development Model

3839 3831–002 6–3

6.4. J2EE Distributed Architecture
All J2EE applications implement a distributed architecture in which

• An object is associated with a logical name.

• A naming service accepts advertisements from logically named EJB components.

• Client components request references to service components using the name.

Figure 6–2 illustrates these relationships, with the process flow described in 6.11.1.

Figure 6–2. J2EE Distributed Architecture

6.4.1. Process Flow

The process flow of a distributed architecture is

1. A remote object advertises its availability with the naming service using a logical
name.

2. A client requests the object references by looking for an object by its advertised
name.

3. The naming service translates the name to the physical location of the object in
the J2EE environment.

4. When the client gets the reference to a remote component, the client performs
the necessary operations (sends requests to) on that object.

5. The client processes the reply, as appropriate.

Creating an Enterprise Application Development Model

6–4 3839 3831–002

The run-time system handles the distributed communication between the remote
objects, which includes serialization and deserialization of parameters. (In RPC
terminology, serialization is the same as marshalling, and deserialization is the same as
unmarshalling.)

6.4.2. Naming Services

Some of the naming services that are used in distributed systems are

• Remote Method Invocation (RMI). For Java-only implementations; JBoss AS uses
RMI as its naming service.

• Common Object Request Broker Architecture (CORBA)

• Lightweight Directory Access Protocol (LDAP)

• Domain Name System

• Network Information Services (NIS)

6.4.3. Java Naming and Directory Interface Architecture

Java EE uses the Java Naming and Directory Interface (JNDI) API to generically access
naming and directory services using Java technology. The JNDI API resides between
an application and a naming service and makes the underlying naming service
implementation transparent to application components.

A client can look up references to EJB components and other resources using a
naming service. The client code remains unchanged, regardless of which naming
service is used or on what technology it is based.

6.5. Java EE Components
A Java EE application is packaged into one or more standard units for deployment to
any Java EE platform-compliant system. Each unit contains a functional component or
components (enterprise bean, JSP page, servlet, applet, and so on).

An optional deployment descriptor that describes its content once a Java EE unit has
been produced is ready to be deployed. Deployment typically involves using a
platform's deployment tool to specify location-specific information, such as a list of
local users that can access it and the name of the local database. Once you deploy an
application on a local platform, you can run the application.

A Java EE application is delivered in an Enterprise Archive (EAR) file− a standard Java
Archive (JAR) file with an .ear extension. You can use the EAR files and modules to
assemble a number of different Java EE applications with the help of some of the JEE
components.

 Creating an Enterprise Application Development Model

3839 3831–002 6–5

An EAR file contains Java EE modules and deployment descriptors. A deployment
descriptor is an XML document with an .xml extension that describes the deployment
settings of an application, a module, or a component. Since deployment descriptor
information is declarative, it can be changed without the need to modify the source
code. At run time, the Java EE server reads the deployment descriptor and acts upon
the application, module, or component accordingly.

Figure 6–3 illustrates the JAVA EE components.

Figure 6–3. Java EE Components

A Java EE module consists of one or more Java EE components for the same
container type and one component deployment descriptor of that type. An enterprise
bean module deployment descriptor, for example, declares transaction attributes and
security authorizations for an enterprise bean. A Java EE module without an
application deployment descriptor can be deployed as a stand-alone module.

The four types of Java EE modules are as follows:

• EJB modules contain class files for enterprise beans and an EJB deployment
descriptor. EJB modules are packaged as JAR files with a .jar extension.

• Web modules contain servlet class files, JSP files, supporting class files, GIF and
HTML files, and a Web application deployment descriptor. Web modules are
packaged as JAR files with a .war (Web ARchive) extension.

• Application client modules contain class files and an application client
deployment descriptor. Application client modules are packaged as JAR files with
a .jar extension.

• Resource adapter modules contain all Java interfaces, classes, native libraries,
and other documentation, along with the resource adapter deployment descriptor.
Together, these implement the Connector architecture (J2EE Connector
Architecture) for a particular EIS. Resource adapter modules are packaged as JAR
files with a .rar (resource adapter archive) extension.

Creating an Enterprise Application Development Model

6–6 3839 3831–002

The Java EE architecture provides configurable services, application components
within the same Java EE application can perform differently based on where they
are deployed. For example, an enterprise bean can have security settings that
allow the bean a certain level of access to database data in one production
environment and another level of database access in another production
environment.

The container also manages nonconfigurable services such as enterprise bean and
servlet lifecycles, database connection resource pooling, data persistence, and
access to the Java EE platform APIs.

6.5.1. Java EE APIs

Java EE includes the following API specifications:

• Enterprise JavaBeans Technology

• Java Servlet Technology

• JavaServer Pages Technology

• JavaServer Pages Standard Tag Library

• JavaServer Faces

• Java Message Service API

• Java Transaction API

• JavaMail API

• JavaBeans Activation Framework

• Java API for XML Processing

• Java API for XML Web Services (JAX-WS)

• Java Architecture for XML Binding (JAXB)

• SOAP with Attachments API for Java

• Java API for XML Registries

• Java Database Connectivity (JDBC) API

• Java Persistence API (JPA)

• Java Naming and Directory Interface (JNDI)

• Java Authentication and Authorization Service

 Creating an Enterprise Application Development Model

3839 3831–002 6–7

6.5.2. Java EE Communication Technologies

Communication technologies provide mechanisms for communication between clients
and servers and between collaborating objects hosted by different servers.

The Java EE specification requires support for the following types of communication
technologies:

• Internet protocols

• Remote Method Invocation Protocols

• Object Management Group Protocols

• Messaging technologies

It provides a way to asynchronously send and receive messages. The Java
Message Service API provides an interface for handling asynchronous requests,
reports, or events that are consumed by enterprise applications.

6.6. Java EE Clients
Java EE clients are Web clients or application clients.

6.6.1. Web Clients

A Web client consists of

• Dynamic Web pages that contain various types of markup language (such as
HTML or XML), which are generated by Web components running in the Web tier

• A Web browser that renders the pages received from the server

Thin Clients

Web clients are often designed as thin clients. Thin clients pass input and requests
from users to a server and return results. Thin clients do not perform heavyweight
operations, such as querying databases, executing complex business rules, or
connecting to legacy applications. These operations are performed by enterprise
beans that execute on the Java EE server, where they can make use of the security,
speed, services, and reliability of Java EE server-side technologies.

Embedded Applets

Web pages that are received from the Web tier can include embedded applets. An
applet is a small client application that is written in the Java programming language
and executes in the Java virtual machine (JVM) that is installed in the Web browser.

To execute applets successfully in the Web browser, client systems need the Java
plug-in and possibly a security policy file.

Creating an Enterprise Application Development Model

6–8 3839 3831–002

Web Components

Web components (servlets and JSPs) are often preferred over applets for creating
Web clients because no plug-ins or security policy files are needed on the client
systems. Web components provide a means to separate application logic from Web
page design, allowing a modular application design. Refer to 6.5 for more information.

6.6.2. Application Clients

An application client runs on a client machine and provides a way to perform tasks
that require a richer user interface than a markup language can provide. An application
client

• Normally has a graphical user interface (GUI) that is created using the Swing or
Abstract Window Toolkit (AWT) APIs

• Can have a command-line interface

• Can directly access enterprise beans that are running in the business tier

If a Web client is needed, an application client can open an HTTP connection to
establish communication with a servlet that is running in the Web tier.

6.7. Web Components
Java EE Web components are servlets or JavaServer Pages (JSP), which are defined
as follows:

• Servlets are Java programming language classes that dynamically process
requests and construct responses.

• JSPs are text-based documents that execute like servlets but allow a natural
language approach to creating static content.

The Web tier can include JavaBeans components to manage the user input and send
that input to enterprise beans that are running in the business tier for processing.
HTML pages, applets, and server-side utility classes are bundled with Web
components during application assembly, but the Java EE specification does not
consider them to be Web components.

 Creating an Enterprise Application Development Model

3839 3831–002 6–9

Figure 6–4 illustrates Web components and communication between them.

Figure 6–4. Web Components and Communication

002634

Web browser, Web
pages, applets, and
optional JavaBean

components

Application Clients Database

Session Beans
Entity Beans

Message-Driven
Beans

JSPs/
Servlets

Optional
JavaBeans

Components

Web Tier Business Tier EIS TierClient Tier

Java EE Server

Creating an Enterprise Application Development Model

6–10 3839 3831–002

6.8. Business Components
The enterprise beans that run in the business tier handle business operations for a
particular business domain, such as banking or finance. Some enterprise beans

1. Receive data from client programs.

2. Process the data (if necessary).

3. Send the data to the enterprise information system (EIS) tier, which stores it in a
database.

Other enterprise beans

1. Retrieve data from the database.

2. Process the data (if necessary).

3. Send the data to client programs.

6.8.1. Types of Enterprise Beans

Enterprise beans can be

• Session beans (stateless and stateful). A transient conversation with a client.
When the client finishes executing, the session bean and its data are gone.

• Entity beans (bean-managed and container-managed). Persistent data stored in
one row of a database relation or table. If the client terminates or the server shuts
down, the underlying services ensure that the entity bean data is saved.

• Message-driven beans. Combination of features of a session bean and a Java
Message Service (JMS) message listener, which allows a business component to
receive JMS messages asynchronously.

The procedures in this guide create and use all bean types in the Office Supply Store
(refer to Table 1–2).

6.8.2. Enterprise Beans Versus JavaBeans

The Java EE specification does not include JavaBeans as Java EE components because
JavaBeans are different from enterprise beans. Both server and client tiers can use
JavaBeans component architecture to manage the communication between an
application client or applet and components running on the Java EE server or between
server components and a database. JavaBeans have instance variables and accessor
and mutator methods to access properties of beans.

Enterprise beans (EJB components) are used only in the business tier as part of the
server tier.

 Creating an Enterprise Application Development Model

3839 3831–002 6–11

6.9. Enterprise Information System Tier
The enterprise information system (EIS) tier handles enterprise information system
software and includes enterprise infrastructure systems such as

• Enterprise resource planning (ERP)

• Mainframe transaction processing

• Database systems

• Legacy information systems

Java EE application components can access enterprise information systems for
database connectivity.

6.10. Java EE Containers
Java EE containers provide access to the underlying services of the Java EE server
environment. In a traditional environment, application developers write code to
perform services such as transaction processing, state management, multithreading,
and resource pooling. Java EE containers provide these services, thereby allowing
developers to concentrate on solving business problems.

Containers are the interface between components and the low-level platform-specific
functionality that supports the components. Before Web clients, enterprise beans, or
application client components can be executed, components must be assembled into
a Java EE application and deployed into a container. The assembly process involves
specifying container settings for each component in the Java EE application and for
the Java EE application itself. Container settings customize the underlying support
provided by the Java EE server, which includes services such as Java Naming and
Directory Interface (JNDI), security, and transaction management.

Some of the main points are as follows:

• The Java EE security model lets you configure a Web component or enterprise
bean so that system resources are accessed only by authorized users.

• The Java EE transaction model lets you specify relationships among methods
that make up a single transaction so that all methods in one transaction are
treated as a single unit.

• The JNDI lookup services provide a unified interface to multiple naming and
directory services in the enterprise so that application components can access
these services.

• The Java EE remote connectivity model manages low-level communications
between clients and enterprise beans. After an enterprise bean is created, a
client invokes methods on it as if it were in the same virtual machine.

Creating an Enterprise Application Development Model

6–12 3839 3831–002

The Java EE server provides Enterprise JavaBeans (EJB) containers and Web
containers, as follows:

• EJB containers manage the execution of enterprise beans for Java EE applications.

• Web containers manage the execution of JSP and servlet components for Java EE
applications.

The following additional containers reside on the client machine and are not part of the
Java EE server:

• Application client containers (typically, Java Runtime Environment) manage the
execution of application client components.

• Applet containers (typically, a Java-enabled Web browser) manage the execution
of applets.

Figure 6–5 illustrates where the containers reside.

Figure 6–5. Java EE Containers and Additional Containers

6.11. Packaging for Deployment
To deploy a Java EE application after its components are developed, it is packaged
into special archive files that contain

• Relevant class files.

• XML deployment descriptors. Information specific to each bundled component; a
mechanism for configuring application behavior at assembly or deployment time.

XML deployment descriptors are bundled in different archive types for different
component types, as follows:

• Web archive (war) files. Web components are archived in a war file, which
contains servlets, JSPs, and static components, such as HTML and image files. The
war file contains classes and files that are used in the Web tier, along with a Web
component deployment descriptor.

002635

Database

Session Beans
Entity Beans

Message-Driven
Beans

JSPs/
Servlets

Optional
JavaBeans

Components

Web Container

EIS TierClient Machine Java EE Server

EJB Container

Applet Container

Application
Client

Container

 Creating an Enterprise Application Development Model

3839 3831–002 6–13

• Java archive (jar) files.

− Business components are archived in a jar file, which contains an EJB
deployment descriptor, remote and object interface files, and helper files that
are required by the EJB component.

− Client-side class files and deployment descriptors are archived in a jar file,
which makes up the client application.

• Enterprise archive (ear) files. A Java EE application is bundled in an ear file, which
contains the whole application, along with a deployment descriptor that provides
information about the application and its assembled components.

Figure 6–6 illustrates component packaging.

Figure 6–6. Java EE Component Packaging

002636

Application
Deployment
Descriptors

Deployment
descriptors in
client.xml file
Java classes

Deployment
descriptors in

web.xml, JSP files,
servlets classes,
GIF files, HTML

files

Deployment
descriptors in

ejb-jar.xml file EJB class,
home interface,

remote interface,
helper Java classes

.ear file

.jar file .war file .jar file

Application Client Web Component Business Component

Java EE Application

Java EE Server

Creating an Enterprise Application Development Model

6–14 3839 3831–002

6.12. Java EE Platform Roles
The process of building the different components of a Java EE application involves the
following roles to develop, deploy, and manage an enterprise application:

• Application component provider. Develops the reusable components of a Java EE
application (Web components, enterprise beans, applets, and application clients)
for use in Java EE applications.

• Application assembler. Takes all building blocks from the application component;
installs and deploys components in a Java EE environment or Java EE server.

• System administrator. Configures and administers computing systems in an
enterprise.

• Tool provider. A vendor used to develop, package, and deploy Java EE
applications.

Roles can be assigned to either a single person or an organization.

3839 3831–002 7–1

Section 7
Creating Stateless Session Beans

A session Enterprise JavaBean (EJB) component is a transient conversation with a
client. A session bean and its data exist only while the client is executing. Transactions
that use stateless beans must contain all the parameters required to carry out a
transaction in a single call. Stateless session beans do not retain state information
once they finish.

7.1. Accessing Office Supply Store
The Office Supply Store application implements UserAccess, a session bean (refer to
6.6.1). UserAccess oversees all processing for the application. UserAccess is a
transient object through which clients access the underlying entity beans for specific
services.

Figure 7–1 illustrates the flow of information and processing in the Office Supply Store
application.

Figure 7–1. Stateless Session Bean in Office Supply Store

Creating Stateless Session Beans

7–2 3839 3831–002

7.1.1. Session Facade Pattern

A session facade is an application pattern in which enterprise beans encapsulate
business logic and business data and expose their interfaces. The session facade
manages business objects and provides a uniform business service abstraction to
clients in the presentation layer, while the business object implementation is hidden in
the lower-level beans.

In many applications, a session bean provides access to the application business
methods. A session bean encapsulates business logic and acts as an interface to the
lower-level EJB components. In the Office Supply Store, UserAccess is a session bean
that accesses entity beans and message-driven beans, which are developed in the
following sections of this guide.

7.1.2. Authenticating Users

The Office Supply Store requires that all customers, suppliers, and managers have a
user name and password to access the services of the application. Each client
application must sign on and be verified for the system.

UserAccess authenticates the user by communicating with the database using a data
access object (DAO) that encapsulates some Java Database Connectivity (JDBC) code.
A DAO has all attributes (fields) and behaviors (methods) that correspond to the bean
for which it is being used.

UserAccess uses a method for authentication named verifyUser, which takes two
string parameters (username and password) as input. verifyUser returns
storeAccessID if authentication is successful; otherwise, it returns null. Client
applications check the returned storeAccessID and continue only if storeAccessID is
not null.

7.1.3. Bean Business Methods

The method verifyUser is a business method. A client application can see (invoke) only
business methods on a bean.

7.1.4. Remote and Local Access to Beans

UserAccess supports a remote EJB interface, which means that clients can reside in
different JVMs, possibly on different machines. Remote is the original type of EJB, so
the name “Remote” does not appear in the interface names. Local interfaces have
“Local” in the name.

7.1.5. Java Programming Using DAO

Components in this example use the data access object UserAccessDAO and, in
another section, StoreCustomerDAO interfaces.

Implementation classes UserAccessDAOImpl and StoreCustomerDAOImpl for
accessing the database are also created (refer to 7.2.4 and 8.2.2).

 Creating Stateless Session Beans

3839 3831–002 7–3

7.2. Tasks
Complete the following tasks to create a stateless session bean EJB component. You
can do the identified modifications in any order, but the bean does not work correctly
until they are all complete.

1. Create a Java EE project.

2. Create a stateless session bean structure named UserAccess.

3. Add a business method named verifyUser in UserAccessSessionBean.

4. Create the DAO interface for verifyUser named verifyThisUser.

5. Implement the verifyThisUser method in the DAO implementation class,
UserAccessDAOImpl.

6. Create a test client named SessionTestClient.

7. Run the test client application to test the UserAccess bean.

Refer to the following subsections for detailed procedures for each task.

7.2.1. Creating a Java EE Project

Refer to the instructions in 2.2 to create a Java EE project with a simple EJB and a test
client, using the following information:

• Project name is OfficeSupplyStore.

• Application client module is OfficeSupplyStoreClient.

• EJB module is OfficeSupplyStoreEJB.

Open the Java EE perspective. It is normal for incomplete EJB projects to contain
errors. As you develop more EJB components, the errors are resolved.

The Java perspective provides an alternate way to see the created project more
clearly.

7.2.2. Creating Stateless Session Bean Structures

Refer to the instructions in 2.3 to create a stateless session bean, using the following
information:

• Project name is OfficeSupplyStoreEJB.

• Folder is \OfficeSupplyStoreEJB\ejbModule.

• Java package is us.com.unisys.session.

• Class name is UserAccessBean.

• Superclass is java.lang.Object.

This creates the basic structure of a session bean.

Creating Stateless Session Beans

7–4 3839 3831–002

The following paragraphs identify several modifications that are needed to complete
the bean. A completed version of the code is at the following location:

...\examples\7\OfficeSupplyStoreEJB\ejbModule\us\com\unisys\session\
UserAccessBean.java

Class

The EJB creation wizard creates the UserAccessBean class, which implements the
UserAccessRemote as illustrated in the following code:

public class UserAccessBean implements UserAccessRemote

Annotation in EJB 3.0

The following code illustrates the annotation in EJB 3.0.

@Stateless
@Remote
public class UserAccessBean implements UserAccessRemote {
Write the business code here..
}

7.2.3. Using Dependency Injection through Resource Name

Deployment Descriptors with Annotations

The deployment descriptors must be manually inserted to invoke annotation in the
definition block. The following descriptor defines the data source details for the
application server (JBoss AS).

* Resource (mappedName="DefaultDS") DataSource ds;

Adding Business Methods

The EJB wizard inserted a method called create as a placeholder for the location of
various methods. Remove the create method and insert the business method
verifyThisUser. This example does not need any logic here, but it does need to expose
the interface as remote, which is done by adding the annotation name @Remote. This
business method also needs to invoke PersistentContext, which communicates with
the database.

/**
* @Remote
*
*/
public String verifyThisUser(String username, String password){
 System.out.println("Entering UserAccessBean.verifyUser()");
 return null;
}

 Creating Stateless Session Beans

3839 3831–002 7–5

7.2.4. Making a Stateless Session Bean as Java Persistence
and Creating a POJO Class

PersistentContext is a set of entities such that for any persistent identity there is a
unique entity instance. Entities are managed in persistent context. The EntityManager
has the access to datastore resources and controls the lifecycle of entities.

To make a session bean as Java persistence

1. In the ejbModule of the OfficeSupplyStoreEJB project, right-click the META-INF
folder, point to New, and click other.

The New wizard appears.

2. Type XML in the Wizards box and select XML File from the XML node.

3. Click Next.

The New XML File wizard appears.

4. Type persistence.xml in the File Name box and click Next.

5. Add the following content to the persistence.xml file:

<persistence-unit name="manager1" >
 <jta-data-source>java:DefaultDS</jta-data-source>
 <properties>
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>
 <property name="hibernate.dialect" value="org.hibernate.dialect.HSQ
LDialect"/>
 </properties>
 </persistence-unit>
</persistence>

6. From the us.com.unisys.session package, open the UserAccessBean.java file
and add the following code:

@PersistenceContext(unitName = "manager1")
 EntityManager em;
 public Collection<USERACCESS> verifyThisUser(String USERNAME,String PA
SSWORD) {
 System.out.println("userName is *******"+USERNAME);
 storeList = em.createQuery("from USERACCESS p where USERNAME = ?1 AND
 PASSWORD=?2").setParameter(1, USERNAME).setParameter(2, PASSWORD)
 .getResultList();
 return storeList;
 }

Creating Stateless Session Beans

7–6 3839 3831–002

Creating the UserAccess POJO class

To create the UserAccess POJO class

1. Right-click the us.com.unisys.session package, click New, and then click Other.

The New wizard appears.

2. Type class in the Wizards box and select Class from the Java node.

3. Click Next.

4. Type UserAccess in the Class name box.

5. Click Finish.

6. Add the following getter and setter methods for all the columns available in the
UserAccess table in the UserAccess java file:

@Entity
 @Table(name = "USERACCESS")
 @EntityListeners(USERACCESS.class)
 public class USERACCESS implements Serializable {
 private static final long serialVersionUID = 1L;
 String STOREACCESSID;
 String USERNAME;
 public String getSTOREACCESSID() {
 return STOREACCESSID;
 }
 public void setSTOREACCESSID(String sTOREACCESSID) {
 STOREACCESSID = sTOREACCESSID;
 }
 public String getUSERNAME() {
 return USERNAME;
 }
 public void setUSERNAME(String uSERNAME) {
 USERNAME = uSERNAME;
 }
 public String getPASSWORD() {
 return PASSWORD;
 }
 public void setPASSWORD(String pASSWORD) {
 PASSWORD = pASSWORD;
 }
 String PASSWORD;
 long id;
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 public long getId() {
 return id;
 }
 public void setId(long id) {
 this.id = id;

 Creating Stateless Session Beans

3839 3831–002 7–7

 }
 public USERACCESS() {
 super();
 }
 public USERACCESS(String STOREACCESSID, String USERNAME,
 String PASSWORD) {
 this.STOREACCESSID = STOREACCESSID;
 this.USERNAME = USERNAME;
 this.PASSWORD = PASSWORD;
 }
}

Generated Classes

EJB interfaces and helper classes are generated under us.com.unisys.session
package. The following files are generated:

• UserAccessRemote.java is the remote object interface.

• UserAccessBean is the bean class for EJB.

• UserAccessLocal.java is the local object interface.

7.2.5. Creating a Test Client

To create a test client you need to modify the OfficeSupplyStoreClient project to
include the EJB project. To modify the OfficeSupplyStoreClient project

1. Right-click the OfficeSupplyStoreClient project and alter the build path properties
to include OfficeSupplyStoreEJB project.

2. Follow the instructions in 2.7 to create a new public class named
SessionTestClient in OfficeSupplyStoreClient/appClientModule in the
package us.com.unisys.client.

The following paragraphs identify how to finish implementing the class. A completed
version of the code is at the following location:

...\examples\7\OfficeSupplyStoreClient\appClientModule\us\com\unisys\client\
SessionTestClient.java

The following imports are needed:

import java.sql.SQLException;
import java.util.Collection;
import java.util.Iterator;
import java.util.Properties;
import javax.ejb.Stateless;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.DataSource;
import us.com.unisys.session.USERACCESS;
import us.com.unisys.session.UserAccessRemote;

Creating Stateless Session Beans

7–8 3839 3831–002

The following code is used for looking up the bean at the specified address and port
number. To access a server other than the desktop, change the “127.0.0.1” and
possibly the port number.

@Stateless
public class SessionTestClient {
 private static UserAccessRemote userAccessRemote;
 // @EJB static UserAccessRemote userAccessRemote;
 static DataSource ds = null;
 static InitialContext ctx = null;
 public static void main(String[] args) throws SQLException {
 try {
 Properties props = new Properties();
 props.setProperty("java.naming.factory.initial",
 "org.jnp.interfaces.NamingContextFactory");
 props.setProperty("java.naming.factory.url.pkgs",
 "org.jboss.naming");
 props.setProperty("java.naming.provider.url", "127.0.0.1:1099");
 ctx = new InitialContext(props);
 userAccessRemote = (UserAccessRemote) ctx
 .lookup("OfficeSupplyStore/UserAccessBean/remote");
 Collection<USERACCESS> store = userAccessRemote.verifyThisUser(
 "sa", "sa");
 for (Iterator i = store.iterator(); i.hasNext();) {
 USERACCESS e = (USERACCESS) i.next();
 System.out.println("storeaccessid is ****** "
 + e.getSTOREACCESSID());
 }
 } catch (NamingException e) {
 e.printStackTrace();
 }
 }
}

7.2.6. Creating the hsql-ds.xml File

Create the hsql-ds.xml file for HSQL database and place it in the deploy folder of
JBoss with the OfficeSupplyStore.ear file. The following example illustrates the hsql-
ds.xml file for HSQL and OS 2200 RDMS databases:

<?xml version="1.0" encoding="UTF-8"?>
<datasources>
<local-tx-datasource>
<jndi-name>DefaultDS</jndi-name>
<use-java-context>false</use-java-context>
<connection-url>jdbc:hsqldb:${jboss.server.data.dir}${/}hypersonic${/}localD
B</connection-url>
<driver-class>org.hsqldb.jdbcDriver</driver-class>
<user-name>sa</user-name>
<password></password>

 Creating Stateless Session Beans

3839 3831–002 7–9

<min-pool-size>5</min-pool-size>
<max-pool-size>20</max-pool-size>
<idle-timeout-minutes>0</idle-timeout-minutes>
<track-statements/>
<security-domain>HsqlDbRealm</security-domain>
<prepared-statement-cache-size>32</prepared-statement-cache-size>
<metadata>
<type-mapping>Hypersonic SQL</type-mapping>
</metadata>
<depends>jboss:service=Hypersonic,database=localDB</depends>
</local-tx-datasource>
<mbean code="org.jboss.jdbc.HypersonicDatabase" name="jboss:service=Hyperson
ic,database=localDB">
<attribute name="Database">localDB</attribute>
<attribute name="InProcessMode">true</attribute>
</mbean>
<local-tx-datasource>
 <jndi-name>jdbcunisysos2200rdms</jndi-name>
<connection-url>jdbc:rdms:host=rs02.rsvl.unisys.com;port=1544;schema=OSupply
Store;storagearea=RDMS_AUTO_3;varchar=varchar
</connection-url>
 <driver-class>com.unisys.os2200.rdms.jdbc.RdmsDriver</driver-class>
 <user-name>elango</user-name>
 <password>unisys</password>
 <max-pool-size>5</max-pool-size>
 <min-pool-size>1</min-pool-size>
 <prepared-statement-cache-size>200</prepared-statement-cache-size>
 <idle-timeout-minutes>1000</idle-timeout-minutes>
 <metadata>
 <type-mapping>RDMSOS2200</type-mapping>
 </metadata>
 </local-tx-datasource>
</datasources>

7.2.7. Testing the Bean

Before running the test client to test the bean

1. Define JBoss AS in the Servers window (refer to 2.5).

2. Deploy the OfficeSupplyStore project to the server (refer to 2.11).

3. Start JBoss AS (refer to 2.6).

To run SessionTestClient as a Java application; right-click SessionTestClient, point
to Run As, and click Java Application.

If errors appear indicating that SupplyStoreDAOimpl cannot be found, try restarting
the Eclipse IDE (and restart JBoss AS).

Creating Stateless Session Beans

7–10 3839 3831–002

Trace lines from the server appear in the Console pane. To see the client trace
output, open an additional console pane.

The two panes are similar to Figure 7–2 and Figure 7–3.

Figure 7–2. Server Trace Lines

Figure 7–3. Client Trace Output

3839 3831–002 8–1

Section 8
Creating Bean-Managed Persistence
Entity Beans

A bean-managed persistence (BMP) entity bean is an EJB component in which
database access is controlled manually. The developer explicitly codes database calls
in the bean itself, which enhances flexibility in how data is read and written.

8.1. Accessing Office Supply Store
The Office Supply Store application uses two BMP entity beans, as illustrated in Figure
8–1. The StoreCustomer bean stores the details of customers of the Office Supply
Store. The optional StoreManager bean stores the details about managers of the
Office Supply Store.

Both StoreCustomer and StoreManager are entity beans, a class that corresponds to a
database table or entity (refer to 6.6.1). An instance of StoreCustomer or
StoreManager corresponds to a single database row or record.

Figure 8–1. BMP Beans in Office Supply Store

Creating Bean-Managed Persistence Entity Beans

8–2 3839 3831–002

8.1.1. Unique Identifiers

To create an Id, add the @Id tag to the field name in the StoreInventory java class of
the OfficeSupplyStore project.

8.1.2. Local Access

StoreInventoryBean support a local EJB interface, which means that interface clients
are guaranteed to reside in the same JVM. This is assured because they are part of
the internal Office Supply Store module implementation and are not exposed to true
outside clients.

8.1.3. Session Facade Pattern

In the session facade pattern (refer to Section 7), a session bean provides access to
the business methods of BMP beans. In this example, StoreInventory are accessible
through StoreInventoryBean.

8.1.4. UserAccess Methods

Clients access StoreInventoryBean through the StoreInventoryLocal interface.
StoreInventoryLocal defines the StoreInventoryBean business methods such as
verifyThisUser(), addInventory(), and getAllInventory().

StoreInventoryBean communicate with tables in the database using the data access
objects StoreInventoryDAO, as illustrated in Figure 8–1.

8.2. Tasks
To create a bean-managed persistence (BMP) entity bean, complete the following
task:

1. Create a bean structure named StoreInventory.

2. Modify the code to become a BMP entity bean.

3. Create a DAO class named StoreInventoryDAOImpl.

4. Create a test client named SessionBMPTestClient.

5. Deploy the StoreInventory bean.

6. Run the client and test the bean.

 Creating Bean-Managed Persistence Entity Beans

3839 3831–002 8–3

8.2.1. Creating a BMP Entity Bean Structure

To create a BMP entity bean structure named StoreCustomer, perform the following
steps:

1. In the Java EE perspective, right-click the OfficeSupplyStoreEJB project, point
to New, and click Other.

The New dialog box for selecting a wizard appears.

2. Expand EJB and click SessionBean (EJB 3.x) and then Next.

The Create EJB 3.x Session Bean wizard appears.

EntityBean Workaround

The EJB creation wizard does not provide an option for creating entity beans in Web
Tools 1.1. As a workaround, if EntityBean is not an option in the EJB creation wizard,
create a session bean and modify it to be a BMP entity bean, using the following
procedure and the modifications in 8.2.2:

1. Create a session bean (refer to 7.2.2).

2. Type us.com.unisys.bmp in the Java package box (do not try to browse for
this because it is not defined yet).

3. Type StoreInventoryBean in the Class name box and check the Remote and
local checkboxes.

4. Click Next and then Finish.

5. Modify the session bean to be a BMP entity bean by completing all modifications
as given in 8.2.2 and its subsections. The modifications include the following:

a. Changing portions of the code as identified by bold font in the listing

b. Modifying getter and setter methods

c. Adding a local business method

8.2.2. Modifying the Code to Create a BMP Bean

The wizard generates code for a session bean. To change the code to BMP entity
bean code, complete all modifications in the following subsections, turn on automatic
XDoclet generation, and continue with 8.2.3.

The following paragraphs identify several modifications that are needed to complete
the bean. A completed version of the code is at the following location:

...\examples\8\OfficeSupplyStoreEJB\ejbModule\us\com\unisys\bmp\
StoreCustomerBean.java

Creating Bean-Managed Persistence Entity Beans

8–4 3839 3831–002

Modifications to Bean Code

Add the following code to the StoreCustomerBean.java code file:

@Stateless
@Remote(StoreInventoryRemote.class)
@TransactionManagement(TransactionManagementType.BEAN)
public class StoreInventoryBean implements StoreInventoryRemote, Serializabl
e {
 @PersistenceUnit(unitName = "manager1")
 EntityManagerFactory emf;
 @Resource
 UserTransaction utx;
 @Resource
 EJBContext etx;
 EntityManager em;
 Connection conn = null;
 protected StoreInventory4 si;
 protected Collection<StoreInventory4> storeList;
 public StoreInventoryBean() {
 }
 private static StoreInventoryDAO dao = new StoreInventoryDAOImpl();
 public String verifyThisUser(String username, String password) {
 return dao.verifyThisUser(username, password);
 }
 @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
 public void addInventory(String itemnum, String supplierid,

 String description, String qtyonhand, float price) throws Exception {
 System.out.println("before begin inside addInventory");
 utx = etx.getUserTransaction();
 try {
 utx.begin();
 em = emf.createEntityManager();
 if (si == null)
 si = new StoreInventory4(itemnum, supplierid, description,
 qtyonhand, price);
 em.merge(si);
 utx.commit();
 } catch (Exception e) {
 if (utx != null)
 utx.rollback();
 throw e;
 }
 }
 public Collection<StoreInventory4> getAllInventory() {
 storeList = em.createQuery("from StoreInventory4 b").getResultList();
 return storeList;
 }

 Creating Bean-Managed Persistence Entity Beans

3839 3831–002 8–5

 public StoreInventory4 findById(long id) {
 return ((StoreInventory4) em.find(StoreInventory4.class, id));
 }
}

Call StoreInventoryDAOImpl From Bean Class

Call the StoreInventoryDAOImpl from the Bean class, which extends the
StoreInventoryDAO interface.

private static StoreInventoryDAO dao = new StoreInventoryDAOImpl();
 public String verifyThisUser(String username, String password) {
 return dao.verifyThisUser(username, password);
 }

Creating the Entity Bean Class

In the us.com.unisys.bmp package, create a bean class with all the fields that are
mapped to the database.

String itemnum;
String supplierid;
String description;
String qtyonhand;
float price;

To create the getters and setters

1. Select the items in the editor.

2. Right-click, point to Source, and click Generate Getters and Setters.

Modifications to Getter and Setter Methods

After creating the getter and setter methods, modify the methods to add the following
annotations:

@Id
@GeneratedValue(strategy = GenerationType.AUTO)
public long getId() {
return id;
}

Tracer Method

Add the following method to the StoreInventoryBean class for tracing purposes:

public StoreInventory4 findById(long id) {
return ((StoreInventory4) em.find(StoreInventory4.class, id));
}

Creating Bean-Managed Persistence Entity Beans

8–6 3839 3831–002

Local Business Method

Add a local business method in the StoreInventoryBean. The method is local because
the method is called from StoreInventoryRemote, which is executing in the same JVM.
The method is not visible remotely.

public void addInventory(String itemnum, String supplierid,
String description, String qtyonhand, float price) throws Exception;

8.2.3. Creating DAO Implementation Classes

The implementation class StoreInventoryDAOImpl and the StoreInventoryDAO
interface need to be generated manually, as follows:

1. Right-click the us.com.unisys.dao package name, point to New, and click
Class.

The New Java Class dialog box opens.

2. Type StoreCustomerDAOImpl in the Name box. Be sure the following values
appear:

• Source folder is \OfficeSupplyStoreEJB\ejbModule.

• Package is us.com.unisys.bmp.

• Superclass is java.lang.Object.

3. Click Add and type StoreCustomerDAO (not the fully qualified name), and click
OK.

4. Be sure the Inherited abstract methods check box is selected.

5. Click Finish.

Add a code to the method stubs in StoreInventoryDAOImpl, as described in the
following paragraphs. A complete version of the code is at the following location:

...\examples\8\OfficeSupplyStoreEJB\ejbModule\us\com\unisys\dao\
StoreCustomerDAOImpl.java

The following imports are needed:

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

 Creating Bean-Managed Persistence Entity Beans

3839 3831–002 8–7

findByPrimaryKey() Method

The findByPrimaryKey() method does the following:

1. Gets a connection to the database from the ServiceLocator class.

2. Creates an SQL statement that searches for customer-id in the table
STORECUSTOMER, where customer-id is the primary key.

3. Returns the primary key.

Add the following code for findByPrimaryKey():

public String findByPrimaryKey(String customerid) {
 PreparedStatement ps = null;
 ResultSet rs = null;
 String customerId = null;
 System.out.println("Entering UserAccessDAOImpl.init()");
 conn = ServiceLocator.getDataSource(JNDI_NAME_HYPERSONIC);
 System.out.println(conn);
 if (conn != null) {
 try {
 // conn=ds.getConnection();
 String queryString = "select customerid from STORECUSTOMER where customer
id = ? ";
 ps = conn.prepareStatement(queryString);
 ps.setString(1, customerid);
 rs = ps.executeQuery();
 boolean result = rs.next();
 System.out.println(result);
 if (result) {
 customerId = rs.getString("customerid");
 System.out.println("StoreAccessID is " + customerId);
 }
 } catch (SQLException e) {
 e.printStackTrace();
 System.out.println("SQL Exception Inside UserAccessDAOImpl.verifyThisUser
() + e");
 } finally {
 try {
 rs.close();
 ps.close();
 conn.close();
 } catch (Exception e) {
 }
 }
 System.out.println("Leaving UserAccessDAOImpl.verifyThisUser()");
 }
 return customerId;
 }

Creating Bean-Managed Persistence Entity Beans

8–8 3839 3831–002

ServiceLocator Class

The ServiceLocator class establishes the connection to the database. To create the
class, perform the following steps:

1. Right-click ejbModule of the EJB project, point to New, and click Package.

The New Java Package window appears.

2. Type us.com.unisys.service in the Name box, and click Finish.

3. Right-click the package that you created, point to New, and click class.

The New Java Class window appears.

4. Type ServiceLocator in the Name box (for the class name).

5. Click Finish.

 package us.com.unisys.service;
 import java.sql.Connection;
 import java.util.Properties;
 import javax.naming.InitialContext;
 import javax.sql.DataSource;
 import javax.annotation.Resource;
 import javax.ejb.EJB;
 import javax.ejb.Stateless;
 public class ServiceLocator {
 private static DataSource ds = null;
 InitialContext c = null;
 static Connection conn = null;
 private ServiceLocator() {
 }
 public static Connection getDataSource(String jndiName) {
 try {
 Properties props = new Properties();
 props.setProperty("java.naming.factory.initial",
 "org.jnp.interfaces.NamingContextFactory");
 props.setProperty("java.naming.factory.url.pkgs",
 "org.jboss.naming");
 props.setProperty("java.naming.provider.url", "127.0.0.1:1099");
 InitialContext ctx = new InitialContext(props);
 ds = (DataSource) ctx.lookup(jndiName);
 conn = ds.getConnection();
 } catch (Exception e) {
 e.printStackTrace();
 }
 return conn;
 }

 Creating Bean-Managed Persistence Entity Beans

3839 3831–002 8–9

AddInventory() Method

AddInventory() method is used to load the values to the table that is mapped through
the EntityBean class by configuring the persistence.xml file.

@Stateless
 @Remote(StoreInventoryRemote.class)
 @TransactionManagement(TransactionManagementType.BEAN)
 public class StoreInventoryBean implements StoreInventoryRemote, Serializ
able {
 @PersistenceUnit(unitName = "manager1")
 EntityManagerFactory emf;
 @ResourceUserTransaction utx;
 @ResourceEJBContext etx;
 EntityManager em;
 @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
 public void addInventory(String itemnum, String supplierid,
 String description, String qtyonhand, float price) throws Exception {
 System.out.println("before begin inside addInventory");
 utx = etx.getUserTransaction();
 try {
 utx.begin();
 em = emf.createEntityManager();
 if (si == null)
 si = new StoreInventory4(itemnum, supplierid, description,
 qtyonhand, price);
 em.merge(si);
 utx.commit();
 } catch (Exception e) {
 if (utx != null)
 utx.rollback();
 throw e;
 }
 }

Creating Bean-Managed Persistence Entity Beans

8–10 3839 3831–002

Creating the persistence.xml File

To create the persistence.xml file for the Entity BMP bean, perform the following
steps:

1. In the ejbModule of EJB project, right-click the META-INF folder, point to New
and click other.

2. Click XML file.

3. Click Next.

The New XML File window appears.

4. Enter persistence.xml in the file name box.

5. Click Next.

The New XML File window appears.

6. Click Next.

7. Click Finish.

Add the following contents to the persistence.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-insta
nce"xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.s
un.com/xml/ns/persistence/persistence">
<persistence-unit name="manager1" >
<jta-data-source>DefaultDS</jta-data-source>
<properties>
<property name="hibernate.hbm2ddl.auto" value="create-drop"/>
<property name="hibernate.dialect" value="org.hibernate.dialect.HSQLDialect"
/>
</properties>
</persistence-unit>
</persistence>

8.2.4. Modifying StoreInventoryBean

The following paragraphs identify several modifications that are needed for the
StoreInventory bean created in the previous section. A completed version of the code
is at the following location:

...\examples\8\OfficeSupplyStoreEJB\ejbModule\us\com\unisys\session\
UserAccessBean.java

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence
http://java.sun.com/xml/ns/persistence/persistence

 Creating Bean-Managed Persistence Entity Beans

3839 3831–002 8–11

The following imports are needed:

import java.io.Serializable;
import java.sql.Connection;
import java.util.Collection;
import javax.annotation.Resource;
import javax.ejb.EJBContext;
import javax.ejb.Remote;
import javax.ejb.Stateless;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;
import javax.ejb.TransactionManagement;
import javax.ejb.TransactionManagementType;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import javax.transaction.UserTransaction;
import us.com.unisys.dao.StoreInventoryDAO;
import us.com.unisys.dao.StoreInventoryDAOImpl

Deployment Descriptors

Create the hsqlds-ds.xml deployment file in the deploy folder of JBoss server and
enter the following contents in the file.

<?xml version="1.0" encoding="UTF-8"?>
<datasources>
<local-tx-datasource>
<jndi-name>DefaultDS</jndi-name>
<use-java-context>false</use-java-context>
<connection-url>jdbc:hsqldb:${jboss.server.data.dir}${/}hypersonic${/}localD
B</connection-url>
<driver-class>org.hsqldb.jdbcDriver</driver-class>
<user-name>sa</user-name>
<password></password>
<min-pool-size>5</min-pool-size>
<max-pool-size>20</max-pool-size>
<idle-timeout-minutes>0</idle-timeout-minutes>
<track-statements/>
<security-domain>HsqlDbRealm</security-domain>
<prepared-statement-cache-size>32</prepared-statement-cache-size>
<metadata>
<type-mapping>Hypersonic SQL</type-mapping>
</metadata>
<depends>jboss:service=Hypersonic,database=localDB</depends>
</local-tx-datasource>
<mbean code="org.jboss.jdbc.HypersonicDatabase" name="jboss:service=Hyperson
ic,database=localDB">
<attribute name="Database">localDB</attribute>
<attribute name="InProcessMode">true</attribute>

Creating Bean-Managed Persistence Entity Beans

8–12 3839 3831–002

</mbean>
<local-tx-datasource>
 <jndi-name>jdbcunisysos2200rdms</jndi-name>
<connection-url>jdbc:rdms:host=rs02.rsvl.unisys.com;port=1544;schema=OSupply
Store;storagearea=RDMS_AUTO_3;varchar=varchar
</connection-url>
 <driver-class>com.unisys.os2200.rdms.jdbc.RdmsDriver</driver-class>
 <user-name>elango</user-name>
 <password>unisys</password>
 <max-pool-size>5</max-pool-size>
 <min-pool-size>1</min-pool-size>
 <prepared-statement-cache-size>200</prepared-statement-cache-size>
 <idle-timeout-minutes>1000</idle-timeout-minutes>
 <metadata>
 <type-mapping>RDMSOS2200</type-mapping>
 </metadata>
 </local-tx-datasource>
</datasources>

Data Retrieval Method

Create a method to retrieve the Inventory data that is visible to a remote client as the
remote interface. This method retrieves the entire inventory from the StoreInventory
table.

public Collection<StoreInventory4> getAllInventory() {
 storeList = em.createQuery("from StoreInventory4 b").getResultList();
 return storeList;
}

8.2.5. Creating a Test Client

To create a test client

1. Right-click the us.com.unisys.client package name, point to New, and click
Class.

The New Java Class dialog box opens.

2. Type or browse to the following values in the boxes:

• Source folder is OfficeSupplyStoreClient/appClientModule.

• Package is us.com.unisys.client (do not try to browse for this because it is not
defined yet).

• Name is SessionBMPTestClient.

• Superclass is java.lang.Object.

3. Clear the Inherited abstract methods check box.

4. Click Finish.

 Creating Bean-Managed Persistence Entity Beans

3839 3831–002 8–13

The following paragraphs identify several modifications that are needed for the test
client. A completed version of the code is at the following location:

...\examples\8\OfficeSupplyStoreClient\appClientModule\us\com\unisys\client\
SessionBMPTestClient

import java.sql.SQLException;
import java.util.Collection;
import java.util.Iterator;
import java.util.Properties;
import javax.ejb.Stateless;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.DataSource;
import us.com.unisys.bmp.StoreInventory4;
import us.com.unisys.bmp.StoreInventoryRemote;

@Stateless
public class SessionTestClient {
private static StoreInventoryRemote userAccessRemote;
// @EJB static UserAccessRemote userAccessRemote;
static DataSource ds = null;
static Collection list;
static InitialContext ctx = null;
public static void main(String[] args) throws Exception {
try {
Properties props = new Properties();
props.setProperty("java.naming.factory.initial",
"org.jnp.interfaces.NamingContextFactory");
props.setProperty("java.naming.factory.url.pkgs","org.jboss.naming");
props.setProperty("java.naming.provider.url", "127.0.0.1:1099");
ctx = new InitialContext(props);
userAccessRemote = (StoreInventoryRemote) ctx
.lookup("OfficeSupplyStore3BMPEAR/StoreInventoryBean/remote");
String customerId = userAccessRemote.findByPrimaryKey("CUST1");
System.out.println("storeAccessId is *****" + customerId);
userAccessRemote.addInventory("ITEM5", "SUPL3", "PHILIPS", "20",
(float) 120.30);
list = userAccessRemote.getAllInventory();
for (Iterator iter = list.iterator(); iter.hasNext();) {
StoreInventory4 element = (StoreInventory4) iter.next();
System.out.println(element.getId());
System.out.println(element.getItemnum());
System.out.println(element.getSupplierid());
System.out.println(element.getDescription());
System.out.println(element.getQtyonhand());
System.out.println(element.getPrice());
}
StoreInventory4 inven = userAccessRemote.findById(1);

Creating Bean-Managed Persistence Entity Beans

8–14 3839 3831–002

System.out.println("findInventory is **************"
+ inven.getItemnum());
} catch (NamingException e) {
e.printStackTrace();
}
}
}

8.2.6. Testing the Bean

To run the client and test the bean

1. Start JBoss AS.

2. Right-click SessionBMPTestClient, point to Run As, and click Java
Application.

The output appears in two console panes. Figure 8–2 illustrates the server output, and
Figure 8–3 illustrates the client output. If both windows have the same output, close
one and open another console pane.

15:25:31,490 INFO [STDOUT] Entering UserAccessDAOImpl.init()
15:25:31,490 INFO [STDOUT]
org.jboss.resource.adapter.jdbc.jdk6.WrappedConnectionJDK6@1ec6c08

15:25:31,490 INFO [STDOUT] true
15:25:31,490 INFO [STDOUT] StoreAccessID is CUST1
15:25:31,490 INFO [STDOUT] Leaving UserAccessDAOImpl.verifyThisUser()
15:25:31,506 INFO [STDOUT] before begin inside addInventory

Figure 8–2. Server Output from BMP Beans

storeAccessId is *****CUST1
1
ITEM5
SUPL3
PHILIPS
20
120.3
findInventory is **************ITEM5

Figure 8–3. Client Output from BMP Beans

 Creating Bean-Managed Persistence Entity Beans

3839 3831–002 8–15

8.3. Creating Another BMP Entity Bean
Implement the StoreManager bean as a BMP entity bean similar to StoreCustomer,
with the same behaviors, using the following tasks. The StoreManagerBean,
StoreManagerDAOImpl, modified StoreInventoryBean, and modified
SessionBMPTestClient files are provided in the examples folder.

To implement the StoreManager bean

1. Create a BMP Bean named StoreManager under package us.com.unisys.bmp.

2. Create a DAO class named StoreManagerDAOImpl under package
us.com.unisys.dao.

3. Add all attributes and properties in StoreManagerBean and getter and setter
methods for each attribute.

4. Add a find method named ejbFindByPrimaryKey with signature.

public StoreManagerPK ejbFindByPrimaryKey (MangerPK pk) throws FinderExcept
ion.

5. Add a business method named getStoreManagerData with signature.

public StoreManagerData getManagerData()

6. Implement methods in StoreManagerDAOImpl class. The lookup string required
for JNDI API is

java:/DefaultDS

7. Add a business method in UserAccess bean.

public StoreMangerData getStoreManagerData(String managerID)

8. Test the StoreManager bean by running the test client created for StoreCustomer
named SessionBMPTestClient.

Creating Bean-Managed Persistence Entity Beans

8–16 3839 3831–002

3839 3831–002 9–1

Section 9
Creating Container-Managed
Persistence Entity Beans

Java Persistence API (JPA) provides POJO (Plain Old Java Object) standard and object
relational mapping (OR mapping) for data persistence. Persistence deals with the
storing and retrieving of application data and can be programmed with Java
Persistence API starting from EJB 3.0. It is an independent API and integrates with
J2EE as well as J2SE applications.

9.1. Accessing Office Supply Store
The Office Supply Store application uses two Java Persistence entity beans, as
illustrated in Figure 9–1. The StoreInventory bean stores the details of the inventory
items, such as availability and prices, for the Office Supply Store. The StoreSupplier
bean stores the details of suppliers to the Office Supply Store. Both beans interact
with corresponding tables in the database.

An EntityManager instance is associated with a persistence context. A persistence
context is a set of entity instances. The entity instances and their life cycles are
managed within the persistence context. The EntityManager interface defines the
methods that are used to interact with the persistence context. The EntityManager
API is used to create and remove persistent entity instances, to find entities by their
primary key, and to query over entities.

The set of entities that can be managed by a given EntityManager instance is defined
by a persistence unit. A persistence unit defines the set of all classes that are related
to or grouped by the application, and which must be collocated in their mapping to a
SINGLE database.

9.1.1 Unique Identifiers

All inventory items are assigned a unique itemNumber and all suppliers are assigned a
unique supplier-id in Office Supply Store.

Creating Container-Managed Persistence Entity Beans

9–2 3839 3831–002

Figure 9–1. Java Persistence in Office Supply Store

9.2 Tasks
Creating a Java persistence entity bean requires the following tasks:

1. Create a bean structure named StoreInventory.

2. Modify the code to become a java persistence entity bean.

3. Implement a method named ejbCreate.

4. Add finder methods named findBySupplierID and findByOutOfStock.

5. Add the business method getStoreInventoryData to get inventory details.

6. Add callback methods to get and set bean context for the bean.

7. Modify the UserAccess bean to store the StoreInventory reference.

8. Add three business methods to UserAccess Bean: getStoreInventory,
getOutOfStockInventory, and getStoreInventoryBySupplier.

9. Create a test client named SessionJPTestClient.

10. Run the client and test the bean.

Subsequently, you also need to create the StoreSupplier Java Persistence bean and
test it with an updated SessionJPTestClient client (refer to Section 9.3).

 Creating Container-Managed Persistence Entity Beans

3839 3831–002 9–3

9.2.1 Creating a Java Persistence Entity Bean Structure

To create a Java persistence entity bean structure named StoreInventory

1. In the Java EE perspective, right-click the OfficeSupplyStoreEJB project, point
to New, and click Other.

The New dialog box for selecting a wizard appears.

2. Expand EJB and click SessionBean (EJB 3.x), and then click Next.

The Create EJB 3.x Session Bean wizard appears.

3. Type us.com.unisys.session in the Java package box (do not try to browse
for this because it is not defined yet).

4. Type StoreInventoryBean in the Class name box.

5. Select the Remote and Local check boxes.

6. Click Next.

7. Click Finish.

9.2.2 Creating the Java Persistence Bean Code and the POJO
Class

StoreInventory Java Persistence Bean Code

The StoreInventory Java Persistence Bean code is as follows:

@Stateless
@Remote(StoreInventoryRemote.class)
@TransactionManagement(TransactionManagementType.CONTAINER)
public class StoreInventoryBean implements Serializable,StoreInventoryRemote
 {
 @PersistenceContext(unitName = "manager1")
 EntityManager em;
 // @Resource UserTransaction ut;
 protected StoreInventory2 si;
 protected Collection<StoreInventory2> storeList;
 public StoreInventoryBean() {
 }
 @Resource
 SessionContext ctx;
 @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
 public void addInventory(String itemnum, String supplierid,

 String description, String qtyonhand, float price) throws Exception {
 // Initialize the form
 System.out.println("before begin inside addBook");
 try {
 if (si == null)
 si = new StoreInventory2(itemnum, supplierid, description,

Creating Container-Managed Persistence Entity Beans

9–4 3839 3831–002

 qtyonhand, price);
 em.merge(si);
 } catch (Exception e) {
 ctx.setRollbackOnly();
 throw e;
 }
 }
 public Collection<StoreInventory2> getAllInventory() {
 storeList = em.createQuery("from StoreInventory2 b").getResultList();
 return storeList;
 }
}

Creating the POJO Class and adding Getter, Setter Methods

The following columns are defined in the StoreInventory table:

• ItemNumber, SupplierID, and Description are strings.

• QuantityOnHand is an integer.

• Price is a floating point number.

Right-click the us.unisys.com.jp package and create the StoreInventory class.

Add the following getter and setter signatures in the StoreInventory class:

package us.com.unisys.jp;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Table;
import java.util.Collection;
import javax.persistence.*;
import java.io.Serializable;
import javax.persistence.Version;
@Entity
@Table(name = "STOREINVENTORY2")
 public class StoreInventory2 implements Serializable {
 private static final long serialVersionUID = 1L;
 String itemnum;
 String supplierid;
 String description;
 String qtyonhand;
 float price;
 long id;
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 public long getId() {
 return id;

 Creating Container-Managed Persistence Entity Beans

3839 3831–002 9–5

 }
 public void setId(long id) {
 this.id = id;
 }
 public StoreInventory2() {
 super();
 }
 public float getPrice() {
 return price;
 }
 public StoreInventory2(String itemnum, String supplierid,
 String description, String qtyonhand, float price) {
 this.itemnum = itemnum;
 this.supplierid = supplierid;
 this.description = description;
 this.qtyonhand = qtyonhand;
 this.price = price;
 }
 public String getItemnum() {
 return itemnum;
 }
 public void setItemnum(String itemnum) {
 this.itemnum = itemnum;
 }
 public String getSupplierid() {
 return supplierid;
 }
 public void setSupplierid(String supplierid) {
 this.supplierid = supplierid;
 }
 public String getDescription() {
 return description;
 }
 public void setDescription(String description) {
 this.description = description;
 }
 public String getQtyonhand() {
 return qtyonhand;
 }
 public void setQtyonhand(String qtyonhand) {
 this.qtyonhand = qtyonhand;
 }
 public void setPrice(float price) {
 this.price = price;
 }
 }

In front of getItemnum() getter, add an annotation describing the access to the
database, persistence, and the remote access.

Creating Container-Managed Persistence Entity Beans

9–6 3839 3831–002

For ItemNumber, the annotation is as follows:

/**
 * @ID
 @GeneratedValue(strategy = GenerationType.AUTO)
 public String getItemnum() {
 return itemnum;
 }

@ID is used to specify the generator for automatic key generation when new objects
are created.

9.2.3 Adding Finder Methods

The home interface for an entity bean defines one or more finder methods to find an
entity object or a collection of entity objects. The name of each finder method starts
with the prefix “findBy,” such as findByPrice, findBySupplierID or findByID.

The findById method defined in the StoreInventoryBean class is as follows:

public StoreInventory2 findById(long id) {
 return ((StoreInventory2)em.find(StoreInventory2.class, id));
 }

9.2.4 Adding Data Methods

To get inventory details, add the following getAllInventory business method to the
StoreInventoryBean class:

public Collection<StoreInventory2> getAllInventory() {
 storeList = em.createQuery("from StoreInventory2 b").getResultList();
 return storeList;
 }

9.2.5 Callback Methods in EJB 3.0

It is not necessary to include callback methods in EJB 3.0 as in EJB 2.1. However, you
can add listener methods using annotation to do the event.

You can add the following callback methods as an annotation:

• @PrePersist

Executed before the entity manager persist operation is actually executed or
cascaded. This callback method is synchronous with the persist operation.

• @PostPersist

Executed after the entry manager persist operation is actually executed or
cascaded. This callback method is invoked after the database INSERT is
executed.

 Creating Container-Managed Persistence Entity Beans

3839 3831–002 9–7

• @PreRemove

Executed before the entity manager REMOVE operation is actually executed or
cascaded. This callback method is synchronous with the REMOVE operation.

• @PostRemove

Executed after the entity manager REMOVE operation is actually executed or
cascaded. This callback method is synchronous with the REMOVE operation.

• @PreUpdate

 Executed before the entity manager database UPDATE operation is executed.

• @PostUpdate

 Executed after the entity manager database UPDATE operation is executed.

• @PostLoad

Executed after an entity has been loaded into the current persistence context or
an entity has been refreshed.

9.2.6 Creating the JPA persistence.xml File

To create the JPA persistence.xml file, perform the following steps:

1. In the OfficeSupplyStoreEJB project, right-click the META-INF folder, point to
New, and click other.

2. Click XML file.

3. Click Next.

The New XML File window appears.

4. Type persistence.xml in the File name box.

5. Click Next.

The New XML File window appears.

6. Click Next.

7. Click Finish.

 Add the following contents to the persistence.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-insta
nce"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.c
om/xml/ns/persistence/persistence">
<persistence-unit name="manager1" >
 <jta-data-source>DefaultDS</jta-data-source>
 <properties>
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>
 <property name="hibernate.dialect"

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence
http://java.sun.com/xml/ns/persistence/persistence

Creating Container-Managed Persistence Entity Beans

9–8 3839 3831–002

 value="org.hibernate.dialect.HSQLDialect"/>
 </properties>
 </persistence-unit>
</persistence>

Create the hsqlds-ds.xml file as described in Section 8.2. Then, copy the hsqlds-ds.xml
file in the deploy folder along with the .ear file.

<?xml version="1.0" encoding="UTF-8"?>
<datasources>
<local-tx-datasource>
<jndi-name>DefaultDS</jndi-name>
<use-java-context>false</use-java-context>
<connection-url>jdbc:hsqldb:${jboss.server.data.dir}${/}hypersonic${/}localD
B</connection-url>
<driver-class>org.hsqldb.jdbcDriver</driver-class>
<user-name>sa</user-name>
<password></password>
<min-pool-size>5</min-pool-size>
<max-pool-size>20</max-pool-size>
<idle-timeout-minutes>0</idle-timeout-minutes>
<track-statements/>
<security-domain>HsqlDbRealm</security-domain>
<prepared-statement-cache-size>32</prepared-statement-cache-size>
<metadata>
<type-mapping>Hypersonic SQL</type-mapping>
</metadata>
<depends>jboss:service=Hypersonic,database=localDB</depends>
</local-tx-datasource>
<mbean code="org.jboss.jdbc.HypersonicDatabase" name="jboss:service=Hyperson
ic,database=localDB">
<attribute name="Database">localDB</attribute>
<attribute name="InProcessMode">true</attribute>
</mbean>
<local-tx-datasource>
 <jndi-name>jdbcunisysos2200rdms</jndi-name>
<connection-url>jdbc:rdms:host=rs02.rsvl.unisys.com;port=1544;schema=OSupply
Store;storagearea=RDMS_AUTO_3;varchar=varchar
</connection-url>
 <driver-class>com.unisys.os2200.rdms.jdbc.RdmsDriver</driver-class>
 <user-name>elango</user-name>
 <password>unisys</password>
 <max-pool-size>5</max-pool-size>
 <min-pool-size>1</min-pool-size>
 <prepared-statement-cache-size>200</prepared-statement-cache-size>
 <idle-timeout-minutes>1000</idle-timeout-minutes>
 <metadata>
 <type-mapping>RDMSOS2200</type-mapping>
 </metadata>

 Creating Container-Managed Persistence Entity Beans

3839 3831–002 9–9

 </local-tx-datasource>
</datasources>

9.2.7 Adding Inventory Access Methods

Add other business methods to the StoreInventoryRemote to invoke on the
StoreInventory bean. A user logs in to StoreInventory with username and password.
Once validated, the user can retrieve details from StoreInventory by invoking methods
on the StoreInventory bean to examine the inventory.

Inventory Data Method

Create a business method named findById to return the inventory. Add the method in
StoreInventory Bean class as given:

public StoreInventory2 findById(long id)
{
 return ((StoreInventory2)em.find(StoreInventory2.class, id));
}

9.2.8 Creating a Test Client

Create a test client to access the beans and methods developed so far to invoke the
following methods on Store inventory bean:

• addInventory

• getAllInventory

• findById

A completed version of the code is at the following location:

...\examples\9a\OfficeSupplyStoreClient\appClientModule\us\com\unisys\client\
SessionCMPTestClient.java

To create a test client

1. From the OfficeSupplyStoreClient project, right-click the us.com.unisys.client
package name, point to New, and click Class.

The New Java Class dialog box opens.

2. Type or browse to the following values in the boxes:

• Source folder is OfficeSupplyStoreClient/appClientModule.

• Package is us.com.unisys.client (do not try to browse for this because it is not
defined yet).

• Name is SessionJPTestClient.

• Superclass is java.lang.Object.

3. Clear the Inherited abstract methods check box.

4. Click Finish.

Creating Container-Managed Persistence Entity Beans

9–10 3839 3831–002

Test Method

In the testBean method, invoke addInventory, getAllInventory, and findById.

The TestClient java code is as follows:

import java.util.Collection;
import java.util.Iterator;
import java.util.Properties;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.transaction.SystemException;
import us.com.unisys.cmp.StoreInventory2;
import us.com.unisys.cmp.StoreInventoryLocal;
import us.com.unisys.cmp.StoreInventoryRemote;

public class StoreInventory2Client {
 private static StoreInventoryRemote bci = null;
 String s1,s2,s3;
 static Collection list;
 public static void main(String[] args) throws NamingException, IllegalSta
teException, SecurityException, SystemException ,Exception{
 Properties props = new Properties();
 props.setProperty("java.naming.factory.initial","org.jnp.interfaces.
NamingContextFactory");
 props.setProperty("java.naming.factory.url.pkgs", "org.jboss.naming"
);
 props.setProperty("java.naming.provider.url", "127.0.0.1:1099");
 InitialContext ctx = new InitialContext(props);
 bci = (StoreInventoryRemote) ctx.lookup("OfficeSupplyStore2/StoreInvento
ryBean/remote");
 bci.addInventory("ITEM5","SUPL3","SONY","20",(float)120.30);
 StoreInventory2 inven = bci.findById(3);
 System.out.println("findInventory is **************"+inven.getId());
 list=bci.getAllInventory();
 for (Iterator iter = list.iterator(); iter.hasNext();)
 {
 StoreInventory2 element = (StoreInventory2)iter.next();
 System.out.println(element.getId());
 System.out.println(element.getItemnum());
 System.out.println(element.getSupplierid());
 System.out.println(element.getDescription());
 System.out.println(element.getQtyonhand());
 System.out.println(element.getPrice());
 }
 }
 }

 Creating Container-Managed Persistence Entity Beans

3839 3831–002 9–11

9.2.9 Testing the Bean

To run the client and test the bean

1. Start JBoss AS.

2. Right-click the SessionJPTestClient node, point to Run As, and click Java
Application.

The output appears in two windows, one for the server and the other for the client.

The console pane should look like Figure 9–2 and Figure 9–3.

Figure 9–2. Server Output from Java Persistence Beans

Figure 9–3. Client Output from Java Persistence Beans

Creating Container-Managed Persistence Entity Beans

9–12 3839 3831–002

3839 3831–002 10–1

Section 10
Creating Web Client Servlets

Web clients run in either the client tier or the presentation tier to access or otherwise
communicate with the business tier.

10.1. Accessing Office Supply Store
The Office Supply Store application uses a Web client servlet, as illustrated in Figure
10–1. The servlet sends user requests to the UserAccess bean and returns the results.

Figure 10–1. Web Client Servlets in Office Supply Store

Creating Web Client Servlets

10–2 3839 3831–002

10.1.1. Types of Web Clients

Web clients are either servlets or JavaServer Pages (JSP), which are defined as
follows:

• Servlets are Java programming language classes that dynamically process
requests and construct responses.

• JSPs are text-based documents that execute like servlets but allow a natural
language approach to creating static content.

Refer to Section 11 for creating JSPs.

10.1.2. Web Client Pattern

A typical pattern for Web clients uses models, views, and controllers, where

• The model is the data.

• The JSPs act as the view.

• The servlet acts as the controller.

Figure 10–1 identifies these relationships in the Office Supply Store.

10.2. Tasks
Complete the following tasks to create a servlet:

1. Create a Web project named OfficeSupplyStoreWeb.

2. Create a servlet named UserAccessController.

3. Add a remote business method to UserAccess Bean named getStoreInventory().

4. Modify the servlet for the project.

5. Implement a method named processRequest and other helper methods.

6. Test the UserAccessController servlet.

10.2.1. Creating a Web Project

You can create a Web project when the Java EE project is created or when needed. To
create a Web project

1. Right-click OfficeSupplyStore on the Project Explorer tab, point to New, and
click Dynamic Web Project.

The New Dynamic Web Project wizard appears.

2. Type OfficeSupplyStoreWeb in the Project Name box.

3. Be sure the Use default check box under Project contents is selected.

4. Select JBoss 4.2 from the Target runtime list.

 Creating Web Client Servlets

3839 3831–002 10–3

5. Select the Add project to an EAR check box.

6. Be sure OfficeSupplyStoreWebEAR is selected in the EAR Project Name
list, and click Next.

7. Be sure OfficeSupplyStoreWeb is in the Context Root box and
WebContent is in the Content Directory box.

8. Type src in the Java Source Directory box, and click Finish.

10.2.2. Creating a Servlet

To create a servlet named UserAccessController

1. Right-click the OfficeSupplyStoreWeb project, point to New, and click Servlet.

The Create Servlet wizard appears with the following values in the boxes:

• Project is OfficeSupplyStoreWeb.

• Folder is \OfficeSupplyStoreWeb\src.

• Superclass is javax.servlet.http.HttpServlet.

2. Type us.com.unisys.servlet in the Java package box (do not try to browse
for this because it is not defined yet).

3. Type UserAccessController in the Class name box

4. Click Next.

5. Type signon in the Name box.

The value under URL Mappings changes to /signon.

6. Click Finish.

10.2.3. Adding Remote Business Method

Before implementing the servlet, add another remote business method named
getStoreInventory to UserAccessBean.java. This method returns all the items in Office
Supply Store by invoking the finder method named findAll in
StoreInventoryLocalHome. A completed version of this code is at the following
location:

...\examples\10\OfficeSupplyStoreEJB\ejbModule\us\com\unisys\session\
UserAccessBean.java

Add the following method to UserAccessBean:

/**
@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
 public void addInventory(String itemnum, String supplierid,
 String description, String qtyonhand, float price) throws Exception {
 // Initialize the form
 System.out.println("before begin inside addBook");
 try {

Creating Web Client Servlets

10–4 3839 3831–002

 if (si == null)
 si = new StoreInventory(itemnum, supplierid, description,
 qtyonhand, price);
 em.merge(si);
 } catch (Exception e) {
 ctx.setRollbackOnly();
 throw e;
 }
 }
 public Collection<StoreInventory> getStoreInventory() {
 storeList = em.createQuery("from StoreInventory b").getResultList();
 return storeList;
 }
 public StoreInventory findById(long id) {
 return ((StoreInventory)em.find(StoreInventory.class, id));
 }

10.2.4. Modifying the Servlet for the Project

The following paragraphs describe how to modify the servlet for the project. A
completed version of this code is at the following location:

...\examples\10\OfficeSupplyStoreWeb\JavaSource\us\com\unisys\servlet\
UserAccessController.java

Project Definitions

To modify the OfficeSupplyStoreWeb project properties to include definitions from
the EJB project

1. In the Java EE perspective, right-click the OfficeSupplyStoreWeb project, and
click Properties.

The Properties dialog box opens.

2. Select Java Build Path on the left tree pane.

3. On the Projects tab, click Add, and select OfficeSupplyStoreEJB in the
Required projects on the build path list.

OfficeSupplyStoreWeb/build/classes appear in the Default output folder
box on the Source tab.

4. Click OK.

 Creating Web Client Servlets

3839 3831–002 10–5

Imported Files

Add the following to UserAccessController.java. Not all are needed initially, but they
are needed eventually.

import java.io.IOException;

import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.Properties;

import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;
import javax.servlet.http.HttpSession;

import us.com.unisys.bmp.StoreInventory;
import us.com.unisys.bmp.UserAccessBeanRemote;

init Method

The init method is responsible for initializing servlets. It is invoked once when the
servlet is first created. In the init method, initialize the references for UserAccess
bean. All client interfaces available are exposed in UserAccess.

 private UserAccessBeanRemote userAccessHome=null;
 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 initUserAccess();
 }
 private void initUserAccess() {
 System.out.println("Entering UserAccessController.initUserAccess()");
 try {
 userAccessHome =
 (UserAccessHome)getContext().lookup("OfficeSupplyStore4EAR/UserAccessBean
/remote ");
 } catch (Exception e) {
 System.out.println("Error in UserAccessController.initUserAccess()"
 + e);
 }
 System.out.println("Leaving UserAccessController.initUserAccess()");

Creating Web Client Servlets

10–6 3839 3831–002

 }

 private InitialContext getContext() throws NamingException {
 Properties props = new Properties();
 props.setProperty("java.naming.factory.initial",
 "org.jnp.interfaces.NamingContextFactory");
 props.setProperty("java.naming.factory.url.pkgs","org.jboss.naming");
 props.setProperty("java.naming.provider.url", "127.0.0.1:1099");
 InitialContext ctx = new InitialContext(props);
 Return ctx;
 }

10.2.5. Implementing Helper Methods

To implement the doGet and doPost methods, create a helper method named
processRequest to provide the functionality for both of them. Requests are delegated
to processRequest, where all business logic processing takes place. Once processing
is complete, processRequest dispatches the request to the appropriate view (JSP) for
display.

The processRequest method acts as a controller for all requests and uses other helper
methods to do its work, as identified in the following paragraphs.

processRequest Method

The processRequest helper method performs the following steps:

1. Checks for the parameter useraction in the request object.

2. If useraction is empty, builds a URL and generates a log-in window.

3. If useraction has some value, examines it for processing.

4. If the request is to display items, builds a URL and generates a window that
displays all items.

5. If errors occur, generates a window that displays the errors.

Implement the following code to create the processRequest helper method:

 private static String LOGIN_SCREEN = "/login";
 private static String LOGIN_ERROR_SCREEN = "loginError";
 private static String ITEMS_SCREEN = "/showStoreItems";

 protected void processRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 System.out.println("Entering UserAccessController.processRequest()");
 String buildURL = null ;
 HttpSession session = request.getSession(true);
 String userAction = request.getParameter("useraction");
 if (userAction == null){
 buildURL = LOGIN_SCREEN;

 Creating Web Client Servlets

3839 3831–002 10–7

 } else {
 if (userAction.equals("dovalidation")) {
 System.out.println("Verifying User");
 String username = request.getParameter("username");
 String password = request.getParameter("password");
 if ((username == null) || !(checkUser(username,password,session)
)) {
 System.out.println("Error: Invalid attempt for username:" +
 username);
 buildURL = LOGIN_ERROR_SCREEN;
 } else {
 buildURL = ITEMS_SCREEN;
 }
 }
 }
 if (buildURL == ITEMS_SCREEN) {
 try {
 String userID = (String)session.getAttribute("userID");
 theStore = userAccessHome.getStoreInventory();
 displayAllItems(response, theStore);
 theStore.remove();
 } catch (Exception e) {
 System.out.println("Error in UserAccessController.processRequest
()" + e);
 }
 } else {
 if (buildURL == LOGIN_SCREEN) {
 displayLoginScreen(response);
 } else if (buildURL == LOGIN_ERROR_SCREEN) {
 displayLoginErrorScreen(response);
 }
 }
 System.out.println("Leaving UserAccessController.processRequest()");
 }

doGet, doPost Methods

The doGet and doPost methods simply call the processRequest helper method.

protected void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

Creating Web Client Servlets

10–8 3839 3831–002

displayLoginScreen Method

If useraction is empty, which it is initially, processRequest builds the URL for the log-in
screen and generates the log-in screen by invoking the method displayLoginScreen.

private void displayLoginScreen(HttpServletResponse response) throws
 IOException {
 System.out.println("Entering
 UserAccessController.displayLoginScreen()");
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html><title>The Office Supply Store Login</title>");
 out.println("<body><h2>Welcome to the Office Supply Store</h2></bod
y>");
 out.println("<form method=\"get\">");
 displayLoginDataFields(out);
 out.println("</form></html>");
 if (out != null) {
 out.close();
 }
 System.out.println("Leaving
 UserAccessController.displayLoginScreen()");
 }

displayLoginDataFields Method

The method displayLoginScreen calls displayLoginDataFields to generate the data
fields for the log-in screen, as follows:

private void displayLoginDataFields(PrintWriter out) {
 System.out.println("Entering
 UserAccessController.displayLoginDataFields()");
 out.println("<h3>Please enter your username and password:");
 out.println("<table><tr><td>Username: <td><input name=\"username\"
 type=\"test\"/>");
 out.println("<tr><td>Password: <td><input name=\password\"
 type=\"password\"/>");
 out.println("</table>");
 out.println("<input type=\"submit\" value=\"login\"
 name=\"loginButton\"/>");
 out.println("<input type=\"reset\" name=\"resetButton\"
 value=\"reset\"/>");
 out.println("<input type=\"hidden\" name=\"useraction\"
 value=\"dovalidation\"/>");
 System.out.println("Leaving
 UserAccessController.displayLoginDataFields()");
 }

 Creating Web Client Servlets

3839 3831–002 10–9

checkUser, verifyUser Methods

Once the log-in screen is submitted, processRequest checks to see whether the
username and password are valid by invoking the checkUser method, which invokes
the verifyUser method in the UserAccessBean, as follows:

private boolean checkUser(String username, String passwd, HttpSession
 session){
 System.out.println("Entering UserAccessController.checkUser()");
 String userID = null ;
 try {
 userID = userAccessHome.verifyThisUser(username, passwd);
 session.setAttribute("userID", userID);
 } catch (Exception e) {
 System.out.println("Error in UserAccessController.checkUser()" +
 e);
 }
 System.out.println("Leaving UserAccessController.checkUser()");
 return (userID != null);
 }

Creating Web Client Servlets

10–10 3839 3831–002

displayAllItems Method

The processRequest method builds URLs for displaying items and errors, using the
displayAllItems method, as follows:

private void displayAllItems(HttpServletResponse response, ArrayList
 itemsList)
 throws IOException {
 System.out.println("Entering UserAccessController.displayAllItems()
");
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html><title>List of Office Supply Store Inventory:</t
itle>");
 out.println("<form method=\"get\">");
 out.println("<body><h2>The Office Supply Store Inventory (servlet)
 </h2></body>");
 if (itemsList.isEmpty()){
 out.println("<p><h3>No Items are available!</h3>");
 } else {
 out.println("<p><table border=\"1\">");
 out.println("<th>ItemID");
 out.println("<th>Description");
 out.println("<th>Quantity");
 out.println("<th>Price</tr>");
 Iterator items = itemsList.iterator();
 StoreInventory item = null ;
 while (items.hasNext()) {
 item = (StoreInventoryData)items.next();
 out.println("<tr><td>");
 out.println(item.getItemNumber());
 out.println("</td><td>");
 out.println(item.getDescription());
 out.println("</td><td>");
 out.println(item.getQuantityOnHand());
 out.println("</td><td>");
 out.println(item.getPrice());
 out.println("</td></tr>");
 }
 out.println("</table>");
 }
 out.println("</html>");
 if (out != null) {
 out.close();
 }
 System.out.println("Leaving UserAccessController.displayAllItems()"
);
 }

 Creating Web Client Servlets

3839 3831–002 10–11

displayLoginErrorScreen Method

The processRequest method displays errors using the displayLoginErrorScreen
method, as follows:

private void displayLoginErrorScreen(HttpServletResponse response) throws
 IOException {
 System.out.println("Entering

 UserAccessController.displayLoginErrorScreen()");
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html><title>OfficeSupplyStore Login Error</title>");
 out.println("<h3>Please try again, your login has failed!");
 out.println("<form method=\"get\">");
 displayLoginDataFields(out);
 out.println("</form></html>");
 if (out != null) {
 out.close();
 }
 System.out.println("Leaving

 UserAccessController.displayLoginErrorScreen()");
 }

10.2.6. Testing the Servlet

To test the servlet

1. From the browser, access the servlet using the following URL:

http://localhost:8080/OfficeSupplyStoreWeb/signon

where signon is the URL mapping that was assigned while creating the servlet
using the servlet creation wizard, and OfficeSupplyStoreWeb is the Web
module where this servlet UserAccessController resides.

The log-in window appears.

Notes:

• Log-in entries are case sensitive.

• If the log-in window does not appear, try cleaning the project and restarting
JBoss AS.

2. Type sa in the Username box.

3. Leave the Password box blank.

4. Click login.

http://localhost:8080/OfficeSupplyStoreWeb/signon

Creating Web Client Servlets

10–12 3839 3831–002

The Office Supply Store Inventory window appears, as illustrated in Figure 10–2.

Figure 10–2. Office Supply Store Inventory from the Servlet

3839 3831–002 11–1

Section 11
Creating Web Client JavaServer
Pages

Web clients run in either the client tier or the presentation tier to access or otherwise
communicate with the business tier. Refer to Section 10 for more information about
types of Web clients, Web client patterns, and creating servlets.

11.1. Accessing Office Supply Store
The Office Supply Store application uses a Web client JSP, as illustrated in Figure 11–1.
The JSP communicates through the servlet to send user requests to the UserAccess
bean and display the results.

Figure 11–1. Web Client Servlets and JSPs in Office Supply Store

Creating Web Client JavaServer Pages

11–2 3839 3831–002

11.2. Tasks
Complete the following tasks to create a JSP:

1. Create a JSP named showStoreItems.

2. Modify the method processRequest in the UserAccessController servlet.

3. Add HTML and JSP tags to display a list of all inventory items in the Office Supply
Store.

4. Deploy the module OfficeSupplyStoreWeb.

5. Test the showStoreItems JSP.

11.2.1. Creating JavaServer Pages

To create a JSP named showStoreItems

1. From the Project Explorer, right-click OfficeSupplyStoreWeb, point to New,
and click JSP.

The New JavaServer Page dialog box appears.

2. Expand OfficeSupplyStoreWeb and select WebContent.

OfficeSupplyStoreWeb/WebContent appears in the box as the parent folder.

3. Type showStoreItems.jsp in the File name box.

4. Click Finish.

Writing a JSP is beyond the scope of this example. For demonstration purposes, copy
a JSP from the following completed examples to a similarly named workspace
location:

...\examples\11\OfficeSupplyStoreWeb\WebContent\showStoreItems.jsp

The completed JSP contains the following code:

<%@ page language="java" import="java.util.*"%>
<%@ page language="java" import="us.com.unisys.bmp.*"%>
<%-- <jsp:useBean id="inventoryData" scope="page" class="us.com.unisys.bmp.S
toreInventory">
 <jsp:setProperty name="inventoryData" property="*"/>
</jsp:useBean>
 --%><!DOCTYPE HTML PUBLIC "-w3cdtd html 4.0 transitionalen">
<html>
<head>
<title>Office Supply Store</title>
</head>
<body bgcolor="#FFFFFF">
<form method="get">
<h3>The Office Supply Store Inventory (jsp)</h3></br>
<table border="1">

 Creating Web Client JavaServer Pages

3839 3831–002 11–3

<tr><td>ItemID</td>
<td>Description</td>
<td>Quantity</td>
<td>Price</td></tr>
<%
ArrayList arr = (ArrayList) session.getAttribute("InventoryList");
for (int i = 0; i < arr.size(); i++) {
 StoreInventory inventoryList = (StoreInventory)arr.get(i);
 %>
<TR>
<TD><%=inventoryList.getItemnum()%></TD>
<TD><%=inventoryList.getDescription()%></TD>
<TD><%=inventoryList.getQtyonhand()%></TD>
<TD><%=inventoryList.getPrice()%></TD>
</TR>
 <%
}
%>
</table>
</form>
</body>
</html>

11.2.2. Modifying the Servlet for the JSP

To display Office Supply Store inventory items from the JSP, modifications to the
processRequest method in the servlet code in UserAccessController.java are required.
A completed version of the code is at the following location:

...\examples\11\OfficeSupplyStoreWeb\JavaSource\us\com\unisys\servlet\
UserAccessController.java

The complete servlet contains the following code:

package us.com.unisys.servlet;
import java.io.IOException;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.Properties;
import javax.naming.InitialContext;
import javax.naming.NamingException;

Creating Web Client JavaServer Pages

11–4 3839 3831–002

import javax.rmi.PortableRemoteObject;
import javax.servlet.http.HttpSession;
import us.com.unisys.bmp.StoreInventory;
import us.com.unisys.bmp.UserAccessBeanRemote;
/**
 * Servlet implementation class UserAccessController
 */
public class UserAccessController extends HttpServlet {
 private static final long serialVersionUID = 1L;
 /**
 * @see HttpServlet#HttpServlet()
 */
 public UserAccessController() {
 super();
 // TODO Auto-generated constructor stub
 }
 private UserAccessBeanRemote userAccessHome = null;
 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 initUserAccess();
 }
 private void initUserAccess() {
 System.out.println("Entering UserAccessController.initUserAccess()");
 try {
 userAccessHome = (UserAccessBeanRemote) getContext().lookup(
 "OfficeSupplyStore4EAR/UserAccessBean/remote");
 } catch (Exception e) {

 System.out.println("Error in UserAccessController.initUserAccess()"
 + e);
 }
 System.out.println("Leaving UserAccessController.initUserAccess()");
 }
 private InitialContext getContext() throws NamingException {
 Properties props = new Properties();
 props.setProperty("java.naming.factory.initial",
 "org.jnp.interfaces.NamingContextFactory");

 props.setProperty("java.naming.factory.url.pkgs", "org.jboss.naming");
 props.setProperty("java.naming.provider.url", "127.0.0.1:1099");
 InitialContext ctx = new InitialContext(props);
 return ctx;
 }
 private static String LOGIN_SCREEN = "login";
 private static String LOGIN_ERROR_SCREEN = "loginError";
 private static String ITEMS_SCREEN = "showStoreItems";
 ArrayList theStore;
 protected void processRequest(HttpServletRequest request,

 Creating Web Client JavaServer Pages

3839 3831–002 11–5

 HttpServletResponse response) throws ServletException, IOException {
 System.out.println("Entering UserAccessController.processRequest()");
 String buildURL = null;
 HttpSession session = request.getSession(true);
 String userAction = request.getParameter("useraction");
 System.out.println(userAction);
 if (userAction == null) {
 buildURL = LOGIN_SCREEN;
 } else {
 if (userAction.equals("dovalidation")) {
 System.out.println("Verifying User");
 String username = request.getParameter("username");
 String password = request.getParameter("password");
 if ((username == null)
 || !(checkUser(username, password, session))) {
 System.out.println("Error: Invalid attempt for username:"
 + username);
 buildURL = LOGIN_ERROR_SCREEN;
 } else {
 buildURL = ITEMS_SCREEN;
 }
 }
 }
 if (buildURL == ITEMS_SCREEN) {
 try {
 String userID = (String) session.getAttribute("userID");
 theStore = userAccessHome.getStoreInventory();
 System.out.println(theStore.size());
 //displayAllItems(response, theStore);
 request.setAttribute("InventoryList", theStore);
 session.setAttribute("InventoryList", theStore);
 RequestDispatcher rd =getServletContext().getRequestDispatcher("/showStor
eItems.jsp");
 rd.forward(request, response);
 theStore.remove(userID);
 } catch (Exception e) {
 System.out

 .println("Error in UserAccessController.processRequest()"
 + e);
 }
 } else {
 if (buildURL == LOGIN_SCREEN) {
 displayLoginScreen(response);
 } else if (buildURL == LOGIN_ERROR_SCREEN) {
 displayLoginErrorScreen(response);
 }
 }

Creating Web Client JavaServer Pages

11–6 3839 3831–002

 System.out.println("Leaving UserAccessController.processRequest()");
 }
 protected void doGet(HttpServletRequest request,

 HttpServletResponse response) throws ServletException, IOException {
 processRequest(request, response);
 }
 private void displayLoginScreen(HttpServletResponse response)
 throws IOException {
 System.out

 .println("Entering UserAccessController.displayLoginScreen()");
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("Hello World");
 out.println("<html><title>The Office Supply Store Login</title>");

 out.println("<body><h2>Welcome to the Office Supply Store<h2></body>");
 out.println("<form method=\"get\">");
 /*
 * out.println("<h3>Please enter your username and password:");
 * out.println
 * ("<table><tr><td>Username: <td><input name=\"username\"type=\"test\"/>
"
 *); out.println(

 * "<tr><td>Password: <td><input name=\"password\"type=\"password\"/>");
 * out.println("</table>"); out.println(
 * "<input type=\"submit\" value=\"login\"name=\"loginButton\"/>");
 * out.println
 * ("<input type=\"reset\" name=\"resetButton\"value=\"reset\"/>");
 * out.println

 * ("<input type=\"hidden\" name=\"useraction\"value=\"dovalidation\"/>"
 *);
 */
 displayLoginDataFields(out);
 out.println("</form></html>");
 if (out != null) {
 out.close();
 }

 System.out.println("Leaving UserAccessController.displayLoginScreen()");
 }
 private void displayLoginDataFields(PrintWriter out) {

 System.out.println("Entering UserAccessController.displayLoginDataFields(
)");
 out.println("<h3>Please enter your username and password:");

 Creating Web Client JavaServer Pages

3839 3831–002 11–7

 out.println("<table><tr><td>Username: <td><input name=\"username\"type=\"
test\"/>");

 out.println("<tr><td>Password: <td><input name=\"password\"type=\"passwor
d\"/>");
 out.println("</table>");
 out.println("<input type=\"submit\" value=\"login\"name=\"loginButton\"/>
");
 out.println("<input type=\"reset\" name=\"resetButton\"value=\"reset\"/>"
);
 out.println("<input type=\"hidden\" name=\"useraction\"value=\"dovalidati
on\"/>");
 System.out.println("Leaving UserAccessController.displayLoginDataField
s()");
 if (out != null) {
 out.close();
 }
 }
 private boolean checkUser(String username, String passwd,
 HttpSession session) {
 System.out.println("Entering UserAccessController.checkUser()");
 String userID = null;
 try {
 userID = userAccessHome.verifyThisUser(username, passwd);
 System.out.println("userID is **********" + userID);
 session.setAttribute("userID", userID);
 } catch (Exception e) {

 System.out.println("Error in UserAccessController.checkUser()" + e);
 }
 System.out.println("Leaving UserAccessController.checkUser()");
 return (userID != null);
 }
 private void displayAllItems(HttpServletResponse response,
 ArrayList itemsList) throws IOException {

 System.out.println("Entering UserAccessController.displayAllItems()");
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html><title>List of Office Supply Store Inventory:</title>"
);
 out.println("<form method=\"get\">");
 out.println("<body><h2>The Office Supply Store Inventory (servlet) <h2></
body>");
 if (itemsList.isEmpty()) {
 out.println("<p><h3>No Items are available!<h3>");
 } else {
 out.println("<p><table border=\"1\">");

Creating Web Client JavaServer Pages

11–8 3839 3831–002

 out.println("<th>ItemID");
 out.println("<th>Description");
 out.println("<th>Quantity");
 out.println("<th>Price<tr>");
 Iterator items = itemsList.iterator();
 StoreInventory item = null;
 while (items.hasNext()) {
 item = (StoreInventory) items.next();
 out.println("<tr><td>");
 out.println(item.getItemnum());
 out.println("</td><td>");
 out.println(item.getDescription());
 out.println("</td><td>");
 out.println(item.getQtyonhand());
 out.println("</td><td>");
 out.println(item.getPrice());
 out.println("</td></tr>");
 }
 out.println("</table>");
 }
 out.println("</form>");
 out.println("</html>");
 if (out != null) {
 out.close();
 }
 System.out.println("Leaving UserAccessController.displayAllItems()");
 }
 private void displayLoginErrorScreen(HttpServletResponse response)
 throws IOException {
 System.out.println("Entering UserAccessController.displayLoginErrorScreen
()");
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html><title>OfficeSupplyStore Login Error</title>");
 out.println("<h3>Please try again, your login has failed!");
 out.println("<form method=\"get\">");
 displayLoginDataFields(out);
 out.println("</form></html>");
 if (out != null) {
 out.close();
 }
 System.out

 .println("Leaving UserAccessController.displayLoginErrorScreen()");
 }
}

 Creating Web Client JavaServer Pages

3839 3831–002 11–9

11.2.3. Displaying Inventory

Add HTML and JSP tags as follows to display the inventory, where buildURL has the
link to the JSP:

protected void processRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 // servlet display code (module 6A)
 //displayAllItems(response, thestore);
 //
 // jsp display code
 session.setAttribute("InventoryList", thestore);
 RequestDispatcher rd = getServletContext().getRequestDispatcher("/
showStoreItems.jsp");
 rd.forward(request, response);
 //

11.2.4. Deploying Web Client Components

OfficeSupplyStoreWeb required a modification to UserAccessBean, which needs to be
deployed to the server. Refer to the procedure in 2.11 to publish the EJB. The JBoss
AS state changes from Republish to Synchronized.

11.2.5. Testing Web Client Components

To execute the Web Client, perform the following steps:

1. From the browser, access the servlet using the following URL

http://localhost:8080/OfficeSupplyStoreWeb/signon

where signon is the URL mapping that was assigned while creating the servlet
using the servlet creation wizard, and OfficeSupplyStoreWeb is the Web
module where this servlet UserAccessController resides.

The log-in window appears.

Notes:

• Log-in entries are case sensitive.

• If the log-in window does not appear, try cleaning the project and restarting
JBoss AS.

2. Type sa in the Username box.

3. Leave the Password box blank.

4. Click login.

http://localhost:8080/OfficeSupplyStoreWeb/signon

Creating Web Client JavaServer Pages

11–10 3839 3831–002

The Office Supply Store Inventory window appears, as illustrated in Figure 11–2.

Figure 11–2. Office Supply Store Inventory from the JSP

3839 3831–002 12–1

Section 12
Creating Web Services

Web services technology enables integration among enterprise applications, including
those from different vendors and different platforms, using XML to exchange data.

12.1. Web Services Overview
Historically, several initiatives to provide vendor-and-platform integration technology
occurred, but none were successful. An example initiative would be getting an
enterprise application that runs on a Windows operating system to communicate with
an enterprise application that runs on a Unix operating system. While it can be done, it
typically uses a technology that is not equally supported in both environments.

However, the development of Web services technology changed this situation. Simple
Object Access Protocol (SOAP) and eXtensible Markup Language (XML) provide the
necessary integration techniques. The basic mechanism of Web services uses XML to
transport information between different applications, using the standard Hypertext
Transfer Protocol (HTTP) of the Web environment.

Refer to Appendix C for information about Web Services standards.

Creating Web Services

12–2 3839 3831–002

3839 3831–002 13–1

Section 13
Creating Message-Driven Beans

A message-driven bean (MDB) is an EJB component that combines features of a
session bean and a Java Message Service (JMS) message listener. The EJB container
asynchronously invokes an MDB when it receives a message from the JMS queue.

13.1. Accessing Office Supply Store
The Office Supply Store application uses two MDBs (refer to 6.6.1), as illustrated in
Figure 13–1. The RequestStoreItems bean sends requests to various suppliers to
deliver items that are out of stock. The DeliverStoreItems bean replenishes the stock
(quantity on hand) of an item.

Figure 13–1. MDB Beans in Office Supply Store

Creating Message-Driven Beans

13–2 3839 3831–002

13.1.1. Test Applications

Two test applications for the OfficeSupplyStore issue (send) messages to the
message-driven beans, causing them to perform the stated actions.

13.1.2. Remote and Local Access to Beans

Both MDBs access the UserAccess bean through its remote interface, even though
UserAccess is in the same JVM. This is because UserAccess is implemented as a
remote bean, so it exposes only its remote interface. However, StoreInventory and
StoreSupplier are in the same JVM as the MDBs and their local interfaces are
exposed, so the MDBs can use their local interfaces when accessing StoreInventory
and StoreSupplier.

13.2. Tasks
Complete the following tasks to create a message-driven bean (MDB). Before
beginning these tasks, be sure that both the StoreInventory and StoreSupplier beans
are generated (refer to Section 9). Alternatively, you can use a completed workspace
from the examples folder.

1. Create a message-driven bean (MDB) structure named RequestStoreItems.

2. Create an immutable value object named RequestStoreItem.

3. Implement the onMessage method in RequestStoreItemsBean.java.

4. Create a test client named RequestMDBTestClient.

5. Run the client and test the RequestStoreItems bean.

Subsequently, you also need to create the DeliverStoreItems MDB and test client
DeliverMDBTestClient (refer to 13.3).

13.2.1. Creating a Message-Driven Bean Structure

To create a message-driven bean (MDB) structure named RequestStoreItems

1. In the Java EE perspective Project Explorer, right-click the
OfficeSupplyStoreEJB project, point to New, and click Other.

The New dialog box for selecting a wizard appears.

2. Expand EJB, and click Message-Drive Bean (EJB 3.x), and then click Next.

The Create EJB 3.x Message Driven Bean window appears.

3. Type us.com.unisys.mdb in the Java package box (do not try to browse for
this because it is not defined yet).

4. Type RequestStoreItemsBean in the Class name box.

 Creating Message-Driven Beans

3839 3831–002 13–3

5. Be sure the following values are in the boxes and click Next:

• Project name is OfficeSupplyStoreEJB.

• Folder is \OfficeSupplyStoreEJB\ejbModule.

• Superclass is java.lang.Object.

6. Note that RequestStoreItems appears in the Destination JNDI Name box.
(This name is used later.)

7. Click Finish.

Contents of MDB

The EJB creation wizard generates certain methods and tags but fewer classes for an
MDB (refer to Figure 13–2).

Figure 13–2. MDB Contents

Message-driven beans listen for messages from a JMS listener, which gets
information from a producer (perhaps another bean) and transfers it to the relevant
consumer bean. Because an MDB is responsible only for processing messages, it
does not need helper classes, such as Remote and RemoteHome interfaces, Util
classes, or a DAO class, as other types of beans do. The only helper classes needed
are immutable value objects, which are responsible for holding the information that is
extracted from messages and transferred to the beans.

Creating Message-Driven Beans

13–4 3839 3831–002

@ejb.bean Tag

The EJB creation wizard creates one @ejb.bean tag that assigns the name, transaction
type, destination type, and other properties, as follows:

/*
 * Created on Jun 22, 2004
 *
 * TODO To change the template for this generated file go to
 * Window - Preferences - Java - Code Generation - Code and Comments
 */
 package us.com.unisys.mdb;
 import javax.ejb.MessageDrivenBean;
 import javax.jms.MessageListener;

The MDB has a method named onMessage for writing all business logic, as follows:

/**
 * This method implements the business logic for the EJB.
 *
 * <p>Make sure that the business logic accounts for asynchronous message
 * processing. For example, it cannot be assumed that the EJB receives
 * messages in the order they were sent by the client. Instance pooling
 * within the container means that messages are not received or processed in
 * a sequential order, although individual onMessage() calls to a given
 * message-driven bean instance are serialized.
 *
 * <p>The <code>onMessage()</code> method is required, and must take a
 * single parameter of type javax.jms.Message. The throws clause (if used)
 * must not include an application exception. Must not be declared as final
 * or static.
 * <!-- begin-user-doc -->
 * <!-- end-user-doc -->
 */
 public void onMessage(javax.jms.Message message) {
 // begin-user-code
 System.out.println("Message-Driven Bean got message " + message);
 // TODO: do business logic here
 // end-user-code
 }

mailto:@ejb.bean
mailto:@ejb.bean

 Creating Message-Driven Beans

3839 3831–002 13–5

13.2.2. Creating Immutable Value Objects

A message is received from a JMS producer as a message object. Data from the
message is extracted, written to an immutable value object, and transferred to the
relevant bean.

To create a class or immutable value object named RequestStoreItem for extracting
information from the received message

1. Right-click the us.com.unisys.mdb package name, point to New, and click
Class.

The New Java Class dialog box opens with the following values in the boxes:

• Source folder is \OfficeSupplyStoreEJB\ejbModule.

• Package is us.com.unisys.mdb (do not try to browse for this because it is not
defined yet).

• Name is RequestStoreItem.

• Superclass is java.lang.Object.

2. Click Add and type Serializable (not the fully qualified name).

3. Select the Inherited abstract methods check box.

4. Click Finish.

RequestStoreItem Class

To complete the RequestStoreItem class, copy a completed version from the
following folder to a similarly named location in your workspace:

...\examples\13\OfficeSupplyStoreEJB\ejbModule\us\com\unisys\mdb\
RequestStoreItem.java

Attributes

Add the following attributes to the RequestStoreItem class:

public class RequestStoreItem implements Serializable {
private String username;
private String password;
private String itemNumRequested;
private int quantityRequested;
}

Getter, Setter Methods

Use a wizard to generate getter and setter methods for the attributes. From the Java
perspective, right-click the RequestStoreItem file, point to Source and then
Generate Getters and Setters, and click Generate Getters and Setters for all
attributes.

Creating Message-Driven Beans

13–6 3839 3831–002

Constructor

Use a wizard to add a constructor for the class. From the Java perspective, right-click
the RequestStoreItem file, point to Source and then Generate Constructor using
Fields, and click Generate Constructor for all attributes.

The constructor has four parameters with the same type as the attributes defined
previously. The wizard generates code in the constructor to assign the parameter
values to the attributes.

Complete the RequestStoreItem constructor, as follows:

public RequestStoreItem(String username, String password,
 String itemNumRequested, int quantityRequested) {
 super();
 this.username = username;
 this.password = password;
 this.itemNumRequested = itemNumRequested;
 this.quantityRequested = quantityRequested;
}

13.2.3. Implementing onMessage Method

Complete the RequestStoreItems bean as identified in the following paragraphs. You
can copy a completed version of this class from the following file in the examples
folder to a similarly named location in your workspace.

...\examples\13\OfficeSupplyStoreEJB\ejbModule\us\com\unisys\mdb\
RequestStoreItemsBean.java

Implement the onMessage method in the RequestStoreItemsBean class in the file
RequestStoreItemsBean.java. This method extracts the information from the message
and transfers it to the relevant bean. The Office Supply Store test program generates
a request to a supplier by specifying an item (itemNumRequested) and a quantity
(quantityRequested) required. This request arrives at the onMessage method.

 Creating Message-Driven Beans

3839 3831–002 13–7

The following imports are needed:

import java.io.Serializable;
import java.util.Collection;
import java.util.Iterator;
import java.util.Properties;
import javax.ejb.ActivationConfigProperty;
import javax.ejb.EJB;
import javax.ejb.MessageDriven;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.ObjectMessage;
import javax.naming.InitialContext;
import us.com.unisys.cmp.StoreInventory2;
import us.com.unisys.cmp.StoreInventoryRemote;
import com.unisys.RequestStoreItem;

onMessage Method

The complete code of the onMessage method follows. In the method, data is
extracted from the message and placed in the RequestStoreItem object. Individual
fields from the immutable value object can be accessed and data passed to the
appropriate beans to validate the user and get the inventory.

@EJB
private MyBeanRemote accessBean;
@EJB
private StoreInventoryRemote accessBean2 = null;
InitialContext ctx = null;
ObjectMessage msg = null;
Collection<StoreInventory2> list;
static StoreInventory2 element;
public void onMessage(Message message) {
 System.out.println("Entering RequestStoreItemsBean.onMessage()");
 Properties props = new Properties();
 props.setProperty("java.naming.factory.initial",
 "org.jnp.interfaces.NamingContextFactory");
 props.setProperty("java.naming.factory.url.pkgs", "org.jboss.naming");
 props.setProperty("java.naming.provider.url", "127.0.0.1:1099");
 try {
 if (message instanceof ObjectMessage) {
 // msg = (ObjectMessage) message;
 Serializable seObj = ((ObjectMessage) message).getObject();
 RequestStoreItem person = (RequestStoreItem) seObj;
 // RequestStoreItem e = (RequestStoreItem) msg.getObject();
 System.out.println("Got message in MyMDB :\n"+ person.getUsername());
 System.out.println("Got message in MyMDB :\n"+ person.getPassword());
 ctx = new InitialContext(props);
 accessBean = (MyBeanRemote) ctx.lookup("OfficeStoreMDB/MyBean/remote");
 System.out.println(accessBean);

Creating Message-Driven Beans

13–8 3839 3831–002

 String id = accessBean.verifyThisUser(person.getUsername(),
 person.getPassword());
 System.out.println("elan is here" + id);
 accessBean2 = (StoreInventoryRemote) ctx.lookup("OfficeStoreMDB/StoreInve
ntoryBean/remote");
 if (id != null) {
 String inventoryID = person.getItemNumRequested();
 System.out.println("inventoryID is " + inventoryID);
 accessBean2.addInventory("ITEM1", "SUPL1", "her", "23",(float) 12.9);
 list = accessBean2.getStoreInventoryData(inventoryID);
 for (Iterator iter = list.iterator(); iter.hasNext();) {
 element = (StoreInventory2) iter.next();
 }
System.out.println("supplier id is : "+ element.getSupplierid());
 }
 }
 } catch (Exception e) {
System.out.println("Error in RequestStoreItems.onMessage() "+ e.getMessage()
);
e.printStackTrace();
}
System.out.println("Leaving RequestStoreItemsBean.onMessage()");
}

13.2.4. Creating a Test Client

Use the procedure in 8.3.5 to create a test client with a new class called
RequestMDBTestClient in the project OfficeSupplyStoreClient with a package
name,us.com.unisys.client.

To save time, copy a completed version of the test client from the following location
to a similarly named location in your workspace:

...\examples\13\OfficeSupplyStoreClient\appClientModule\us\com\unisys\client\Re
questMDBTestClient.java

The following imports are needed:

import java.io.IOException;
import java.util.Date;
import java.util.Properties;
import javax.jms.ObjectMessage;
import javax.jms.Queue;
import javax.jms.QueueConnection;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueSender;
import javax.jms.QueueSession;
import javax.jms.Session;
import javax.naming.InitialContext;
import javax.naming.NamingException;

 Creating Message-Driven Beans

3839 3831–002 13–9

import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.unisys.RequestStoreItem;

getContext Method

Insert the following method to get the instance, as follows:

private InitialContext getContext() throws NamingException {
 Hashtable icProperties = new Hashtable();
 icProperties.put(InitialContext.INITIAL_CONTEXT_FACTORY,
 "org.jnp.interfaces.NamingContextFactory");
 icProperties.put(InitialContext.PROVIDER_URL,
 "jnp://127.00.0.1:1099");
 InitialContext initialContext = new InitialContext(icProperties);
 return initialContext ;
 }

testRequestMDB Method

Add the testRequestMDB method to test the MDB. The method performs the
following steps:

1. Add a data object that is to be sent as the message.

2. Create the initial context reference.

3. Create the connection factory reference.

4. Use this context to perform the lookup, where the lookup string is
queue/RequestStoreItemsMessageQueue.

5. Create the queue connection.

6. Create the queue sender.

7. Create the queue session for the bean.

8. Create the object message and pass the data object in the message.

9. Send the message.

10. Commit the session and close both the session and the connection.

jnp://127.00.0.1:1099

Creating Message-Driven Beans

13–10 3839 3831–002

The testRequestMDB method has the following code:

public void testRequestMDB() {
 QueueConnectionFactory factory = (QueueConnectionFactory) getContext()
.lookup("ConnectionFactory");
 QueueConnection connection = factory.createQueueConnection();
 //QueueSession session = connection.createQueueSession(true, 1);
 QueueSession session = connection.createQueueSession(true, Session.AUTO_A
CKNOWLEDGE);
 Queue queue = (Queue) getContext().lookup("queue/testQueue");
 // System.out.println("Creating the sender now...");
 QueueSender sender = session.createSender(queue);
 RequestStoreItem content = new RequestStoreItem(new Date());
 content.setUsername(username);
 content.setPassword(password);
 content.setString("This is new title.");
 ObjectMessage message = session.createObjectMessage();
 //message.setIntProperty("sessionId", 501);
 message.setObject(content);
 System.out.println("Setting the object in message now...");
 //message.setObject(ri);
 //message.setObject(username);
 System.out.println("Reading ObjectMessage:");
 System.out.println(" " + message.getObject());
 System.out.println("Sending the message.");
 sender.send(message);
 // System.out.println("Shutting down.");
 session.commit();
 connection.close();
 session.close();
 // System.out.println("Done...");
 } catch (Exception e) {
 e.printStackTrace();
 }

main Method

Add a main method that enables running this class as an application, as follows:

public static void main(String[] args) {
 RequestMDBTestClient test = new RequestMDBTestClient();
 test.testRequestMDB();
}

 Creating Message-Driven Beans

3839 3831–002 13–11

13.2.5. Testing the Bean

To run the client and test the bean

1. Start JBoss AS.

2. Right-click the RequestMDBTestClient node, point to Run As, and click Java
Application.

The output window should have content like Figure 13–3.

11:43:19,837 INFO [EJB3Deployer] Deployed: file:/D:/ela/jboss-4.2.3.GA/server/de
fault/tmp/deploy/tmp6957356689939900174OfficeStoreMDB.ear-contents/OfficeSupplySt
oreMDBEJB.jar
11:43:19,837 INFO [TomcatDeployer] deploy, ctxPath=/OfficeSupplyStoreMDBEJBWeb, w
arUrl=.../tmp/deploy/tmp6957356689939900174OfficeStoreMDB.ear-contents/OfficeSupp
lyStoreMDBEJBWeb-exp.war/
11:43:19,899 INFO [EARDeployer] Started J2EE application: file:/D:/ela/jboss-4.2.
3.GA/server/default/deploy/OfficeStoreMDB.ear
11:43:19,946 INFO [Http11Protocol] Starting Coyote HTTP/1.1 on http-127.0.0.1-808
0
11:43:19,946 INFO [AjpProtocol] Starting Coyote AJP/1.3 on ajp-127.0.0.1-8009
11:43:19,962 INFO [Server] JBoss (MX MicroKernel) [4.2.3.GA (build: SVNTag=JBoss_
4_2_3_GA date=200807181439)] Started in 11s:334ms
11:43:30,109 INFO [STDOUT] username is : sa
11:43:30,109 INFO [STDOUT] password is : sa
11:43:30,187 INFO [STDOUT] Timezone := -330
11:43:30,203 INFO [STDOUT] Setting the object in message now...
11:43:30,203 INFO [STDOUT] Reading ObjectMessage:
11:43:30,203 INFO [STDOUT] com.unisys.RequestStoreItem@ad00b2
11:43:30,203 INFO [STDOUT] Sending the message.
11:43:30,250 INFO [STDOUT] Entering RequestStoreItemsBean.onMessage()
11:43:30,250 INFO [STDOUT] Got message in MyMDB :
sa
11:43:30,250 INFO [STDOUT] Got message in MyMDB :
sa
11:43:30,250 INFO [STDOUT] jboss.j2ee:ear=OfficeStoreMDB.ear,jar=OfficeSupplyStor
eMDBEJB.jar,name=MyBean,service=EJB3
11:43:30,296 INFO [STDOUT] Entering UserAccessDAOImpl.init()
11:43:30,296 INFO [STDOUT] i am here in Bean class using Resource annotation
11:43:30,296 INFO [STDOUT] StoreAccessID is 100
11:43:30,296 INFO [STDOUT] Leaving UserAccessDAOImpl.verifyThisUser()
11:43:30,312 INFO [STDOUT] inventoryID is ITEM1
11:43:30,312 INFO [STDOUT] before begin inside addBook
11:43:30,374 INFO [STDOUT] invId is *******ITEM1
11:43:30,499 INFO [STDOUT] supplier id is : SUPL1
11:43:30,499 INFO [STDOUT] Leaving RequestStoreItemsBean.onMessage()

Figure 13–3. Client Output from the MDB

Creating Message-Driven Beans

13–12 3839 3831–002

3839 3831–002 A–1

Appendix A
Best Practices

This appendix contains recommended best practices for working with Eclipse IDE,
JavaDoc and XDoclet, and jar files.

A.1. Importing Eclipse IDE Projects
The following procedure is recommended for importing projects:

1. Copy the related projects to a new folder that becomes the new workspace.

2. Remove the metadata folder from the root, if it was not created on your PC.

3. Start Eclipse IDE.

4. When asked for the workspace, point to the folder created in step 1.

Alternatively, switch the workspace to point to a new workspace (on the File
menu, click Switch Workspace).

5. Import previously exported preferences (refer to A.2.2), or set them manually.

6. Import the projects.

a. On the File menu, point to Import, and click Existing Projects into
Workspace.

b. Click Browse, use the default location (the workspace), and click OK.

c. Select the desired projects.

d. Click Finish.

A.2. Using Eclipse IDE

A.2.1. Workspace Preferences

A new workspace has new preferences; for example, JBoss AS and XDoclet
definitions are not set. To avoid resetting all the preferences each time you create a
new workspace, export your preferences once they are set up correctly, and then
import the preset preferences to the new workspace.

Best Practices

A–2 3839 3831–002

To export or import preferences

• For exporting, on the File menu, point to Export, and click Preferences.

• For importing, on the File menu, point to Import, and click Preferences.

A.2.2. Sharing Projects or Workspaces

You can share projects with other PCs, but do not share workspaces. Workspaces
have unique PC installation information, which can be different on different PCs. Set up
your own workspace and import projects (refer to A.1).

A.2.3. Unrelated Projects

To avoid confusion, keep unrelated projects in separate workspaces.

Alternatively, disable an unrelated project by closing it (on the Project menu, click
Close Project).

A.2.4. Removing Workspaces

To safely remove workspace-unique information, delete the entire metadata folder.

A.3. Using JavaDoc and XDoclet
JavaDoc is a method of generating documentation from comments in the source
code. JavaDoc comment blocks have a specific format and grammar.

Attribute-oriented programming (XDoclet) extends JavaDoc to generate code. The
process of creating Java bean code uses XDoclet tags extensively. Some XDoclet tags
are generated automatically by Web Tools wizards. Other XDoclet tags are added
manually as bean code is developed. At compile time, XDoclet tags are expanded to
generate numerous supporting classes in beans.

A.3.1. Coding JavaDoc and XDoclet

JavaDoc comment blocks start with /** to distinguish them from regular Java
comments, which start with /*. Declarations begin with “@keyword” tags. Be sure to
code XDoclet tags in JavaDoc comment blocks correctly by adhering to the following
rules:

• XDoclet tags must occur in JavaDoc comment blocks.

• Nothing other than white space can occur between a JavaDoc comment block and
the interface or business method it describes.

 Best Practices

3839 3831–002 A–3

Caution

If any code, even a Java comment block, occurs between a JavaDoc
comment block and the business method it describes, the association
between the XDoclet tags and the business method is lost.

A.3.2. XDoclet Grammar Documentation

XDoclet grammar is documented at the following location:

http://xdoclet.sourceforge.net/xdoclet.

A.4. Deploying Jar Files with JBoss Application
Server
The example in this guide uses JBoss Application Server (JBoss AS) to deploy the
application. Although you can start JBoss AS from a command line prompt or from
Eclipse IDE (refer to Section 2), deploying and debugging the application is easiest
from Eclipse IDE.

http://xdoclet.sourceforge.net/xdoclet

Best Practices

A–4 3839 3831–002

3839 3831–002 B–1

Appendix B
Troubleshooting

These troublehooting tips are summarized from other subsections in this document.

B.1. Compilation Errors
If you get unexplained compilation errors, try cleaning the project (on the Project
menu, click Clean).

Some errors require several cleaning operations.

B.2. JBoss AS Startup Errors
The following errors can occur when JBoss AS starts.

B.2.1. Port Number Conflicts

If you get port number conflicts when starting JBoss AS, try rebooting the PC because
Windows sometimes uses the JBoss AS port number.

B.2.2. Deployment Errors

If you get JBoss AS deployment errors on startup, stop JBoss AS and clean the
project deployments by doing the following:

1. Remove all project-related items in the following folder:

C:\jboss420GAu\server\default\deploy

For example, delete the following items, as shown in Figure B–1:

• MyEJBProjEAR.ear

• OfficeSupplyStore.ear

• OfficeSupplyStoreWebEAR.ear

2. Completely delete the following folders:

C:\jboss420GAu\server\default\tmp

C:\jboss420GAu\server\default\work

Troubleshooting

B–2 3839 3831–002

Figure B–1. Items to Delete in the Deployment Folder

3839 3831–002 C–1

Appendix C
Web Services Standards

Web services technology enables integration among enterprise applications, including
those from different vendors and different platforms, using XML to exchange data.

C.1. Web Services Standards
Some of the evolving standards for Web services are

• Simple Object Access Protocol (SOAP). A lightweight XML-based Remote
Procedure Call (RPC) over HTTP. The SOAP protocol has the following parts:

− A SOAP envelope that defines a framework for describing what is in a
message and how to process it.

− A set of encoding rules for expressing instances of application-defined data
types.

− A set of rules for representing remote procedure calls and responses.

• Web Services Description Language (WSDL), developed by Microsoft and IBM. An
XML-based language for defining Web services that describes the protocols and
formats used by the service. Can be used with UDDI.

• Universal Description Discovery and Integration (UDDI). An industry initiative for a
universal business registry (catalog of the network of Internet servers that is
similar to the Domain Name System) of Web services. UDDI enables software to
discover and integrate with services on the Web automatically.

• Electronic Business using XML (ebXML), promoted by the Organization for the
Advancement of Structured Information Standards (OASIS) and the United Nations
Center for Trade Facilitation and Electronic Business (UN/CEFACT). A framework
for developing an XML-based business transaction vocabulary. Designed for global
interoperability, ebXML provides descriptors for modeling business processes that
include the definition of software components.

These standards are evolving under the direction of the World Wide Web Consortium
(W3C) and are regarded as the building blocks of the next generation of distributed
computing and the information technology (IT) industry in general.

Web Services Standards

C–2 3839 3831–002

C.2. Using SOAP and WSDL
Web Services Description Language (WSDL) describes the interface of a network
service. WSDL is similar to Interface Definition Language (IDL) in Common Object
Request Broker Architecture (CORBA). WSDL specifies which messages an endpoint
receives and sends, where

• In the terms of similar mechanisms like Remote Method Invocation (RMI) or
CORBA, a service is the interface or set of methods that a client invokes across
the network.

• An endpoint is a service instance that processes client requests and returns
responses.

WSDL is expressed in XML metadata format.

Simple Object Access Protocol (SOAP) describes the format of the data that is
transmitted over the network. Even though SOAP messages are complex, this
complexity is transparent to developers because SOAP messages are generated by
the JAX-RPC API calls (refer to 12.4). Developers do not generate SOAP messages for
client and server-side implementations.

C.3. Web Services in the Java EE Environment
Web services are fully supported in the Java EE 1.4 release from Sun Microsystems.

In the Java EE environment, Web services are built on the Java API for XML-based
RPC (JAX-RPC). This API enables building Web services and clients that use remote
procedure calls (RPC) and XML. In the JAX-RPC API

• An RPC is represented by an XML-based protocol, such as SOAP.

• The SOAP specification defines the envelope structure, encoding rules, and
conventions for representing RPCs and responses.

• Calls and responses are transmitted as SOAP messages (XML streams) over
HTTP.

• On the server side, developers specify the remote procedures by defining
methods in an interface written in the Java programming language.

• Developers also code one or more classes that implement those methods.

• Client programs are also easy to code. A client creates a proxy, a local object
representing the service, and then invokes methods on the proxy.

Using the JAX-RPC API, the developer does not generate or parse SOAP messages.
The JAX-RPC run-time system converts the API calls and responses to and from SOAP
messages.

3839 3831–002 Glossary–1

Glossary

A

applet
A small client application that is written in the Java programming language and
executes in the Java Virtual Machine (JVM) that is installed in the Web browser.

application client
A program module that runs on a client machine and provides a way to handle tasks
that require a richer user interface than a markup language can provide. See also Web
client.

application tiers
The layers of an application that work together to provide services and process data
for a business solution. See also business tier, client tier, enterprise information
system tier, Web tier.

attribute-oriented programming (XDoclet)
An extension to JavaDoc for generating code.

B

bean
See enterprise bean, Enterprise JavaBeans (EJB), entity bean, JavaBeans,
message-driven bean, session bean.

bean-managed persistence (BMP) entity bean
An EJB component in which database access is controlled manually. The developer
explicitly codes database calls in the bean itself, resulting in greater flexibility in how
data is read and written. See also container-managed persistence (CMP) bean.

BMP
See bean-managed persistence entity bean.

business tier
The layer of an application that contains components for the business logic to process
data in response to calls from clients. Enterprise beans run in the business tier.

Glossary

Glossary–2 3839 3831–002

C

client tier
The layer of an application that contains components for interacting with the end user
and making requests to the business tier for processing data. Web clients and
application clients run in the client tier.

CMP
See container-managed persistence entity bean.

container-managed persistence (CMP) entity bean
An EJB component in which the container handles all details of data access. The
developer is limited to the data management facilities provided by the Enterprise
JavaBeans vendor. See also bean-managed persistence (BMP) bean.

Connector Module
A module containing interfaces and Application Programming Interface (API) for
creating and accessing elements, such as vendor-name, spec-version, eis-type,
version, license, resource adapter, and activation-spec. This module is part of the
org.eclipse.jst.j2ee.jca java package. The connector interface contains the APIs for
accessing the elements of a connector module. The ResourceAdapter interface
contains the APIs for accessing the elements of the internals of a connector module.

D

DAO
See data access object.

data access object (DAO)
A wrapper for code that provides an abstraction layer for data access so that changing
the actual storage does not affect the rest of the code logic.

DNS
Also known as Domain Name System (DNS). DNS is a standard technology for
managing the names of Web sites and other Internet domains. DNS is a worldwide
collection of DNS servers and it enables you to find Web addresses on the Internet.

E

ear file
See enterprise archive file.

EJB
See Enterprise JavaBeans.

EJB component
A component in an Enterprise JavaBeans implementation (enterprise bean).

 Glossary

3839 3831–002 Glossary–3

EJB container
A wrapper for Enterprise JavaBeans for Java EE applications that provides distributed
application functionality, such as transaction support, persistence, and lifecycle
management. See also Java EE container, Web container.

Electronic Business using XML (ebXML)
A framework for developing an XML-based business transaction vocabulary that is
designed for global interoperability.

enterprise archive (ear) file
A file for a Java EE application that contains all the components to be deployed on the
server. The ear file also contains a deployment descriptor that provides information
about the application and its assembled components.

enterprise bean
An instance, type, or implementation of EJB components that are deployed on the
server.

enterprise information system (EIS) tier
The layer of an application that contains all enterprise information system software
and enterprise infrastructure systems, such as enterprise resource planning (ERP),
mainframe transaction processing, database systems, and legacy information
systems.

Enterprise JavaBeans (EJB)
A component architecture for developing and deploying component-based
applications for a particular business domain, such as banking or finance. A server-side
model, Enterprise JavaBeans simplifies the development of middleware applications
by providing automatic support for services such as transactions, security, and
database connectivity. See also enterprise bean.

entity bean
An EJB component that is persistent data stored in one row of a database relation or
table. If the client terminates or the server shuts down, the underlying services ensure
that the entity bean data is saved.

Extensible Markup Language (XML)
An open standard from the W3C for defining data elements on Web pages and
business-to-business documents. XML uses a tag structure that defines what an
element contains, as determined by the developer of the page.

I

immutable value object
A holder for information that is extracted from messages (producers) and transferred
to beans (consumers) for processing.

Integrated Development Environment (IDE)
A set of programs that can run from a single user interface. For example,
programming languages can include a text editor, compiler, and debugger, which are
activated from a common interface.

Glossary

Glossary–4 3839 3831–002

IP Address
The unique identifier of a computer that is used to send data to other computers on a
network through different protocols, such as TCP/IP. The 127.0.0.1 IP address is the
loopback Internet protocol (IP), also referred to as the “localhost.” This address is used
to establish an IP connection to the same machine or computer being used by the
end-user.

J

Java EE
A Java EE project includes Enterprise Application, Web, Application Client, Enterprise
Java Bean, and Connector projects. The Java EE project can be created for Java EE
specification levels 1.2, 1.3, and 1.4. A Java EE run-time target (target server) should be
predefined for project creation. The run-time target is a mechanism to set the JRE and
server classpath on a Java EE project for compile time. The Java EE module projects,
such as Web, Application Client, Enterprise JavaBean, and Connector can be created
as standalone or nested under a new or an existing enterprise application project.

Java EE container
The interface between a component and the low-level platform-specific services that
support the component, such as transaction processing, state management,
multithreading, and resource pooling. See also EJB container, Web container.

Java EE perspective
A presentation of an Eclipse workspace that displays the user interface for developing
Java EE projects. At any time, you can switch the perspective to view the workspace
in a different manner, such as viewing a Java EE project from the Java perspective.

jar file
See Java archive file.

Java API for XML-based RPC (JAX-RPC)
An API that enables building Web services and clients that use remote procedure calls
(RPC) and XML in the Java EE environment.

Java archive (jar) file
A file that contains any number of related files, which can include class files, resource
files, XML, other jar files, and any related file.

JavaBeans
A specification for independent Java program modules that are called by applications
in the Java environment. JavaBeans are used primarily for developing user interfaces
in the client.

Java Database Connectivity (JDBC)
A technology that provides access to relational database systems.

JavaDoc
A method of generating documentation from source code comments. JavaDoc
comment blocks start with /**.

 Glossary

3839 3831–002 Glossary–5

Java Message Service (JMS)
A message listener that allows a business component to receive JMS messages
asynchronously.

Java Naming Directory Interface (JNDI)
An API that generically accesses naming and directory services using Java technology.

Java perspective
A presentation of an Eclipse workspace that displays the user interface for developing
Java projects. See also Java EE perspective.

Java project
A collection of Java components that make up a single application tier or a portion of
an application tier. See also Java EE project.

JavaServer Pages (JSP)
A text-based document that executes like a servlet but allows a natural language
approach to creating static content. JSPs are Java EE Web components. See also
servlet.

Java Transaction API (JTA)
A technology that provides transaction support for Java EE components.

Java Transaction Service (JTS)
A specification for implementing, at a high level, a Transaction Manager to support the
Java Transaction API and, at a low level, the Java mapping of the OMG Object
Transaction Service (OTS). A JTS Transaction Manager provides transaction services
for distributed transactions to support the application server and manage resources
and communications.

Java virtual machine (JVM)
An abstract computing technology that provides a platform-independent execution
environment to convert Java bytecode to machine language and execute it.

JAX-RPC
See Java API for XML-based RPC.

JBoss Tools
A library of plug-ins that adds JBoss management functions to Eclipse. JBoss tools is
an umbrella project for a set of Eclipse plug-ins that support JBoss and related
technologies. JBoss tools also also provide support for Hibernate, JBoss AS, Drools,
jBPM, JSF, (X)HTML, Seam, Smooks, JBoss ESB, JBoss Portal, and others.

JBoss AS Tools
A feature in JBoss AS (Application Server) that consists of a number of additional
views for managing an installed JBoss server through the JBoss AS perspective.
These additional views include the standard console and properties views and the
servers view. The servers view enables installed servers to be configured, monitored,
and managed.

Glossary

Glossary–6 3839 3831–002

JBoss General Availability (GA)

JBoss Application Server™ (JBoss AS) is a certified, full-featured, robust Java™

Platform, and the Enterprise Edition 5 (Java EE 5) open source application server

developed by the JBoss Open Source Community.

JBoss Enterprise Application Platform (EAP)

JBoss EAP is an enterprise-ready JBoss AS version from RedHat. EAP is an integrated,

tested, and certified Enterprise Platform. It includes patches, updates, SLA-based

support, multi-year maintenance policies, and Red Hat Open Source Assurance. EAP

provides long-term stability, supportability, and maintainability.

JDBC
See Java Database Connectivity.

JEM
Acronym for Java EMF Model Runtime Software Development Kit.

JMS
See Java Message Service.

JNDI
See Java Naming Directory Interface.

JSP
See JavaServer Pages.

JTA
See Java Transaction API.

JTS
See Java Transaction Service.

JVM
See Java virtual machine.

Localhost
The local computer on which a program is running. For example, if you are running a
Web browser on your computer, your computer is the "localhost."

M

message-driven bean
An EJB component that combines features of a session bean and a Java Message
Service (JMS) message listener. The EJB container asynchronously invokes an MDB
when it receives a message from the JMS queue.

 Glossary

3839 3831–002 Glossary–7

O

Object Transaction Service (OTS)
A specification from Object Management Group that expands the traditional
transaction processing monitor model to object-oriented systems.

OMG
Acronym for Object Management Group.

OTS
See Object Transaction Service.

P

presentation tier
See Web tier.

R

Remote Method Invocation (RMI)
Java middleware technology for making requests between the client tier and business
tier.

RMI
See Remote Method Invocation.

S

servlet
A Java programming language class that dynamically processes requests and
constructs responses. Servlets are Java EE Web components. See also JavaServer
Pages.

session bean
An EJB component that is a transient conversation with a client. When the client
finishes executing, the session bean and its data are gone. Transactions that use
stateless beans must contain all the parameters required to carry out a transaction in a
single call. Transactions can use stateful session beans when executing a series of
calls to perform one transaction. Stateless session beans do not retain state
information once they finish, while stateful session beans retain state information
between calls.

session facade
A business tier pattern that provides a uniform business service abstraction to
presentation tier clients and hides the business object implementation in the lower-
level beans.

Glossary

Glossary–8 3839 3831–002

Simple Object Access Protocol (SOAP)
A lightweight XML-based Remote Procedure Call (RPC) over HTTP that includes rules
for describing message contents and processing, application-defined data types, and
remote procedure calls and responses.

SOAP
See Simple Object Access Protocol.

U

UDDI
See Universal Description Discovery and Integration.

Universal Description Discovery and Integration (UDDI)
A universal business registry of Web services that enables software automatically to
discover and integrate with services on the Web.

Unisys JBoss
The Unisys implementation of JBoss AS enables you to install and deploy
JBoss EAP 5.1 on a ClearPath OS 2200 IDE for Eclipse system that includes at least one
ClearPath OS 2200 JProcessor Specialty Engine (JProcessor). JBoss EAP includes
JBoss 5.1A and JBoss 4.3A which runs on JProcessor.

W

war file
See Web archive file.

Web archive (.war) file
A file for Web components (servlets, JSPs, and static components, such as HTML and
image files), which contains classes and files that are used in the Web tier, along with
a Web component deployment descriptor.

Web client
A Java EE client that consists of dynamic Web pages, which use various markup
languages, and a Web browser, which renders the pages received from the server.
See also application client.

Web container
A wrapper that manages the execution of JSP and servlet components for Java EE
applications. See also EJB container, Java EE container, Web tier.

 Glossary

3839 3831–002 Glossary–9

Web Modules
The smallest deployable and usable unit of Web resources. A Java EE Web module
corresponds to a Web application as defined in the Java Servlet specification. In
addition to Web components and Web resources, a Web module can contain server-
side utility classes (database beans, shopping carts, and so on) and client-side classes
(applets and utility classes).

Web services
Technology that enables integration among enterprise applications, including those
from different vendors and different platforms, using XML to exchange data.

Web Services Description Language (WSDL)
An XML-based language for defining Web services that describes the protocols and
formats used by the service.

Web tier
The layer of an application that contains components (servlets and JSPs) for creating
the interface for the client to interact with the end user. See also Web container.

WSDL
See Web Services Description Language.

X

XDoclet
See attribute-oriented programming.

XML
See Extensible Markup Language.

XML deployment descriptor
Information specific to a bundled component that provides a mechanism for
configuring application behavior at assembly or deployment time.

Glossary

Glossary–10 3839 3831–002

3839 3831–002 Index–1

Index

A

Abstract Window Toolkit (AWT) for
GUIs, 6-8

add streams for OS 2200 database, 4-1
applets
containers, 6-12
embedded, 6-7
J2EE component, 6-2

application assembler role, 6-14
application class files, 5-6
application clients
containers, 6-12
description, 6-8
J2EE component, 6-2

application component provider role, 6-14
attribute-oriented programming (See

XDoclet)
AWT (See Abstract Window Toolkit)

B

bean-managed persistence (See BMP entity
beans)

beans (See also enterprise beans; entity
beans; JavaBeans; message-driven
beans; session beans)

access types, 7-2
business methods, 7-2
Data Access Objects, 7-2
definition, 1-6
implementation classes, 7-2
naming conventions, 2-7
types of, 1-6

BMP entity beans (See also entity beans;
CMP entity beans)

creating, 8-2, 8-15
definition, 6-10, 8-1
in Office Supply Store, 1-5, 8-1
in session, 8-2
local access, 8-2

business tier, 6-10, 7-2, 10-1, 11-1

C

class file
creating, 5-6

cleaning the project, 2-10
client tier, 6-7, 10-1, 11-1
CMP entity beans (See also entity beans;

BMP entity beans)
creating, 9-2
definition, 6-10
identifiers, 9-1
in Office Supply Store, 1-5, 9-1

Common Object Request Broker
Architecture (CORBA), 6-4, C-2

compilation errors, B-1
compilation errors, resolving, 2-12
console (See HSQL Database Manager

window)
constructors, 13-6
consumers, 13-3
container-managed persistence (See CMP

entity beans)
containers
definition, 6-11
services provided, 6-11
types, 6-12

CORBA (See Common Object Request
Broker Architecture)

D

DAO (See Data Access Objects)
Data Access Objects (DAO), 1-5, 7-2
Data Source Explorer, 4-5
DDL scripts, 3-8
DeliverStoreItems
bean, 1-6
in Office Supply Store, 13-1

deploying the project, 2-14, 7-9, 11-9, B-1
deployment descriptors, 6-12, 7-4
deployment errors, B-1
distributed architecture

Index

Index–2 3839 3831–002

definition, 6-3
naming services, 6-4
process flow, 6-3

DNS (See Domain Name System)
Domain Name System (DNS), 6-4, C-1

E

ear (See enterprise archive files)
ebXML (See Electronic Business using XML)
Eclipse platform description, 1-1
EIS (See enterprise information system)
EJB (See Enterprise JavaBeans)
Annotation, 7-4

EJB interface (local, remote), 7-2, 8-2
Electronic Business using XML (ebXML), C-1
enterprise archive (ear) files, 6-13
enterprise beans
authenticating users, 7-2
containers, 6-12
deploying, 2-14, 7-9
in business tier, 6-10
J2EE component, 6-2
operations, 6-7
session facade pattern, 7-2
types, 6-10

enterprise information system (EIS)
tier, 6-10, 6-11

Enterprise JavaBeans (EJB) (See also
enterprise beans)

J2EE component, 6-2
types, 1-5, 6-10

Enterprise JavaBeans Technology, 6-6
enterprise resource planning (ERP), 6-11
entity beans (See also BMP entity beans;

CMP entity beans)
definition, 1-6, 6-10
EJB components, 1-5
in session, 7-2

ERP (See enterprise resource planning)
eXtensible Markup Language (See XML)

G

getter and setter methods, 13-5
graphical user interface (GUI) tools, 6-8
GUI (See graphical user interface)

H

HSQL Database Manager window, 3-3
HTML markup language, 6-7
HTTP (See Hypertext Transfer Protocol)
Hypersonic database
console, 3-3
loading, 3-1, 3-4
purging, 3-3
verifying, 3-5
viewing, 3-6

Hypertext Transfer Protocol (HTTP), 12-1

I

IDL (See Interface Definition Language)
immutable value objects, 13-3, 13-5
implementation classes, 7-2
Interface Definition Language (IDL), C-2

J

J2EE
components, 6-1
distributed architecture, 6-3
supporting technologies, 6-2

Java
archive (jar) files, 6-13
beans (See JavaBeans)
client requests in Office Supply Store, 1-5
middleware technology, 1-5
plug-in, 6-7
projects, creating, 5-5
server pages (See JavaServer Pages)
servlets (See servlets)
virtual machine (JVM), 5-13, 6-7

Java API for XML Processing, 6-6
Java API for XML Registries, 6-6
Java API for XML Web Services, 6-6
Java API for XML-based RPC (JAX-RPC), C-2
Java Architecture for XML Binding, 6-6
Java Authentication and Authorization

Service, 6-6
Java Database Connectivity, 6-6
Java Database Connectivity (JDBC), 1-5, 6-2
Java EE
APIs, 6-6
application, 6-11
application server, 6-12
architecture, 6-1

 Index

3839 3831–002 Index–3

best practices, A-1
communication technologies, 6-7
components, 6-4
containers, 6-11
deployment, 6-11
development model, 6-1
modules, 6-5
perspective, 2-1, 2-5
platform roles, 6-14
project, 2-4, 2-10, 10-2
remote connectivity, 6-11
security model, 6-11
transaction model, 6-11
troubleshooting the project, 2-13
Web project, 10-2
Web services, 12-1, C-1, C-2

Java Message Service (JMS), 1-5, 6-2, 6-10,
13-3, 13-5

Java Message Service API, 6-6
Java Naming and Directory Interface, 6-6
Java Naming and Directory Interface

(JNDI), 6-2, 6-4, 6-11
Java Persistence API, 6-6
Java Runtime Environment (JRE), 6-12
Java Servelet, 6-6
Java Transaction API, 6-6
Java Transaction API (JTA), 6-2
Java Transaction Service (JTS), 6-2
JavaBeans
definition, 1-6, 6-10
not Java EE components, 6-10

JavaBeans Activation Framework, 6-6
JavaDoc documentation generator, A-2
JavaMail API, 6-6
JavaServer Faces, 6-6
JavaServer Pages (JSP)
containers for, 6-12
creating, 11-2
definition, 6-8, 10-2
EJB components, 1-5
in Office Supply Store, 11-1
J2EE component, 6-2
modifying servlet, 11-3
Web components, 6-8

JAX-RPC (See Java API for XML-based RPC)
JBoss Application Server, A-3
configuring, 2-9
errors on startup, B-1
starting, 2-9, B-1
stopping, 2-10

JBoss AS (See JBoss Application Server)
JDBC (See Java Database Connectivity)
JMS (See Java Message Service)

JNDI (See Java Naming and Directory
Interface)

JRE (See Java Runtime Environment)
JSP (See JavaServer Pages)
JSP Standard Tag Library, 6-6
JSP Technology, 6-6
JTA (See Java Transaction API)
JTS (See Java Transaction Service)
JVM (See Java virtual machine)

L

LDAP (See Lightweight Directory Access
Protocol)

left-handed mouse, 1-3
legacy information systems, 6-11
Lightweight Directory Access Protocol

(LDAP), 6-4
listener (See Java Message Service)
local access, 7-2, 8-2, 13-2

M

markup languages, 6-7
MDB (See message-driven beans)
message-driven beans (MDB)
creating, 13-2
definition, 1-6, 6-10, 13-1
EJB components, 1-5
in Office Supply Store, 13-1
in session, 7-2
listening for messages, 13-3

methods
business, 7-4, 10-3
finder, 8-7, 9-6
getters, setters, 13-5
tracing, 8-5

N

naming services in distributed systems, 6-4
Network Information Services (NIS), 6-4
NIS (See Network Information Services)
notation conventions, 1-2

Index

Index–4 3839 3831–002

O

OASIS (See Organization for the
Advancement of Structured
Information Standards)

Office Supply Store
application architecture, 1-5
database schema, 1-3
loading Hypersonic database, 3-1, 3-4
loading Relational Database Server

database, 4-1
setting up Relational Database Server

drivers, 4-5
verifying Hypersonic database, 3-5
viewing Hypersonic database, 3-6

Organization for the Advancement of
Structured Information Standards
(OASIS), C-1

OS 2200 system
add streams for database, 4-1
connections, 5-2, 5-3, 5-13
debugging remotely, 5-5
errors, 5-13
host accounts, 5-1
loading Relational Database Server

database, 4-1
log-in scripts, 5-2
Telnet session, 4-5, 5-3

P

port number conflicts, B-1
presentation tier, 6-7, 10-1, 11-1
producers, 13-3
project
best practices, A-1
class files, 5-6
cleaning, 2-10, B-1
compilation errors, 2-11, 2-12
creating, 2-4
deploying, 2-14, 7-9, B-1
importing, A-1
sharing, A-2
testing, 2-13
trace output, 2-14
troubleshooting, 2-13
unrelated, A-2
Web project, 10-2
Web services, C-2
workspace, A-1

R

Relational Database Server database, 4-5
accessing, 4-5
add streams, 4-1
Data Source Explorer, 4-5
drivers, 4-5
loading, 4-1

remote access, 7-2, 10-3, 13-2
Remote Method Invocation (RMI), 1-5, 6-4,

C-2
RequestStoreItems
bean, 1-6
in Office Supply Store, 13-1

right-click a right-handed mouse, 1-3
RMI (See Remote Method Invocation)

S

servlets
containers for, 6-12
creating, 10-2
definition, 6-8, 10-2
EJB components, 1-5
in Office Supply Store, 10-1
J2EE component, 6-2
modifying for JSP, 11-3
Web components, 6-8

session beans
authenticating users, 7-2
creating, 7-3
definition, 1-6, 6-10
EJB components, 1-5
in Office Supply Store, 7-1, 7-2
session facade pattern, 7-2

session facade pattern
BMP entity beans in, 8-2
definition, 7-2

Simple Object Access Protocol (SOAP), 12-1,
C-1, C-2

SOAP (See Simple Object Access Protocol)
SOAP with Attachments API, 6-6
source folder, creating, 5-6
StoreCustomer
bean, 1-6
in Office Supply Store, 8-1
table, 1-3

StoreInventory
bean, 1-6
in Office Supply Store, 9-1
table, 1-3

 Index

3839 3831–002 Index–5

StoreManager
bean, 1-6
in Office Supply Store, 8-1
table, 1-3

StoreSupplier
bean, 1-6
in Office Supply Store, 9-1
table, 1-3

Swing toolkit for GUIs, 6-8
system administrator role, 6-14

T

Telnet session, 4-5, 5-1, 5-2, 5-3
thin clients, 6-7
tool provider role, 6-14
TUSC Computer Systems Pty Ltd, 1-1

U

UDDI (See Universal Description Discovery
and Integration)

UN/CEFACT (See United Nations Center for
Trade Facilitation and Electronic
Business)

United Nations Center for Trade Facilitation
and Electronic Business
(UN/CEFACT), C-1

Universal Description Discovery and
Integration (UDDI), C-1

UserAccess
authenticating users, 7-2
bean, 1-6
in Office Supply Store, 7-1
table, 1-3

W

W3C (See World Wide Web Consortium)
war (See Web archive files)

Web archive (war) files, 6-12
Web browser, 6-7, 6-12
Web clients
deploying, 11-9
description, 6-7
EJB components, 1-5
J2EE component, 6-2
pattern, 10-2, 11-1
requests in Office Supply Store, 1-5
types, 10-2

Web components, 6-8 (See also JavaServer
Pages; servlets)

Web containers, 6-12
Web project, 10-2
Web services
definition, 12-1, C-1
standards, C-1

Web Services Description Language
(WSDL), C-1, C-2

Web tier, 6-7, 6-8, 10-1, 11-1
workspaces
preferences, A-1
removing, A-2
sharing, A-2
unrelated, A-2

World Wide Web Consortium (W3C), C-1
WSDL (See Web Services Description

Language)

X

XDoclet
attribute-oriented programming, A-2
grammar, A-3
tags, 8-5

XML
data exchange, 12-1, C-1
deployment descriptors, 6-12
in ebXML, C-1
in SOAP, C-1
in WSDL, C-1
markup language, 6-7, 12-1
metadata format, C-2

Index

Index–6 3839 3831–002

.

© 2012 Unisys Corporation.

All rights reserved.

38393831-002
 3839 3831–002

	Contents
	Figures
	Tables
	Section 1. Getting Started
	Documentation Updates
	1.1. Office Supply Store Overview
	1.1.1. Database Schema
	1.1.2. J2EE Components in Office Supply Store
	1.1.3. Beans in Office Supply Store

	Section 2. Configuring Eclipse IDE to Use JBoss Application Server
	2.1. Opening a Java EE Perspective
	2.2. Updating Eclipse 2200 with JBoss Community and RedHat JBoss Enterprise Middleware
	2.3. Creating a Java EE Project
	2.4. Creating Enterprise JavaBeans
	2.4.1. Typing Versus Browsing to Names
	2.4.2. Naming Beans

	2.5. Creating Business Method for the EJB Project
	2.6. Configuring JBoss AS as the Deployment Server
	2.7. Running JBoss AS
	2.7.1. Starting JBoss AS
	2.7.2. Cleaning the Project
	2.7.3. Stopping JBoss AS

	2.8. Building a Test Client
	2.9. Resolving Compilation Errors
	2.10. Testing the Project
	2.11. Troubleshooting the Project
	2.12. Hot-Deploying the Project

	Section 3. Loading the Hypersonic Database
	3.1. Scripts for Loading and Populating the Database
	3.2. Script for Purging the Database
	3.3. Opening the Console
	3.4. Creating and Populating the Database
	3.5. Verifying the Database
	3.6. Viewing the Database Using Data Source Explorer
	3.7. Generating DDL Scripts

	Section 4. Loading the Relational Database Server Database
	4.1. Testing the Database
	4.2. Creating and Populating the Database
	4.2.1. Modifying the Add Stream
	4.2.2. Uploading the Add Stream

	4.3. Accessing Relational Database Server
	4.4. Setting Up Drivers to Access the Database
	4.5. Setting Up Data Source Explorer to View the Database
	4.6. Viewing the Database Using Data Source Explorer

	Section 5. Running Java Applications on the OS 2200 System
	5.1. Configuring Connections
	5.1.1. Setting up Host Accounts
	5.1.2. Setting up Connections
	5.1.3. Recording Log-In Scripts

	5.2. Starting a Telnet Session
	5.2.1. Using Preconfigured Connections
	5.2.2. Creating Connections Manually
	5.2.3. Switching between Command Line Modes

	5.3. Preparing the OS 2200 IDE for Eclipse Java Project
	5.3.1. Creating OS 2200 IDE for Eclipse Directories
	5.3.2. Creating New Java Projects
	5.3.3. Creating Source Class Folders
	5.3.4. Creating Application Class Files

	5.4. Running the Java Application
	5.4.1. Running the Java Application Remotely on OS 2200 IDE for Eclipse
	5.4.2. Running the Java Application Remotely on OS 2200 IDE for Eclipse JProcessor

	5.5. Debugging the Java Application
	5.5.1. Debugging the Java Application Remotely from OS 2200 IDE for Eclipse Server
	5.5.2. Debugging the Java Application Remotely from OS 2200 JProcessor

	5.6. Troubleshooting Errors

	Section 6. Creating an Enterprise Application Development Model
	6.1. Overview of J2EE Technology and Concepts
	6.2. J2EE Components
	6.3. J2EE Services and Supporting Technologies
	6.4. J2EE Distributed Architecture
	6.4.1. Process Flow
	6.4.2. Naming Services
	6.4.3. Java Naming and Directory Interface Architecture

	6.5. Java EE Components
	6.5.1. Java EE APIs
	6.5.2. Java EE Communication Technologies

	6.6. Java EE Clients
	6.6.1. Web Clients
	6.6.2. Application Clients

	6.7. Web Components
	6.8. Business Components
	6.8.1. Types of Enterprise Beans
	6.8.2. Enterprise Beans Versus JavaBeans

	6.9. Enterprise Information System Tier
	6.10. Java EE Containers
	6.11. Packaging for Deployment
	6.12. Java EE Platform Roles

	Section 7. Creating Stateless Session Beans
	7.1. Accessing Office Supply Store
	7.1.1. Session Facade Pattern
	7.1.2. Authenticating Users
	7.1.3. Bean Business Methods
	7.1.4. Remote and Local Access to Beans
	7.1.5. Java Programming Using DAO

	7.2. Tasks
	7.2.1. Creating a Java EE Project
	7.2.2. Creating Stateless Session Bean Structures
	7.2.3. Using Dependency Injection through Resource Name
	Adding Business Methods
	7.2.4. Making a Stateless Session Bean as Java Persistence and Creating a POJO Class
	7.2.5. Creating a Test Client
	7.2.6. Creating the hsql-ds.xml File
	7.2.7. Testing the Bean

	Section 8. Creating Bean-Managed Persistence Entity Beans
	8.1. Accessing Office Supply Store
	8.1.1. Unique Identifiers
	8.1.2. Local Access
	8.1.3. Session Facade Pattern
	8.1.4. UserAccess Methods

	8.2. Tasks
	8.2.1. Creating a BMP Entity Bean Structure
	8.2.2. Modifying the Code to Create a BMP Bean
	8.2.3. Creating DAO Implementation Classes
	8.2.4. Modifying StoreInventoryBean
	8.2.5. Creating a Test Client
	8.2.6. Testing the Bean

	8.3. Creating Another BMP Entity Bean

	Section 9. Creating Container-Managed Persistence Entity Beans
	9.1. Accessing Office Supply Store
	9.1.1 Unique Identifiers

	9.2 Tasks
	9.2.1 Creating a Java Persistence Entity Bean Structure
	9.2.2 Creating the Java Persistence Bean Code and the POJO Class
	9.2.3 Adding Finder Methods
	9.2.4 Adding Data Methods
	9.2.5 Callback Methods in EJB 3.0
	9.2.6 Creating the JPA persistence.xml File
	9.2.7 Adding Inventory Access Methods
	9.2.8 Creating a Test Client
	9.2.9 Testing the Bean

	Section 10. Creating Web Client Servlets
	10.1. Accessing Office Supply Store
	10.1.1. Types of Web Clients
	10.1.2. Web Client Pattern

	10.2. Tasks
	10.2.1. Creating a Web Project
	10.2.2. Creating a Servlet
	10.2.3. Adding Remote Business Method
	10.2.4. Modifying the Servlet for the Project
	10.2.5. Implementing Helper Methods
	10.2.6. Testing the Servlet

	Section 11. Creating Web Client JavaServer Pages
	11.1. Accessing Office Supply Store
	11.2. Tasks
	11.2.1. Creating JavaServer Pages
	11.2.2. Modifying the Servlet for the JSP
	11.2.3. Displaying Inventory
	11.2.4. Deploying Web Client Components
	11.2.5. Testing Web Client Components

	Section 12. Creating Web Services
	12.1. Web Services Overview

	Section 13. Creating Message-Driven Beans
	13.1. Accessing Office Supply Store
	13.1.1. Test Applications
	13.1.2. Remote and Local Access to Beans

	13.2. Tasks
	13.2.1. Creating a Message-Driven Bean Structure
	13.2.2. Creating Immutable Value Objects
	13.2.3. Implementing onMessage Method
	13.2.4. Creating a Test Client
	13.2.5. Testing the Bean

	Appendix A. Best Practices
	A.1. Importing Eclipse IDE Projects
	A.2. Using Eclipse IDE
	A.2.1. Workspace Preferences
	A.2.2. Sharing Projects or Workspaces
	A.2.3. Unrelated Projects
	A.2.4. Removing Workspaces

	A.3. Using JavaDoc and XDoclet
	A.3.1. Coding JavaDoc and XDoclet
	A.3.2. XDoclet Grammar Documentation

	A.4. Deploying Jar Files with JBoss Application Server

	Appendix B. Troubleshooting
	B.1. Compilation Errors
	B.2. JBoss AS Startup Errors
	B.2.1. Port Number Conflicts
	B.2.2. Deployment Errors

	Appendix C. Web Services Standards
	C.1. Web Services Standards
	C.2. Using SOAP and WSDL
	C.3. Web Services in the Java EE Environment

	Glossary
	Index

