
ClearPath Enterprise Servers

Enterprise Database Server for ClearPath MCP
Utilities

Operations Guide

ClearPath MCP 19.0

June 2019 8600 0759-622

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related information

described herein is only furnished pursuant and subject to the terms and conditions of a duly executed agreement to

purchase or lease equipment or to license software. The only warranties made by Unisys, if any, with respect to the

products described in this document are set forth in such agreement. Unisys cannot accept any financial or other

responsibility that may be the result of your use of the information in this document or software material, including

direct, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the laws,

rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such

changes and/or additions.

Notice to U.S. Government End Users: This software and any accompanying documentation are commercial items

which have been developed entirely at private expense. They are delivered and licensed as commercial computer

software and commercial computer software documentation within the meaning of the applicable acquisition

regulations. Use, reproduction, or disclosure by the Government is subject to the terms of Unisys’ standard commercial

license for the products, and where applicable, the restricted/limited rights provisions of the contract data rights

clauses.

Unisys and other Unisys product and service names mentioned herein, as well as their respective logos, are
trademarks or registered trademarks of Unisys Corporation.
All other trademarks referenced herein are the property of their respective owners.

Contents

Section 1. Introduction

Documentation Updates . 1–2

What’s New? . 1–2

Utility Tasks . 1–2

Initializing the Database. 1–3

Running Enterprise Database Server Utilities 1–3

Controlling the Database . 1–3

Maintaining the Database . 1–3

Verifying the Database . 1–4

Translating Messages . 1–4

Using the Remote Database Backup Facility. 1–5

Using the Open Distributed Transaction Processing Product 1–5

Section 2. Control File

Control File Provisions. 2–1

Control File Structure . 2–2

Table of Contents . 2–2

Text Directory/Records . 2–4

Guard File Directory/Records . 2–5

Structure Directory . 2–5

Structure Records. 2–5

Partition Records . 2–6

Control File Functions . 2–6

Controlling Database Interlock . 2–7

Storing Information . 2–7

Checking Compatibility . 2–8

Verifying Interfile Version Compatibility. 2–8

Handling Discontinuities . 2–9

Handling Audit Block Serial Number (ABSN) Rollover . . . 2–10

Control File Interface with Database Software 2–10

DASDL Compiler. 2–10

Accessroutines Program . 2–10

Database Recovery . 2–11

DMUTILITY Program. 2–13

REORGANIZATION Program . 2–16

Database Certification Program 2–17

8600 0759-622 iii

Section 3. Using the DMSUPPORT Library

Entry Points . 3–1

Entry Point Declarations . 3–2

Example Programs . 3–3

Section 4. Using DMUTILITY

DMUTILITY Commands . 4–1

Running DMUTILITY . 4–3

Dump Media: Tape Dump Versus Disk Stream Dump 4–5

Tape Dumps . 4–5

Disk Stream Dumps . 4–6

Operator Interface to DMUTILITY for Tape Dumps 4–8

Operator Interface to DMUTILITY for Disk Stream

Dumps. 4–8

Restarting DMUTILITY for Tape and Disk Stream

Dumps. 4–8

Continuing DMUTILITY . 4–10

DMUTILITY Error Handling . 4–11

Tape Input/Output Errors During Dump 4–11

Disk Stream Input/Output Errors During Dump 4–12

Tape Input/Output Errors During Load 4–12

Disk Stream Input/Output Errors During Load 4–13

Database Disk Input/Output Errors. 4–13

DMUTILITY Warnings During Dump 4–16

Section 5. Initializing and Maintaining

Initializing and Maintaining the Control File. 5–1

Running DMCONTROL . 5–1

DMCONTROL Statement . 5–3

Potential Problems with RECOVER UPDATE 5–26

Control File Recovery . 5–27

Control File Recovery and Change of Family 5–28

Control File Recovery and Change of Population

Control Attributes . 5–29

DMUTILITY CANCEL Statement . 5–29

Initializing Database Files. 5–30

Rules for Initialization . 5–31

DMUTILITY INITIALIZE Statement . 5–32

REDISTRIBUTE Command . 5–34

MIGRATEDB Command . 5–36

Contents

iv 8600 0759-622

Section 6. Backing Up a Database

Tools Available for Creating and Managing Database Backups 6–2

Understanding the Database Backup Process. 6–3

Tasks Related to Creating and Managing Database Backups 6–6

DUMP and APPEND Commands (DMUTILITY) 6–9

Dump Option . 6–11

OFFLINE Option . 6–16

INCREMENTAL Option . 6–18

ACCUMULATED Option . 6–19

Dump Clause . 6–20

Dump List Clause . 6–22

Dump Selector Clause. 6–24

Portion Selector Clause . 6–25

BY FAMILYINDEX Option . 6–26

Dump Tape Specification . 6–27

Multidump Tape Specification . 6–31

Dump Disk Specification . 6–31

DUMP Command Examples Where the Backup

Medium Is Single Dump Tape 6–34

DUMP and APPEND Examples Where the Backup

Medium Is Multidump Tape. 6–37

DUMP Command Examples Where the Backup

Medium Is Disk . 6–40

DUMP Command Examples Where the Backup

Medium Is Both Single Dump Tape and Disk 6–43

VERIFYDUMP Command (DMUTILITY) . 6–44

Copying Database Backups . 6–45

COPYDUMP Command (DMUTILITY) . 6–46

DUPLICATEDUMP Command . 6–50

TAPEDIRECTORY Command (DMUTILITY). 6–53

TAPESET DIRECTORY Command (DMUTILITY) 6–54

Cataloging the Information in Database Backups. 6–57

DMDUMPDIR Program . 6–60

ENABLE Command. 6–61

DISABLE Command . 6–62

ADD Command . 6–62

DELETE Command . 6–62

LIST and WRITE Commands . 6–63

BUILDDUMPDIRECTORY Command (DMUTILITY) 6–68

Recovering Database Backup Catalog Information 6–69

Quick-Reference Information . 6–69

Contents

8600 0759-622 v

Section 7. Reorganizing the Database

Understanding Types of Reorganization . 7–2

Garbage Collection . 7–2

File Format Conversion . 7–3

Record Format Conversion . 7–4

Understanding the Database Reorganization Process 7–5

Understanding the Reorganization Algorithm 7–15

Running the BUILDREORG Utility . 7–20

Running Through a Batch Job . 7–21

Syntax for the BUILDREORG Utility . 7–24

Using the BUILDREORG UPDATE Option. 7–27

Using an Alias Name. 7–28

Using the Central Data Set GENERATE Statement 7–29

Using the GENERATE Statement 7–29

Using the Central Data Set Sequence Statement 7–51

Using the Reorg Global Control Statement 7–53

Running the REORGANIZATION Program. 7–66

Preparing to Reorganize . 7–67

Understanding the Phases of Reorganization 7–67

Starting the REORGANIZATION Program 7–68

Reorganizing a Nonusercoded Database 7–69

Using the Transaction Processing System (TPS) During

Reorganization . 7–69

Availability of Structures During Reorganization. 7–70

Updating During Generation: The Fixup Process 7–73

Finishing the Reorganization Process 7–75

Reorganization Status Report. 7–77

Terminating and Recessing the REORGDB

Reorganization Process . 7–78

Restarting a Reorganization . 7–79

Rebuild Recoveries and Reorganizations 7–80

Rollback Recoveries and Reorganizations 7–83

Row Recoveries and Reorganizations. 7–83

Reorganization I/O Errors. 7–83

Reorganization Data Errors . 7–84

Displaying Reorganization Status 7–86

Enhancing Reorganization Performance 7–87

Disk Storage Requirements . 7–89

Limitations of Database Reorganization 7–91

Section 8. Recovering the Database

RECOVER Statement (DMUTILITY) . 8–1

Partial Database Recovery. 8–6

Contents

vi 8600 0759-622

Designating How to Recover . 8–8

Reconstructing Rows Using the Quickfix Process 8–12

Designating What to Recover and Where 8–12

Designating a Backup Dump . 8–14

Partial Database Recovery of Partition Files 8–18

Whole Database Recovery . 8–18

Recovery Methods . 8–18

Database Recovery Using Incremental and Accumulated Dumps. . . 8–39

Running Recovery. 8–40

Visible Recovery Commands . 8–42

ALLOWEDCORE = <integer> Command 8–43

OVERLAYGOAL = <decimal value> Command. 8–44

WRITEDELAYFACTOR = <decimal value> Command . . . 8–44

STATUS Command . 8–46

STATISTICS and STATISTICS CLEAR Commands 8–49

COPY Statement (DMUTILITY) . 8–51

Tape Dumps . 8–62

Disk Dumps . 8–63

DMUTILITY TAPECLONE Statement . 8–64

STRUCTURECLONE Statement (DMUTILITY). 8–64

Section 9. Copying Audit Files

Why Copy Audit Files? . 9–2

Facilities Provided by the COPYAUDIT Program 9–3

Initiating the COPYAUDIT Program . 9–3

Checking the Results of a COPYAUDIT Run 9–5

Methods for Copying Audit Files . 9–6

Using the QUICKCOPY Command . 9–11

Using the COPY Command . 9–23

Using the DIRECTORY Command to Display Audit File Tape

Directories . 9–26

Using the VERIFY Command to Verify Audit File Contents. 9–27

Quick-Reference Information . 9–29

Section 10. Printing, Viewing, and Extracting Audit Information

PRINTAUDIT Program Overview . 10–1

Initiating the PRINTAUDIT Program . 10–2

Overview of PRINTAUDIT Commands . 10–6

Basic Command Syntax. 10–6

Designating Intervals. 10–9

Designating a Time Interval . 10–10

Designating a Serial Number Interval 10–13

Designating a Relative Block Interval 10–14

Contents

8600 0759-622 vii

Selecting Audit Data . 10–15

Selecting Records by Stack Number 10–15

Selecting Records by Program Mix Number 10–16

Selecting Records by Program Identifier 10–17

Selecting Records by Structure Identifier or Block

Number . 10–18

Specifying an Alias Name in a Structure Identifier 10–19

Selecting Records by Field. 10–20

Selecting Records by Record Type 10–21

Generating a Customized Version of the PRINTAUDIT Program . . . 10–26

Developing the ALGOL Code. 10–28

Using the SELECT Statement with the ALGOL Code . . 10–31

Examples of PRINTAUDIT Commands 10–32

Quick-Reference Information . 10–39

Section 11. Checking Integrity and Performance

Database Certification . 11–1

Running Database Certification 11–2

DBCERTIFICATION Command. 11–5

ONLINE Command . 11–6

HELP Command . 11–6

INTERNAL FILES Command . 11–7

OPTIONS Command . 11–8

SORT Command. 11–8

UPPERCASE Command . 11–9

LOWERCASE Command. 11–9

QUIT Command . 11–10

CERTIFY Command . 11–10

CERTIFY Options for Structure Types . 11–14

Data Sets . 11–14

Sets and Subsets . 11–22

DMUTILITY DBDIRECTORY Statement . 11–25

DMUTILITY DISABLE/ENABLE Statement 11–28

DMUTILITY LIST/WRITE Statement . 11–30

Section 12. Communicating with the Database

Entering Visible DBS Commands . 12–1

Visible DBS Commands. 12–2

Errors and Warnings . 12–2

DBS STATUS Command . 12–2

DBS CHANGE Command . 12–5

AUDIT ANALYZE AFN Command. 12–9

Contents

viii 8600 0759-622

AUDIT PROCESSOR TIMES Command . 12–10

AUDIT CLOSE Command . 12–11

AUDIT SCRATCHPOOL Command. 12–13

AUDIT QUICKCOPY MAXFILESPERTAPE Command 12–14

AUDIT QUICKCOPY SYNCTAPESET Command 12–15

CPSTATS Command . 12–16

GARBAGE COLLECT Command . 12–17

Alternative to a Reorganization. 12–18

Disk Storage Requirements . 12–18

How the GARBAGE COLLECT Command Works 12–18

After the GARBAGE COLLECT Operation 12–19

LOCKSTATISTICS Command . 12–21

SNAPSHOT Command . 12–21

STATISTICS Command . 12–23

STATUS STRUCTURE Command . 12–24

STRUCTURE CHANGE Command . 12–27

STATUS HISTORY Command. 12–34

STATUS MIX Command . 12–39

STATUS RDB Command . 12–42

STATUS REORG Command . 12–43

SUPERCP RESTOREDBFILES Command 12–44

USEREORGDB TERMINATE Command . 12–45

USEREORGDB DISCARD Command . 12–45

DIAGNOSTICS Command . 12–46

Section 13. Maintaining Databases Containing Large Objects

Tank Sizes Available for LOBS . 13–1

LOBANALYZE Command (DMUTILITY) . 13–2

LOBCLEANUP Command (DMUTILITY) . 13–3

LOBCOMBINE/LOBSQUASH Command (DMUTILITY) 13–3

Interpreting the LOBANALYZE Report . 13–4

Section 14. Using a Quiesce Database

Tasks Related to Quiesce Databases . 14–1

QUIESCE Command (DMUTILITY) . 14–2

RESUME Command (DMUTILITY) . 14–5

QUIESCE QDC Command (DMUTILITY). 14–6

CREATE QDC Command (DMCONTROL) 14–12

RESTORE FROM QDC Command (DMCONTROL) 14–19

Creating Incremental/Accumulated Dumps from a Quiesce

Database . 14–21

Using a Quiesce Database Copy as a Recovery or a Copy Source . 14–22

Contents

8600 0759-622 ix

High Availability QUIESCE . 14–26

QUIESCE HISTORY Option of the WRITE Command 14–30

CFRESTORE Command (DMUTILITY) . 14–31

Quick-Reference Information . 14–31

Section 15. Using Database Tape Encryption

Architecture . 15–1

Encryption Algorithms. 15–2

DASDL Syntax . 15–3

DMUTILITY Syntax . 15–3

COPYAUDIT Syntax . 15–4

DASDL Example . 15–4

DMUTILITY Examples . 15–5

COPYAUDIT Examples . 15–7

Section 16. Using Permanent Directory Databases

Creating a Permanent Directory Database 16–1

Reorganizing a Permanent Directory Database 16–3

Working with Dumps . 16–4

Section 17. Loading and Dumping Conventional Files

Steps for Using LOADDUMP. 17–2

LOADDUMP. 17–3

COBOL74 or COBOL85 MOVE Algorithm 17–12

Compiler Control Options for LOADDUMP 17–12

Section 18. Compiling Software

Compilation WFL Job Parameters . 18–1

DMSUPPORT . 18–3

RECONSTRUCT . 18–3

DMINTERPRETER . 18–4

RMSUPPORT . 18–4

Section 19. Controlling Partitioned Records

Partition Directory Overview . 19–1

Partition Directory Details . 19–2

Audit and Recovery Considerations . 19–3

Contents

x 8600 0759-622

Section 20. Using the Audit Reader Library Interface

Audit Reader Library Overview . 20–1

Using the ALGOL Interfaces . 20–2

ALGOL Array Reference AUDIT_INFO [0] 20–3

Linkage and Operational Information 20–3

Logical Audit File Information. 20–8

Internal Buffer Information. 20–10

Audit Section Information . 20–10

Block List Information . 20–11

ALGOL Array Reference AUDIT_BUFFERS [0, 0]. 20–12

Entry Points . 20–12

AUDIT_OPEN Entry Point Parameters 20–13

AUDIT_CLOSE Entry Point Parameters 20–15

AUDIT_NEXT_ABSN Entry Point Parameters 20–16

AUDIT_RANDOM_ABSN Entry Point Parameters 20–17

AUDIT_NEXT_RECORD Entry Point Parameters 20–18

Error Results. 20–20

Section 21. Database Events Management

Events Management Overview . 21–1

Event Log Files . 21–2

Using the Programmatic Interface 21–5

Section 22. Logging Data Access

System Logging Options . 22–2

DASDL LOGACCESS Option . 22–2

Enabling the LOGACCESS Option . 22–5

Changing the LOGACCESS DMVERB List 22–8

Enabling LOGACCESS Option with Visible DBS 22–8

Using the DMCONTROL LOGACCESS Command 22–9

LOGACCESS Analysis . 22–9

Section 23. Database Encryption

Database Encryption Components and Interdependencies 23–1

Using Database Encryption . 23–4

Error Handling. 23–11

Performance Impact and Best Practices . 23–14

Section 24. Troubleshooting

Events That Cause Halt/Load Recoveries to Fail 24–1

Contents

8600 0759-622 xi

Handling I/O Errors During a Halt/Load Recovery 24–1

Enterprise Database Server Errors During a Halt/Load Recovery . . . 24–2

DATAENCRYPT Option Error during a DASDL Compilation 24–2

REQUIRES *PK DISK Error during a Reorganization 24–2

Appendix A. Common Syntactic Items

Appendix B. Interpreting Database Statistics

Header . B–1

Buffer Statistics . B–2

Input/Output (I/O) Statistics. B–4

VSS2 Optimization . B–9

VSS3 Optimization . B–9

Database Usage Statistics . B–9

Structure Lock Statistics . B–11

Audit Statistics (First Part) . B–12

Audit Statistics (Second Part) . B–13

Transaction Statistics . B–15

Global Lock Statistics . B–16

Control Point Buffer Statistics . B–17

Using Statistics . B–18

Appendix C. COPYAUDIT Error Messages

COPYAUDIT Errors . C–2

COPYAUDIT Fatal Errors . C–2

COPYAUDIT Nonfatal Errors . C–22

Appendix D. Using Mirrored Disks for Disaster Recovery

Which Enterprise Database Server Files to Mirror? D–1

Environment Considerations . D–2

Backup Procedures . D–2

Recovery Procedures . D–3

Control File Integrity . D–3

Data File Integrity . D–3

Audit File Integrity . D–3

Appendix E. Understanding Railroad Diagrams

Railroad Diagram Concepts . E–1

Paths . E–1

Bold Faced Words . E–2

Contents

xii 8600 0759-622

Constants and Variables . E–2

Constraints. E–3

Following the Paths of a Railroad Diagram . E–5

Railroad Diagram Examples with Sample Input. E–6

Index . 1. 1

Contents

8600 0759-622 xiii

Contents

xiv 8600 0759-622

Figures

6–1. Dump Tape Directory . 6–57

7–1. Creation of a New Database Description File . 7–6

7–2. Creation of a Reorganization Description File (Scenario 1) 7–10

7–3. Creation of a Reorganization Description File (Scenario 2) 7–11

7–4. Creation of a REORGANIZATION Program . 7–12

8–1. Standard Buffer Access/Write Operation Scenario . 8–45

8–2. Buffer Access/Write Operation Scenario

with WRITEDELAYFACTOR Effect. 8–46

8–3. Sample Visible Recovery Status Display. 8–47

8–4. Sample Visible Recovery Statistics Report . 8–51

14–1. QUIESCE Command in a Database System Environment 14–4

14–2. Single Server, One Live Database, Two Quiesce Database Copies. 14–9

14–3. Single Server, One Live Database, Two Quiesce Database Copies, Live

Database Backed Up from QDC ON BACKUPPK. 14–11

14–4. Single Server, One Live Database, Two Quiesce Database Copies 14–14

14–5. Single Server, One Live Database, Two Quiesce Database Copies, Live

Database Backed Up from QDC ON BACKUPPK. 14–16

14–6. Rebuild of a Live Database Using a Quiesce Database Copy 14–21

14–7. Using a Quiesce Database Copy as a Recovery Source. 14–23

17–1. LOADDUMP Components . 17–2

23–1. Compile-Time Database Encryption Configuration. 23–2

23–2. Run-Time Database Encryption Configuration . 23–3

8600 0759-622 xv

Figures

xvi 8600 0759-622

Tables

4–1. DMUTILITY Commands . 4–1

4–2. Elements of RETRYIO Messages . 4–14

6–1. Tasks Related to Creating and Managing Database Backups. 6–2

7–1. Control File Handling for Rebuild Recoveries . 7–83

8–1. Recover Specification and Source for Tape Dumps . 8–28

8–2. Recover Specification and Source for Disk Dumps . 8–29

9–1. Tasks That Can Be Accomplished by Using the COPYAUDIT Program 9–3

10–1. Record Type Mnemonics . 10–22

10–2. PRINTAUDIT File Equations. 10–27

10–3. Variables Available to the USERPROCEDURE and

USERWRAPUP Procedures . 10–28

10–4. Audit Data Block Information. 10–29

10–5. Stopper Pattern Information . 10–30

14–1. Tasks Related to Quiesce Databases or Quiesce Database Copies 14–1

18–1. Compilation WFL Job Parameter Keywords . 18–2

20–1. Error Results . 20–21

22–1. Tasks Related to Using the LOGACCESS specification 22–1

22–2. DMVERB Access . 22–6

8600 0759-622 xvii

Tables

xviii 8600 0759-622

Section 1
Introduction

The Enterprise Database Server is a software system that enables you to create databases

and maintain relationships between database elements. The Enterprise Database Server

utility programs and the tasks they enable you to perform are the subject of this manual.

This section covers the

• Purpose, audience, and conventions for this guide

• Documentation update information

• Descriptions of the tasks you can perform using Enterprise Database Server programs

This manual documents the features of the Enterprise Database Server for

ClearPath. It includes the features for scalability, capacity, and availability in addition

to the traditional features. An XE icon in the left margin designates an explanation

for one of these features.

For information about Enterprise Database Server for ClearPath MCP capabilities, refer to

the Enterprise Database Server for ClearPath MCP Getting Started and Installation Guide.

Conventions

Throughout this manual, you can locate information about XE features by looking for

• An XE icon in the left margin

• Boldfaced words in railroad diagrams and examples used to illustrate syntax

An explanation of railroad diagrams is in Appendix E, Understanding Railroad Diagrams.

8600 0759-622 1–1

Documentation Updates

This document contains all the information that was available at the time of publication.

Changes identified after release of this document are included in problem list entry (PLE)

19223051. To obtain a copy of the PLE, contact your Unisys representative or access the

current PLE from the Unisys Product Support website:

http://www.support.unisys.com/all/ple/19223051

Note: If you are not logged into the Product Support site, you will be asked to do so.

What’s New?

The following table identifies new and revised information for this release.

New or Revised Information Location in Guide

Added the <supercp restoredbfiles

command> to the list of Visible DBS

Commands

SUPERCP RESTOREDBFILES Command

Updated the rules for initializing database files Initializing Database Files

Added new information on the encryption key

set

Using Database Encryption

Added information on the RESTARTSORT

option

Running the BUILDREORG Utility

Add the BUSAIO record type mnemonic Table 10–1

Added information on the PUBLICIO current

event

Section 12, Communicating with the Database

Section 21, Database Events Management

Utility Tasks

The Enterprise Database Server utility programs work together to enable you to perform

the following tasks:

• Initialize database files.

• Wholly or partially dump database files.

• Reorganize database files to minimize space or reformat records.

• Wholly or partially recover databases manually or automatically.

• Copy, print, or display audit files.

• Verify the integrity of database files, monitor database performance, and dynamically

adjust performance parameters.

• Load and dump to and from conventional files.

Introduction

1–2 8600 0759-622

http://www.support.unisys.com/all/ple/19223051

The following is a brief description about the Enterprise Database Server programs.

Initializing the Database

Each database must have a control file associated with it. The control file is used to store

database parameters and other control information. SYSTEM/DMCONTROL is the control

file maintenance program. The control file is initialized by using the DMCONTROL

statement INITIALIZE. This statement creates a new control file using information from

the database description file. Once the control file is initialized, the database files can then

be initialized using the SYSTEM/DMUTILITY INITIALIZE statement.

Running Enterprise Database Server Utilities

You can run the Enterprise Database Server utility programs by using the unique command

syntax specific to each task.

Each database has a DMSUPPORT library that is used by Enterprise Database Server

software. User programs can also use the DMSUPPORT library to obtain additional

exception information. The first user to invoke a database also invokes this code file; the

file can then be used by multiple users working on the same database.

Controlling the Database

The Enterprise Database Server programs require up-to-date database information such as

database parameters, audit control, and status information. This control information is

located in a file called the control file. Each database must have a control file, and most

Enterprise Database Server programs use information stored in this control file. It is very

important that you become thoroughly familiar with the interaction between the control

file and Enterprise Database Server programs.

Maintaining the Database

Maintenance involves dumping, reorganizing, and recovering the database; copying and

printing audit files; and verifying database integrity.

Databases can be dumped to tape as a means of backing them up. DMUTILITY enables

you to dump all or part of a database, dump online or offline, maintain a Dump Directory,

and print the directory of a tape.

The Enterprise Database Server REORGANIZATION program is used when physical

changes must be made in the structure of the database files. There are three types of

reorganization. The first, and most often used, is called garbage collection. It allows you to

consolidate unused space and return this space to the system. The second type, file

format conversion, allows you to change those attributes of database files that do not

affect record formats. The third type, record format conversion, allows you to change the

format of an existing data set, global data, set, or automatic subset record.

Introduction

8600 0759-622 1–3

The Enterprise Database Server generally recovers itself after a system crash. However,

when manual recovery is needed, the DMUTILITY, DMRECOVERY, DMDATARECOVERY,

and RECONSTRUCT programs work together to provide either partial or whole database

recovery.

Partial database recovery allows you to recover rows or structures of a database using

backup dumps and the audit trail to reconstruct the damaged areas. A convenient quick fix

recovery method uses a reverse audit scan process to correct rows locked by write

errors. The database can be used during partial database recovery.

Whole database recovery uses a REBUILD process, a ROLLBACK process, or both

processes. The REBUILD process uses the database files from a backup dump and applies

audit trail afterimages to bring the database forward in time. If this is unsuccessful, or if

the database is an unaudited database, the DMUTILITY COPY statement can be used to

recover a corrupted database. The ROLLBACK process is used to move the database

backward in time.

SYSTEM/COPYAUDIT and SYSTEM/PRINTAUDIT are used as audit tools. COPYAUDIT

copies audit files from one medium to another. PRINTAUDIT prints or displays whole or

partial audit files.

Verifying the Database

Several pieces of Enterprise Database Server software help to verify the integrity of

database files. Database Certification ensures the integrity of Enterprise Database Server

data structures. The dbaTOOLS product analyzes the logical and physical structure of an

Enterprise Database Server database.

For more information about dbaTOOLS, refer to the Software Product Catalog.

Translating Messages

All of the Enterprise Database Server utility programs use the MultiLingual System (MLS)

to obtain text for their messages. This enables output messages to be translated into

different natural languages using the MLS utility program SYSTEM/MSGTRANS. The

MLS program allows you to access output messages, translate them into one or more

languages, and store the messages and translations for future use. The natural language

available in the released products is English. In addition, the Enterprise Database Server

utilities handle the CONVENTION task attribute for internationalization. This attribute

allows users to specify a desired convention definition at run time.

For more information on MLS, refer to the MultiLingual System Administration,

Operations, and Programming Guide.

Introduction

1–4 8600 0759-622

Using the Remote Database Backup Facility

Remote Database Backup is a product you can purchase to create and manage an online

backup of a database. Remote Database Backup can form an integral part of the disaster

recovery plan for your organization.

For information on Remote Database Backup, refer to the Remote Database Backup

Operations Guide.

Using the Open Distributed Transaction Processing
Product

The Open Distributed Transaction Processing product enables the use of global

transactions, that is, transactions that affect more than one database. To make an

Enterprise Database Server database capable of participating in global transactions, you

must add the OPENOLTP option to the DASDL source file, and optionally, add an

RMSUPPORT library specification. When you update your database after adding the

OPENOLTP option, two data sets are automatically added to your database description

file: RX-GLOBAL-TR and RX-SIBDESCS. These two inquiry-only data sets are used

internally by the Open Distributed Transaction Processing software to manage global

transactions.

For more information on the Open Distributed Transaction Processing product, refer to the

Open Distributed Transaction Processing Programming Guide and the Open Distributed

Transaction Processing Installation and Administration Guide.

Introduction

8600 0759-622 1–5

Introduction

1–6 8600 0759-622

Section 2
Control File

All Enterprise Database Server databases include a system-maintained file that contains

database control information. This file, titled <database name>/CONTROL, must be

present whenever the database is used.

The control file provides a convenient means of controlling the operational aspects of a

database by performing the following functions:

• Checking compatibility between tailored software and database files

• Verifying that all database data files are at the same level of update

• Storing audit control information, dynamic database parameters, and other information

• Controlling database interlock

Control File Provisions

The provisions provided by the database control file include the following:

• The control file provides a place to store the database in-use bit across halt/loads. This

enables the Accessroutines to protect the integrity of unaudited databases by giving

an OPENERROR if the database was OPEN UPDATE and a halt/load occurred, or if the

database was discontinued. (In this case, the only general recovery technique is to

reload the control file and database data files from a backup dump and reprocess the

input.)

• The control file provides a place to store the file version timestamps. These

timestamps are checked against the version timestamps in the date-file headers to

guarantee that all database files are at the same level of update.

• The control file provides a place to store the format timestamps for each structure in

the database. All tailored software verifies that the format timestamp for each

structure in the control file matches the format timestamp in the database description

file against which it was compiled. This guarantees that the tailored software is

compatible with the control file and data files.

• Programs such as DMUTILITY and DMRECOVERY open the control file first, thereby

preventing possible deadlock conditions.

• The interlock control is used when the entire database must be used exclusively by

one program (REORGANIZATION, for example). Opening the control file exclusively,

and sometimes writing a special value to it, allows for database interlock control.

• The control file helps to handle file discontinuities introduced by DMUTILITY

INITIALIZE and REORGANIZATION in database files.

8600 0759-622 2–1

• The control file provides a place to store dynamic database parameters such as

SYNCPOINT, CONTROLPOINT, and ALLOWEDCORE.

• The control file contains the name of the DMSUPPORT code file. The Enterprise

Database Server software uses this name when invoking the DMSUPPORT library.

• The control file stores information about active partitions.

Control File Structure

The control file has a fixed block size, and the last word of each block is a software

checksum word.

The control file consists of several sections, each of which begins on a block boundary. In

order, the sections of the control file are as follows:

1. Table of contents

2. Text directory

3. Text records

4. Guard file directory

5. Guard file records

6. Structure directory

7. Structure records

8. Partition records

These control file sections are described on the following pages.

Table of Contents

The table of contents is in block zero and contains descriptors to the other sections of the

control file and miscellaneous control information. These are described in the following

paragraphs.

Control File Format Level

The control file format level indicates the format level of the control file. The control file

program sets this word equal to a constant when it creates the control file. The value of

the constant might change between releases. If so, the control file program will be able to

convert the control files of the previous two releases to the current format.

Control File

2–2 8600 0759-622

Database Timestamp

The database timestamp is stored in the control file by the control file program when it

creates the control file. The control file program obtains the database timestamp from the

Data and Structure Definition Language (DASDL) description file. All tailored software

checks the database timestamp in the control file to ensure that the software was

compiled against the same DASDL description file.

Update Level

The DASDL update level is stored in the control file by the control file program. The control

file program obtains the DASDL update level from the DASDL description file. All tailored

software checks the update level to ensure it is compatible with the control file.

State Variables

State variables include the database in-use bit, the REBUILD and ROLLBACK flags, the

exclusive lock word, and the restart timestamp.

Dynamic Database Parameters

Database parameters include the current values of SYNCPOINT, CONTROLPOINT, and

ALLOWEDCORE, among others.

Audit Control

Audit control information includes the current audit file number, the current audit block

serial number (ABSN), and the limits and current values for the primary and secondary

audit tape serial numbers (when auditing to designated serial numbers) or scratch pool, if

specified.

Structure Directory Descriptor

The structure directory descriptor identifies the starting block, the number of blocks, and

the number of entries in the structure directory.

Partition Directory Descriptor

The partition directory descriptor identifies the starting block, the number of blocks, and

the number of entries in the partition directory part of the control file.

Control File

8600 0759-622 2–3

Last Assigned Partition Number

The last assigned partition number gives the unique integer last assigned for a partition

number. Normally, it is equal to the number of partition entries, because no provision

exists to delete partitions. A value of –1 indicates that the partition directory needs to be

initialized. (This occurs when the control file was lost and recovered, but the partition

directory has not yet been recovered.)

Text Directory Descriptor

The text directory descriptor identifies the starting block, the number of blocks, and the

number of entries in the text directory. If the number of entries is zero, then no text

section is present.

Guard File Directory Descriptor

The guard file directory descriptor identifies the starting block, the number of blocks, and

the number of entries in the guard file directory. If the number of entries is zero, then no

guard file section is present.

Transaction Processing System (TPS) Information

Information to synchronize the database with the transaction processing system is

maintained in the control file.

Tape Directory Flag

If the database has a Dump Tape Directory, this information is indicated in the control file.

Audit File Attributes

The physical attributes of the audit trail are kept in the control file. Audit control information

also includes TPS information. TPS information consists, in part, of the current transaction

file number, transaction block number, and transaction offset.

Text Directory/Records

The text directory points to the various texts stored in the control file. These texts include

the DMSUPPORT title, subsystem ID, and primary and secondary COPYAUDIT Work Flow

Language (WFL) file titles.

Directory entries point to the text records section, where each entry is a word containing

the length of the string, followed by the characters of the string.

Control File

2–4 8600 0759-622

Guard File Directory/Records

The guard file directory points to the various guard file titles for the database and any

logical databases. The entries point to the guard file records section, where each entry is a

word containing the length of the string, followed by the characters of the string.

Structure Directory

The structure directory contains one word for each database structure that maps into a

file. This word contains the structure number and the block address and word offset of the

structure record for that structure.

Structure Records

This section of the control file contains a record for each structure in the database. Each

structure record contains the information described in the following paragraphs.

Creation Timestamp

The creation timestamp is set to the time-intrinsic function TIME(6) during a DMUTILITY

INITIALIZE or REORGANIZATION whenever a new file is created. The creation timestamp

is set to the invalid timestamp when the structure entry is first created by the control file

program.

Version Timestamps

Each structure record contains two version timestamps that are used for file update

version compatibility checking. The time-intrinsic function TIME(6) is used for the version

timestamps. All software that updates the database also updates the version timestamp

of the data files when the data file is first opened.

Format Timestamp

The format timestamp is set to the time-intrinsic function TIME(6) whenever the physical

file format of a structure changes as a result of a DASDL update. All tailored software

verifies that the format timestamp for the structure matches the format timestamp in the

database description file against which it was compiled. If the structure format changes,

REORGANIZATION must be run before the new structure can be used. If the record

format of the structure does not change, applications do not have to be recompiled.

Structure State Flag

The structure state flag identifies the current state of the file. Values for the structure state

flag are NORMAL STATE and CREATION DATE-TIME STAMP NEEDS TO BE AUDITED.

Control File

8600 0759-622 2–5

Family Name

Family name identifies the pack family on which the file resides.

Structure Attributes

The attributes kept in the control file include the structure name, buffer and reblocking

specifications, number of areas, type (for example, data set), subtype (for example, direct),

and format level.

The state information and the current settings for POPULATIONINCR and

POPULATIONWARN are also included. State information reflects the most recent

automatic action that pertains to the given option.

Partition Records

This section of the control file contains a record for every active database partition. The

relative record number corresponds to the unique partition number in the PARTITIONINFO

data set record for the partition. Some of the fields in the partition record are the same as

for structure records. These fields include the following:

• Creation timestamp

• Version timestamp

• Format timestamp

• Structure state flag

• Family name

In addition, the control file record for each partition includes the partition identifier and the

structure number, as explained in the following subsections. Duplicating the partition

identifier and the structure number from the PARTITIONINFO ORDERED data set makes

the partition directory conveniently accessible to DMUTILITY, even while the database is

being updated.

Partition Identifier

The partition identifier is the alphanumeric ID used as the last identifier of the file title.

Structure Number

The structure number is needed to uniquely qualify the partition identifier.

Control File Functions

The database control file functions are described on the following pages.

Control File

2–6 8600 0759-622

Controlling Database Interlock

Because some tailored software can operate on database files without actually opening

the database—for example, REORGANIZATION—the EXCLUSIVE file attribute is used to

coordinate control file updates. When a function must maintain exclusive control of the

database across halt/loads, a special value is written in the lock word of the control file.

When the function is complete, the control file is unlocked. Exclusive control of the

database using the database interlock control is described in the following paragraphs.

Using Recovery Needed Flag

If a database is OPEN UPDATE and a halt/load occurs or the database is discontinued, the

database might have lost integrity and can no longer be used safely. A state flag to this

effect must be left on disk because all information in main storage has been lost. The

control file is used to hold the database in-use bit for both audited and unaudited

databases. The database in-use bit prevents the Accessroutines or DMUTILITY from

accessing the database when the database was OPEN UPDATE and a halt/load occurred

or the database was discontinued.

For audited databases, the database in-use bit causes the Accessroutines to automatically

initiate halt/load recovery, and locks out all other software until halt/load recovery

completes.

In general, the only safe course for unaudited databases is to reload the database files and

control file from a backup dump and reprocess the input.

Using Exclusive Functions

REBUILD, ROLLBACK, and some forms of REORGANIZATION are examples of functions

that must have exclusive use of the entire database. Special words in the control file

identify the exclusive user of the database and cause other functions to be locked out.

Preventing DMUTILITY or Recovery Deadlock

Halt/load recovery and abort recovery open the database files exclusively to guarantee that

the recovery processes can set the end-of-file (EOF) pointer for the database files.

Exclusivity is necessary because of the difficulty in adjusting the EOF pointer in any other

file information block (FIB) that might have the file open. This also prevents a deadlock

condition with DMUTILITY. Either recovery waits for the DMUTILITY program to

complete, or DMUTILITY will wait for a running recovery to complete.

Storing Information

The information in the control file controls audit, dynamic database parameters and TPS

synchronized recovery.

Control File

8600 0759-622 2–7

Audit Control

The current audit file number, audit block serial number, and database in-use bit are stored

in the control file. In addition, when auditing to a designated range of tape serial numbers,

the range and current serial number (for both primary and secondary audit files) are stored

in the control file.

Dynamic Database Parameters

Through the Visible DBS mechanism, several global database parameters, such as

ALLOWEDCORE, SYNCPOINT, and CONTROLPOINT, can be interrogated and changed.

The control file provides a place to preserve these values when the database is not active.

TPS Synchronized Recovery

For access to databases by way of the transaction processing system (TPS), TPS

information needed by the TPS software for synchronized recovery is stored in the control

file.

Checking Compatibility

The database timestamp and the DASDL description update level are stored in the control

file by the control file program. These values are also stored in the code files of the

database software. The tailored database software checks these values to ensure that the

software is compatible with the control file.

In addition, each structure has a format timestamp. The format timestamp helps handle

cases where structures are added or deleted by way of a DASDL update.

Verifying Interfile Version Compatibility

The control file ensures that all database files are consistent. For example, it guarantees

that a data set and all its sets are at the same level of update.

A version timestamp is stored in the header of every Enterprise Database Server data file.

A corresponding timestamp is maintained in the control file for each data file. If all files

match the control file, then they must match each other.

TIME(6) is used for the version timestamp because of the low probability of a false match.

This timestamp helps you determine which version of the file was loaded when the

version is wrong. In the file itself, the version timestamp is stored in the header using the

DMTIMESTAMP attribute.

Because a halt/load can occur while the Enterprise Database Server is updating the

timestamps, there are two file version timestamps in the control file for each database file.

The database file matches the control file if it matches either of the version timestamps in

Control File

2–8 8600 0759-622

the control file. The two timestamps in the control file are unequal only when all three are

being updated. A special universal file version timestamp exists which, by definition,

matches any timestamp. It is used in special situations; for example, when recovering the

control file.

All software that updates a database data file updates the version timestamps before any

changes are made to the file. Nothing is done when the files are closed.

If the file version timestamps do not match when the file is opened, the software displays

a message and then waits for an acceptance. The display and accept messages give the

actual timestamp of the file, as well as the correct timestamp. The user can force the

software to accept the file by entering AX:OVERRIDE.

To protect the consistency of the database, some internal locks are procured while

checking the versions of the data files. This might prevent other users from accessing the

database until a version mismatch has been resolved.

For example, when the Accessroutines updates the database, the first thing it does is

update the version timestamps of all the files it opens. Assume that another copy of one of

the database files is copied in from a backup dump. The file that the Accessroutines is

using can automatically be removed from the disk directory, but the Accessroutines is still

attached to the file until it closes it. After the Accessroutines finishes and closes all the

files, the files on disk will have one inconsistent file. All database software will detect a

version timestamp mismatch when opening the inconsistent file and refuse to use it. In

this case, if the database is audited, you can rebuild the file using a backup dump and the

audit files, or you can use a RECONSTUCT RESTORE command to fix the version

timestamp mismatch. If the database is unaudited, then the database files must be

reloaded and the input reprocessed.

Handling Discontinuities

A discontinuity means that a change has occurred in a structure and the structure no

longer matches its audit image. Database recovery is affected by this mismatch.

Discontinuities affecting audit and recovery are introduced by DMUTILITY INITIALIZE and

REORGANIZATION. The control file manages discontinuities with a state flag and a

creation timestamp for each structure. Each time a new file is made by DMUTILITY

INITIALIZE or REORGANIZATION, the structure state flag is assigned the value NEED TO

AUDIT NEW CREATION DATE-TIME STAMP and the creation timestamp is changed. After

any new file is created, the first program to open the database update causes a structure

discontinuity audit record to be audited with the new creation timestamp, and the

structure state flags are reset. This makes the discontinuity visible in the audit.

DMRECOVERY can then handle the valid situations and give errors for invalid cases.

When a structure no longer exists, or exists in a different format, REBUILD can ignore

audit records appropriately. In the case of a reorganization run, REBUILD can wait until it

reaches a point in the audit that matches the version of the file loaded from the backup

dump. When a file is initialized with DMUTILITY, all subsequent changes are reflected in

the audit, and REBUILD can repeat the action of the INITIALIZE and then apply the audit.

Thus, discontinuity arising from DMUTILITY initialization can be crossed.

Control File

8600 0759-622 2–9

REBUILD can start rebuilding from any time and stop rebuilding at any time. The backup

dumps used must be selected so that the creation timestamps of the files loaded from

the dumps match the creation timestamps in the audit at the point REBUILD is to stop.

When REBUILD stops, all the files must be in phase or concurrent. Because REBUILD can

simulate REORGANIZATION, the dumps need not have been taken after the

REORGANIZATION. REBUILD can then begin applying audit images at the proper time.

When performing reconstruction, DMDATARECOVERY always goes to the end of the

audit. Therefore, the dump tapes selected for this function must contain files that have not

been reorganized since the dumps were made. (This rule applies only to the files that are

actually being reconstructed.)

ROLLBACK starts with the current database data files and cannot back out through a

discontinuity. ROLLBACK stops automatically if a structure discontinuity (STRDC) audit

record is encountered.

Handling Audit Block Serial Number (ABSN) Rollover

The audit block serial number (ABSN) in the audit file increases automatically. The ABSN

limit is 4,294,967,294. When the ABSN reaches this limit, the Accessroutines opens a

new audit file and resets the ABSN to 1.

Control File Interface with Database Software

Many software programs depend upon information in the control file. The ways in which

these programs use the control file are described in the following paragraphs.

DASDL Compiler

The control file program is processed by the DASDL compiler as a dependent process

after the database description file is locked. If the control file program fails, the DASDL

compiler emits a warning. DASDL does not process the control file program if the DASDL

compiler control option DMCONTROL is changed to RESET, or when compiling for syntax.

SYSTEM/DMCONTROL is initiated by default. If the compiler control option DMCONTROL

is RESET, you must run the control file program.

Refer to the Data and Structure Definition Language (DASDL) Programming Reference

Manual for more information about the DASDL specifications for the control file.

Accessroutines Program

The Accessroutines is the program through which all Enterprise Database Server inquiries

and updates are executed. The Accessroutines uses the control file to check the database

continuity timestamp, the DASDL update level, and the structure format timestamp for

each structure opened.

The following host language commands open a database.

Control File

2–10 8600 0759-622

OPEN INQUIRY Command

OPEN INQUIRY does not cause the database in-use bit to be turned on or the audit to be

opened. OPEN INQUIRY checks the file version timestamps but does not update them.

OPEN UPDATE Command

The first program that executes OPEN UPDATE causes the database in-use bit to be set,

the audit to be opened, and the file version timestamps to be updated. If any structure

state flags are initialized, special audit records are written for the creation timestamps of

these structures. The state flags are then reset.

All modified data and audit buffers are flushed to disk when all OPEN UPDATE programs

close the database even if the database has been opened with the OPEN INQUIRY

command.

Database Recovery

For complete file version compatibility protection whenever a database data file is opened

for update, the file version timestamps in the control file must be checked and updated.

Therefore, all forms of recovery check and update the file version timestamps when the

files are opened. The structure format timestamps are also checked. The following

processes utilize the control file to check the timestamps. This interaction with the control

file is explained on the following pages.

DMDATARECOVERY Program

DMDATARECOVERY is a coroutine of the RECONSTRUCT program. It aids in row

recovery by reading the audit trail and applying audit images.

DMDATARECOVERY always reconstructs to the current end of the audit. Because

bringing a database file across a discontinuity in the audit is logically impossible, the

creation timestamps of the files to be reconstructed from a backup dump must be equal to

their creation timestamps in the current control file.

ABORT and Halt/Load Recovery Program

ABORT and halt/load recovery always start with the current database files. Therefore,

there are no problems with crossing discontinuities in the audit.

Rollback Process

The rollback recovery process requires the final audit file number in the control file to be

correct when it begins; otherwise, it could start with the wrong audit file, and the

database could lose its integrity. Starting with the correct audit file is not normally a

problem unless the control file is recovered separately (for example, with the control file

program) before the rollback process is started. In this case, special care should be taken

by the user to ensure that the final audit number is correct.

Control File

8600 0759-622 2–11

The rollback process cannot roll the database back across a discontinuity in the audit and

stops automatically if it encounters a discontinuity.

Rebuild Process

The rebuild process rebuilds an entire database using previous dumps of the database and

subsequent audit files. The rebuild process normally terminates in the final portion of the

audit; that is, where the DASDL update level is equal to the current level. In this case, the

current database software (DMSUPPORT) and the current control file should be used.

If you want to rebuild to a point in the audit where the DASDL update level is less than the

current level, you must be aware of any DASDL update changes that occurred after the

rebuild process stopping point in the audit. If any DASDL update changes have occurred

that affect the format or even the existence of structures, an old control file and old

database software of what will be the new DASDL update level must be used to perform

the rebuild process successfully.

You can perform a rebuild process even though a DASDL update or reorganization exists in

the audit. The rebuild process allows the merging of selected files from several sets of

dump tapes in order to load a complete set of compatible database files. Take care that all

partial dumps are included in the DMUTILITY statement so that a complete set of

database files are available for loading; otherwise, DMRECOVERY does not run due to

either missing database files or partial files.

When a reorganization is performed on a structure, only that structure is invalidated on

prior dump tapes. The dump can still be used for structures not affected by the

reorganization.

A rebuild process must have as its stopping point a time when all database files are in

phase. Because the rebuild process can simulate a reorganization, the dumps need not

have been taken after the reorganization. The creation timestamps of the files loaded from

the dumps must equal the creation timestamps for the time in the audit at which the

rebuild process is to stop.

The rebuild process uses the creation timestamps to determine when to apply audit

images to the file. At the end of its run, the rebuild process checks to ensure that the

creation timestamps are correct. If they are not, the rebuild process terminates with an

error, thus indicating that the dump tapes specified in the RECOVER statement did not

contain data files with creation timestamps equal to the creation timestamps in the audit

file where the rebuild process stopped.

A rebuild process can handle any existing DMUTILITY initializations by repeating the

initialization and continuing to apply audit images. To prevent needless application of audit

images and extra input/output, a dump of the structure at the latest possible time should

be used.

A rebuild is often invoked when a large portion of the database is lost. In this event, the

control file might have been lost or damaged also; therefore, a valid current control file

must be obtained before the rebuild process is started. When a valid control file is

Control File

2–12 8600 0759-622

obtained (perhaps by using the control file RECOVER UPDATE option in conjunction with a

backup dump of the control file), special care should be taken to ensure that the control file

contains the correct audit file number. An incorrect final audit file number in the control file

can affect a rebuild that uses an online dump.

The final audit file must contain records for all audit trail regions, because the audit trail can

be divided into three consecutive regions in relation to an online dump. The following

information describes these regions:

• The first region consists of all audit records prior to two control points before the start

of the dump. All changes in this region of the audit are reflected in the dump, because

modified database buffers are written to disk at least every other control point.

• The second region (middle region) consists of audit records that might not be

reflected in the dump.

• The third region (final region) consists of all audit records after the first audit record

with a timestamp greater than the date and time at the end of the dump. All changes

in this region of the audit are not reflected in the dump because no modified database

buffer is ever written to disk until the corresponding buffer is successfully written to

the audit.

A rebuild cannot normally stop safely in the middle region; if it does, the database might

not be in phase. The only time a rebuild can stop in the middle region is if the rebuild is to

the end of the audit, and the audit ends in the middle region. This would happen if the

dump finished after the audit was closed for the final time. (The dump might have been

started while the database was still open.)

DMRECOVERY checks to see that it is not stopping in the middle region incorrectly; that

is, if DMRECOVERY has not seen an audit record with a timestamp greater than that in

any of the blocks of the DMUTILITY dump, it checks to see that it has rebuilt to the end of

the audit. For this test to be valid, the final audit file number must be correct in the control

file before the rebuild is started. For all other cases, DMRECOVERY still works properly,

even if the final audit file number is incorrect. However, it is advisable to always ensure

that the final audit file number in the control file is correct before starting the rebuild.

Note: DMUTILITY passes the parameters to the recovery programs by way of the files

<dbname>/RECONSTRUCTINFO (for row recovery), <dbname>/REBUILDINFO (for

rebuild) and <dbname>/ROLLBACKINFO (for rollback). The layout of these files can be

found in DATABASE/PROPERTIES.

DMUTILITY Program

The DMUTILITY program uses the control file to obtain the DMSUPPORT library title, to

check and update the file version timestamps and for interlock control. The DMUTILITY

statements and their interaction with the control file are described on the following pages.

Detailed explanations on the use of the DMUTILITY statements are provided later in this

guide. Explanations for performing database backups using the DUMP statement and for

performing dump directory maintenance are provided in Section 6, Backing Up a

Database.

Control File

8600 0759-622 2–13

CANCEL Statement

The CANCEL statement causes DMUTILITY to

• Open the control file exclusively; that is, the control file is opened, but no other users

can access the file.

• Unlock the control file and hence make the file generally accessible.

Use the CANCEL statement under any of the following circumstances:

• If DMUTILITY fails to complete properly when attempting to perform an offline dump

or offline copy

• If Database Certification fails during an offline certification

• If an INITIALIZE request is not successful

COPY Statement

The COPY statement must be used with extreme care; otherwise, the integrity of the

database could be destroyed. For example, if only an old control file is copied in, the

database could become unusable by causing file version timestamp mismatches with all

the database files. Furthermore, the tailored database software would refuse to run

because the DASDL update level had changed.

Among the valid uses of COPY are

• When the control file is lost or damaged, COPY can be used to get a file from a backup

dump that the control file program can use as a base to recover the current control file.

• When the entire database has been dumped using the offline DUMP construct, COPY

can be used to reload the entire database, including the control file. The database will

be in the state that it was at the time of the dump. The user can now access the

database.

If the entire file was copied from the dump tape, the COPY statement sets the file version

timestamp (F.DMTIMESTAMP) to the value in the control file that was dumped to the

dump tape. If less than the entire file was copied, it sets the file version timestamp to the

current value of TIME(6).

For audited databases, the user must take care to avoid creating undetected audit

discontinuities. Even when the entire database is copied, the audit trail must be taken into

consideration and maintained with the database. The end of the audit must be restored to

the position of the audit when the database was dumped. Thus, when dumping the

database, the user must keep the last audit file with the dump in case the database is to

be copied back at a later time. Copying from an online dump is not recommended.

DBDIRECTORY/TAPEDIRECTORY Statements

When DMUTILITY executes a DBDIRECTORY or TAPEDIRECTORY statement, it

accesses the current control file to check and list the timestamps of the designated

structures.

Control File

2–14 8600 0759-622

If you use the AX OVERRIDE statement to override timestamp mismatches that occur

while executing a DBDIRECTORY or TAPEDIRECTORY statement, the control file is not

updated.

Section 6, Backing Up a Database, describes dump directory maintenance in detail.

DUMP Statement

The control file must always be present to execute the DUMP statement, and it is always

dumped to cycle one, version one, of the dump tape. The version and format timestamps

of each structure dumped are checked, as well as the database timestamp and DASDL

update level.

To guarantee that a dump is made while the database is not being updated, OFFLINE

DUMP must be specified.

When an offline dump is executed, DMUTILITY opens the control file exclusively, writes a

special value in the lock word, closes the control file, and reopens the control file

nonexclusively. Upon completion of the dump, DMUTILITY unmarks the control file. If

DMUTILITY fails to complete the offline dump and does not unmark the control file, the

CANCEL statement described previously can be used to unmark the control file.

For unaudited databases, all dumps are offline dumps and OFFLINE need not be specified.

For audited databases, OFFLINE must be specified if an offline dump is desired;

otherwise, an online dump occurs.

Online dumps can be performed while the database is being updated. Online dumps are

permitted only for audited databases because such dumps must be used in conjunction

with the audit.

Section 6, Backing Up a Database, describes the dump process in detail and provides the

DUMP statement syntax.

LIST and WRITE Statements

The contents of the current control file can be listed using the LIST or WRITE statements

in DMUTILITY.

For other database files, the timestamps are printed using the current control file but are

not checked.

RECOVER Statement

The RECOVER statement is used to initiate all manual forms of recovery for audited

databases; that is, all forms of recovery except for halt/load and ABORT recovery, which

are initiated automatically.

DMDATARECOVERY is not an exclusive function; that is, it can be run while the database

is in use by the Accessroutines.

Control File

8600 0759-622 2–15

The rebuild and rollback processes require exclusive use of the entire database.

DMUTILITY opens the control file exclusively and writes a special mark in it so that the

function initiated is the only one allowed to run on the database.

The rebuild process can override any other exclusive function that has been discontinued,

except reorganization. For example, if DMUTILITY fails while performing an offline dump,

and fails to unmark the control file, DMUTILITY can be run designating REBUILD.

DMUTILITY then overrides the mark in the control file for the offline dump. DMUTILITY

cannot override a reorganization because of the nebulous state of the database description

file, control file, and database files.

At the conclusion of the DMUTILITY phase of a rebuild or rollback process, DMUTILITY

marks the control file as being in exclusive use by DMRECOVERY, closes the control file,

and then initiates DMRECOVERY. If the DMRECOVERY part of the rebuild or rollback

process is interrupted, restart the recovery of the database by running

SYSTEM/DMRECOVERY with the following statement:

RUN SYSTEM/DMRECOVERY("DB = <database name>")

Section 8, Recovering the Database, describes the recovery process in detail and provides

the RECOVER statement syntax.

REORGANIZATION Program

When an update reorganization starts, the control file program updates the control file.

During the reorganization, the GENERATE and FIXUP tasks update timestamps for

structures in the control file. After the control file has been updated, the

REORGANIZATION program reorganizes the database.

If the EXCLUSIVE option is specified for a database reorganization, the control file is

marked as being in exclusive use by the REORGANIZATION program. In addition, if the

format of the structure is to be changed, the DASDL update level in the structure directory

is appropriately updated. The control file remains in this state throughout the entire

reorganization run. User programs are able to access the database until the reorganization

begins. However, once the reorganization begins, the control file is marked as being in

exclusive use by the REORGANIZATION program. All user programs are not allowed to

access the database until the reorganization is finished. Any attempt to access the

database during the actual reorganization run results in an OPENERROR on the control file.

After all the data sets have been reorganized, the REORGANIZATION program unlocks the

control file from the IN EXCLUSIVE USE BY REORGANIZATION state.

If the reorganization process fails, the database—including the control file, description file,

the old DMSUPPORT library, and other tailored software—must be reloaded from backup

dumps.

Control File

2–16 8600 0759-622

Database Certification Program

If an aborted run of Database Certification is an exclusive run and the program is not going

to be restarted, the DMUTILITY CANCEL statement must be used to unlock the control

file.

Control File

8600 0759-622 2–17

Control File

2–18 8600 0759-622

Section 3
Using the DMSUPPORT Library

The DMSUPPORT library is a flexible piece of software that accommodates special user

requirements. It is also used by the Enterprise Database Server software. The library

provides entry points that allow you to obtain error codes. These codes consist of error

type, error message, and the identity of the structure on which the error occurred. This

section describes how the entry points to the DMSUPPORT library are used.

Entry Points

Entry points are procedures in the DMSUPPORT library program that can be called by

another program. The following entry points are available to user programs. The table

accompanying each entry point description shows the parameter types and procedure

result type in each of the host languages.

DMEXCEPTIONNAME (<exception> , <text>)

Returns in <text> the name of the exception category (for example, “NOTFOUND”) found

in <exception>. “NO EXCEPTION” is returned if no exception occurred.

Language Returned Result <exception> <text>

ALGOL BOOLEAN BOOLEAN STRING

COBOL None 01 (COMP-2 GP) 01 DISPLAY

COBOL74/COBOL85 None 01 DISPLAY 01 DISPLAY

DMSTRUCTURENAME (<exception> , <text>)

Returns the name of the structure found in <exception>. Blanks (COBOL74 and

COBOL85) or null strings (ALGOL) are returned if the exception is not structure related.

Language Returned Result <exception> <text>

ALGOL BOOLEAN BOOLEAN STRING

COBOL None 01 (COMP-2 GP) 01 DISPLAY

COBOL74/COBOL85 None 01 DISPLAY 01 DISPLAY

8600 0759-622 3–1

DMEXCEPTIONTEXT (<exception> , <text>)

Examines <exception> and returns in <text> the category name, structure name and

number (if structure related), and text describing the exception subcategory. “NO

EXCEPTION” is returned if <exception> indicates no exception occurred.

Language Returned Result <exception> <text>

ALGOL BOOLEAN BOOLEAN STRING

COBOL None 01 (COMP-2 GP) 01 DISPLAY

COBOL74/COBOL85 None 01 DISPLAY 01 DISPLAY

The <exception> is a standard Enterprise Database Server exception word for ALGOL. For

COBOL74 and COBOL85, <exception> is a bit pattern representing the DMSTATUS

register contents and generated by the DMSTATUS(DMRESULT) construct. (Refer to the

specific user language manual for additional details.)

For COBOL74 and COBOL85, the DMRESULT is not a valid syntax; the exception can be

obtained by combining the results of DMSTRUCTURE, DMCATEGORY, DMERRORTYPE,

and DMERROR. Even though typed, the ALGOL entry points always return FALSE.

All entry points return EBCDIC character data in the text parameter. For COBOL74 and

COBOL85, text is truncated or padded with trailing blanks as necessary.

Entry Point Declarations

To ease the process of writing programs to use the DMSUPPORT library,

DATABASE/DMSUPPORT contains declarations of the library and its entry points for

ALGOL. COBOL74 and COBOL85 do not require declaration of libraries. The appropriate

sequence range can be included for the language being used. The library identifier is

DMSUPPORT, and the entry point identifiers and parameter types are as shown in the

preceding text.

The included ranges declare all entry points. If you wish to rename DMSUPPORT entry

points or declare only a subset of the entry points, you must declare the entry points

themselves using the following table.

Language Sequence Range

ALGOL 21000000-21999999

The entry point declarations you can include rename actual exported entry points so that

the same function can be called by the same name in different languages. Because library

entry points cannot be renamed in COBOL74 and COBOL85, the DM prefixed entry points

are used for these languages. The renaming facility in ALGOL is used to produce DM entry

points in each of these languages. The majority of the actual work is performed by the

Using the DMSUPPORT Library

3–2 8600 0759-622

ALGOL entry points. After translating the parameters that are not compatible with ALGOL

to ALGOL-compatible parameters, COBOL74 and COBOL85 entry points call the ALGOL

entry points to perform the actual request against the database.

The following table shows the names of exported entry points, and the corresponding

ones available to each language. You can use this table to construct your own

DMSUPPORT entry point declarations.

COBOL74/COBOL85 ALGOL

DMEXCEPTIONNAME ALGOLEXCEPTIONNAME

DMSTRUCTURENAME ALGOLSTRUCTURENAME

DMEXCEPTIONTEXT ALGOLEXCEPTIONTEXT

Example Programs

The following program fragments illustrate the use of each DMSUPPORT entry point in

ALGOL, COBOL74, and COBOL85. For COBOL74 and COBOL85, the

DMSTATUS(DMRESULT) construct can be used only in a MOVE statement.

ALGOL Program Fragment

BEGIN
$ INCLUDE DMSUPPORT = "DATABASE/DMSUPPORT" 21000000-21999999

STRING MSG;
BOOLEAN RESULT;
DATABASE EXAMPLEDB;
DMSUPPORT.TITLE := "DMSUPPORT/EXAMPLEDB.";

OPEN EXAMPLEDB : RESULT;
IF RESULT THEN
BEGIN

DMEXCEPTIONNAME (RESULT, MSG);
DISPLAY ("EXCEPTION CATEGORY: " !! MSG);

DMSTRUCTURENAME (RESULT, MSG);
DISPLAY ("EXCEPTION STRUCTURE: " !! MSG);

DMEXCEPTIONTEXT (RESULT, MSG);
DISPLAY (MSG);

END;
...

END;

Using the DMSUPPORT Library

8600 0759-622 3–3

COBOL74/COBOL85 Program Fragment

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
DATA-BASE SECTION.
DB EXAMPLEDB ALL.
WORKING-STORAGE SECTION.
01 MSG PIC X(100).
01 RESULT PIC X(6).
01 DMSUPPORT-NAME PIC X(19) VALUE "DMSUPPORT/EXAMPLEDB".
PROCEDURE DIVISION.
MAIN.

CHANGE ATTRIBUTE TITLE OF "DMSUPPORT" TO DMSUPPORT-NAME.
OPEN UPDATE EXAMPLEDB

ON EXCEPTION
PERFORM DMEXCEPT.

...
STOP RUN.

DMEXCEPT.
MOVE DMSTATUS(DMRESULT) TO RESULT.
CALL "DMEXCEPTIONNAME OF DMSUPPORT"

USING RESULT, MSG.
DISPLAY "EXCEPTION CATEGORY: " MSG.
CALL "DMSTRUCTURENAME OF DMSUPPORT"

USING RESULT, MSG.
DISPLAY "STRUCTURE NAME: " MSG.
CALL "DMEXCEPTIONTEXT OF DMSUPPORT"

USING RESULT, MSG.
DISPLAY MSG.

Using the DMSUPPORT Library

3–4 8600 0759-622

Section 4
Using DMUTILITY

DMUTILITY is a program that provides a convenient method of controlling the operational

aspects of a database. DMUTILITY provides the following capabilities:

• Dumping and loading database files

• Printing data and control information for database files

• Initializing all or specific structures in a database

• Initiating nonautomatic forms of recovery for audited databases

DMUTILITY Commands

The commands given to DMUTILITY to perform tasks are briefly described in Table 4–1.

These commands are preceded by the <db statement>, which specifies the database

name and the location of the control file. The database statement can be found in

Appendix A, Common Syntactic Items.

Table 4–1. DMUTILITY Commands

Command Description

BUILDDUMPDIRECTORY Causes one or more database dumps to be entered in the

database Dump Tape Directory.

CANCEL Clears the offline dump flag or exclusive certification flag in the

control file following an unsuccessful offline dump or

unsuccessful exclusive certification.

CFRESTORE Restores the control file of a live database from its quiesce

database copy.

COPY Copies (loads) database files to disk, either from a tape dump or

from a disk stream dump.

COPYDUMP Generates a copy of a backup dump.

DBDIRECTORY Prints the current status of rows in the database files.

DISABLE/ENABLE Disables or enables access to a database.

DUMP/APPEND Copies (dumps) database files from disk, either to tape or to

disk.

8600 0759-622 4–1

Table 4–1. DMUTILITY Commands (cont.)

Command Description

DUPLICATEDUMP Generates a copy of a backup dump and ensures reel-for-reel or

file-for-file compatibility between the original dump and the copy

of the dump.

INITIALIZE Initializes database data files.

LIST/WRITE Prints the contents of database files.

LOBANALYZE Produces a report of the disk usage of the large object (LOB)

tank data sets.

LOBCLEANUP Performs cleanup operations on deleted LOBS, or LOBS of

deleted structures.

LOBCOMBINE Merges adjacent spaces that have been left after LOBS have

been deleted.

LOBSQUASH Performs an intensive defragmentation of empty space in the

LOB tanks.

MIGRATEDB Adds or deletes disjoint data sets and its sets from an active

database.

QUIESCE Creates a coherent copy of an online database.

QUIESCE QDC Starts the creation of a quiesce database copy.

RECOVER Initiates the non-automatic forms of recovery for audited

databases.

REDISTRIBUTE Redistributes a database file of a disjoint data set across the

family pack members of a multifamily pack.

RESUME Returns a database to its normal state following a QUIESCE

command.

TAPEDIRECTORY Prints information about rows in the database files that were

copied to tape with the dump statement.

TAPESET Lists the contents or recreates the fast access directory file for a

multidump tape or set of multidump tapes.

VERIFY Verifies that an audit file can be used by the data management

software without error.

VERIFYDUMP Checks that dumps are free from errors such as block checksum

errors and I/O errors.

These statements are used in combination with various Enterprise Database Server tasks.

The syntax for these statements is fully illustrated and described in the respective

sections. Because the <db statement> is used often, it is described in

Appendix A, Common Syntactic Items.

Using DMUTILITY

4–2 8600 0759-622

Running DMUTILITY

DMUTILITY uses as input a quoted string to specify the action to be performed by

DMUTILITY. Use either of the following general formats to run the DMUTILITY program

for traditional databases:

RUN SYSTEM/DMUTILITY("<db statement> <utility statement>");

or

BEGIN JOB; RUN SYSTEM/DMUTILITY ("*")

DATA
<db statement> <utility statement>

? END JOB.

Use either of the following general formats to run the DMUTILITY program for permanent

directory databases:

RUN SYSTEM/DMUTILITY("<db statement> <utility statement>");
DATAPATH = *DIR/TEST ON TESTPACK;

or

BEGIN JOB; RUN SYSTEM/DMUTILITY ("*");
DATAPATH = *DIR/TEST ON TESTPACK;

DATA
<dbstatement> <utility statement>

? END JOB.

The <db statement> communicates the database name and location of its control file to

the DMUTILITY program. Because DMUTILITY is not a tailored program, it needs this

user-supplied information to locate the database files, the DMSUPPORT library, and the

control file. The syntax for this statement can be found in Appendix A, Common Syntactic

Items. For databases that reside within permanent directories, the <db statement>

should not contain an asterisk (*) or (usercode) prefix, or a family name.

The DMUTILITY program uses the tailored support library whose default title is

DMSUPPORT/<database name> or

<permanent directory>/DMSUPPORT/<database name>/<level>. The DMSUPPORT

library is compiled in combination with the other tailored database software. When this

library is not present, the DMUTILITY program displays a DMOPENERROR 66 and the

program cannot complete its task successfully.

When dumping or copying a dump, and recovering a database that has the DMDUMPDIR

option enabled, you might need to specify an appropriate file equation in order to locate

the database description file. The following is an example of the DMUTILITY command

that might be used:

RUN $SYSTEM/DMUTILITY(<db statement><utility statement>);
FILE DASDL = DESCRIPTION/<database name>;

Using DMUTILITY

8600 0759-622 4–3

If DMUTILITY is initiated from a remote terminal and passed an input string consisting of

an asterisk (*), then DMUTILITY automatically requests its input parameters from the

remote terminal.

The success of a DMUTILITY run can be determined in the Work Flow Language (WFL) by

examining the task attribute TASKVALUE of the DMUTILITY task at the completion of the

run. The task attribute TASKVALUE when used in WFL is called VALUE.

When a user job runs DMUTILITY multiple times and uses the same TASK variable for

each run of DMUTILITY, you need to initialize the TASK variable before reusing it again. If

the TASK variable is not initialized, DMUTILITY creates a debug listing that can impact

performance. Limited debug output is also produced when you set the task attribute SW8

to TRUE.

The values of TASKVALUE have the following meanings:

Value Meaning

0 Error (fatal or nonfatal)

1 OK

2 Warning given

When DMUTILITY detects an error of any kind, an error message is displayed. This

message generally indicates that DMUTILITY has detected an error in the user input, such

as a syntax error or some rows not specified for a REBUILD. (The printer listing should be

examined for a detailed explanation.) Similarly, a warning message is displayed when a

warning has been issued.

DMUTILITY does not reset the task attribute TASKVALUE from 0 to 1 if a nonfatal error is

successfully recovered. This allows the user to trap errors that might have occurred during

the DMUTILITY run, even if DMUTILITY goes to the normal end of task. In order to

differentiate between fatal and nonfatal errors in the WFL, it is suggested that

TASKVALUE be used in conjunction with the WFL Boolean primary COMPLETEDOK. For

more information on the WFL Boolean primary, refer to the WFL Reference Manual.

Continuing and Restarting DMUTILITY Operations

Under certain circumstances DMUTILITY operations can be continued or restarted. To

restart a DMUTILITY operation, you must supply a negative task value. Limited debug

output is also produced when you set the task attribute SW8 to TRUE.

For more information on restarting DMUTILITY dumps, refer to “Restarting DMUTILITY

for Tape and Disk Stream Dumps” later in this section. For more information on continuing

DMUTILITY operations, refer to “Continuing DMUTILITY” later in this section.

Using DMUTILITY

4–4 8600 0759-622

Dump Media: Tape Dump Versus Disk Stream Dump

DMUTILITY allows dumps to tape (tape dump) or to disk (disk stream dump).

Tape dumps remain the default medium for protecting an Enterprise Database Server

database in a production environment. DMUTILITY supports the following functions for all

types of dumps:

• Building a dump directory

• Copying files and copying backup dumps

• Dumping

• Recovering

• Getting directory information

• Verifying backup dumps

Tape Dumps

Dumps to tape can be backed up to either single dump tapes or multiple dump

(multidump) tapes. Single dump tapes contain a single database backup from a single

database. Multidump tapes can contain many database backups from one or multiple

databases.

Multidump Tapes

Multidump tapes can be created only on tape drives that have fast access capability. To

support the multidump feature, DMUTILITY also creates a fast access directory that

contains information about each dump contained on the tape (including the tape address).

The directory is created at the location specified by your system DL LIBMAINTDIR

command and has the usercode of the task that created the first backup dump on the

tape. If no LIBMAINTDIR specification exists, the directory is created at a location based

on the rules for family substitution.

Multidump tapes do not have continuation reels. As a result, the value of VERSION is

always 1. If the total dump does not fit on a reel, the dump contents that has been written

on the reel is deleted and the operator is requested to initiate a new DUMP command

rather than an APPEND command.

If the multidump tape is used to hold backups from more than one usercode, ensure that

all of the usercodes have visibility to the fast access directory. One method to accomplish

this task is to give the fast access directory PUBLIC security.

If the fast access directory is missing, a new directory is automatically created when the

next dump is appended to the tape, or it can be manually re-created by using the TAPESET

DIRECTORY CREATE command. In either case, the usercode initiating the command

must be able to create files under the usercode of the first dump on the tape; otherwise,

the operating system emits a security violation error.

Using DMUTILITY

8600 0759-622 4–5

To access a database backup stored on a multidump tape, the usercode under which

DMUTILITY runs must have visibility to the database, and if guardfiles are employed, the

usercode must have the correct permissions to read or recover the database.

Disk Stream Dumps

A disk stream dump is a quick and convenient alternative to a tape dump. Instead of using

tape, a disk stream dump resides on disk. In contrast to several reels of tape for a tape

dump, a disk stream dump resides on one disk pack. Disk stream dumps may be used by

both DMUTILITY and DMDUMPDIR. Enterprise Database Server application users can

find disk stream dumps a useful tool in shortening development and testing time.

DMUTILITY accesses disk stream dumps like regular tape dumps, because all information

is preserved in a disk stream dump.

To specify disk instead of tape, DMUTILITY requires that you use the following syntax

wherever a tape name is required:

<file name> ON <family name>

Example

In the following example, the TAPEDIRECTORY statement specifies a disk stream dump.

The disk stream file is BACKUP/TEST and resides on the disk pack DMS. The disk stream

file, BACKUP/TEST, is under the usercode that DMUTILITY runs under.

TAPEDIR BACKUP/TEST ON DMS

Omitting Tape Options and Tape Specifications

Tape options, such as WORKERS and FORWARD COMPARE, are ignored during disk

stream processing. If you include tape options in copy, dump, or recovery specifications

when a disk stream dump is used, a warning message is displayed.

If you include a serial number specification in a disk stream dump request, DMUTILITY

terminates with a syntax error.

Limitations on Disk Stream Dumps

Disk stream dumps can take up a lot of disk space. It is therefore recommended that you

perform disk stream dumps only on a scheduled basis so that you can ensure that the

required disk resources are available.

The following information identifies the limitations of disk stream dumps:

Using DMUTILITY

4–6 8600 0759-622

Limitation Explanation

Disk size Tape dumps have no fixed size limits because tapes can be readily

mounted to accommodate large dumps. A disk stream dump,

however, is bounded by the amount of available space left on the

specified disk pack. A disk stream dump, because it is a disk file,

cannot grow beyond the available space on the disk pack.

A manual calculation of available disk space on the specified disk

pack must be done prior to an offline disk stream dump. As a rough

guide, the available space on disk must be greater than twice the

disk sector size of the DMCONTROL file plus the sum of disk sector

sizes for each DMS data file to be dumped.

Note: There is a physical disk file limitation of 1000 areas. To

create a multiple-file disk stream dump, use the FILES

specification.

Disk resource contention To avoid a deadlock between DMUTILITY and other programs, an

offline disk stream dump should be done on a disk pack that is not

used by other programs.

In particular, care must be taken when dumping disk stream files to

the system resource pack or to the halt/load unit. A deadlock on the

available disk space between the Master Control Program (MCP)

and DMUTILITY freezes the entire system.

The purpose for keeping backups is defeated if the disk stream

dumps reside on the disk pack containing the database files or the

audit trail.

Online disadvantages Avoid performing online disk stream dumps if the volume of

transactions performed against the database is either unknown,

volatile, or can grow beyond bounds. Online disk stream dumps can

run into the disk size limitations or disk resource contention

problems described previously.

Usercode Usercodes cannot be explicitly specified in a disk stream file name.

Disk stream files are found under the usercode that ran DMUTILITY.

Note that disk stream dumps executed from the system operator

display terminal (ODT) are found under the asterisk (*) usercode.

For example, DMUTILITY, running under usercode X, cannot access

disk stream dumps under usercode Y, even if X is a privileged user.

Tape incompatibility A library maintenance tape copy of a DMUTILITY disk stream dump

cannot be used in place of a DMUTILITY tape dump.

You can use the DMUTILITY command COPYDUMP to copy a disk

stream dump to tape or to copy a tape dump to disk.

Also, DMUTILITY does not allow disk stream file names of the

following form:

<file name> ON TAPE

The word TAPE in the family name is interpreted by DMUTILITY as

a tape specification (KIND = TAPE).

Using DMUTILITY

8600 0759-622 4–7

Operator Interface to DMUTILITY for Tape Dumps

You can change the number of workers for a single dump tape while DMUTILITY is

running by entering:

<mix no> AX WORKERS = <integer>

This message can be entered even if the WORKERS construct was not used in the

original input. The <mix no> is the mix number of the main DMUTILITY stack.

The WORKERS construct is not valid for multidump tapes.

Operator Interface to DMUTILITY for Disk Stream Dumps

If you use the WORKERS option with a disk stream dump, DMUTILITY returns a warning.

The following messages illustrate the input you might supply and the DMUTILITY

response:

User Input

8832 AX WORKERS = 3

DMUTILITY Response

8832 TAPE OPTION ’WORKERS’ CANNOT BE SET DURING DISK DUMPS

If the requested disk stream file already exists, DMUTILITY responds with the message

<mix no> AX ’<FILENAME> on <FAMILY>’ or ’QUIT DMUTILITY’

In this case, you have the following choices:

• Request another disk stream file name. If the name is valid and does not already exist,

DMUTILITY processes the request.

• Overwrite the existing file. First a library maintenance copy of the existing file should

be made. Once the copy has been made, the existing file can be removed and the

desired disk stream file name is resubmitted.

• Terminate DMUTILITY by transmitting

QUIT DMUTILITY

DMUTILITY terminates and the following message is displayed:

QUITTING DMUTILITY FOR A DISK STREAM DUMP ATTEMPT

Restarting DMUTILITY for Tape and Disk Stream Dumps

You can restart DMUTILITY DUMP COPY, DUPLICATEDUMP, COPYDUMP,

VERIFYDUMP, and RECOVER operations if the operation was discontinued internally

because of a fatal input/output error while reading or writing to tape or disk, or following a

halt/load.

Using DMUTILITY

4–8 8600 0759-622

If the operation that was discontinued does not use a backup dump, you can restart the

operation by running SYSTEM/DMRECOVERY as follows:

RUN SYSTEM/DMRECOVERY("DB = <database name>")

If the operation does use a backup dump, then you can restart the DMUTILITY operation

by supplying the job number of the failed operation as a negative task value. The following

statement illustrates a restart request:

RUN SYSTEM/DMUTILITY (<db statement>);
VALUE=<negative job number>

Note: Operations that write to a tape that is specified by a <multidump tape

specification> must be restarted and must use the negative task value. If the operations

are not restarted, an incomplete dump remains on the tape.

A DMUTILITY run can be restarted without a negative task number. This happens

automatically when the following occurs: the WFL job initiates a DMUTILITY run, the WFL

job aborts, and the WFL job is restarted.

DMUTILITY restarts using the HLDUMPINFO files created by the original run of

DMUTILITY. If the HLDUMPINFO is not present, DMUTILITY does not restart. The

HLDUMPINFO file is titled

<database name>/HLDUMPINFO/<job number>

In addition, each tape, disk file, or dump worker that was active at the time the program

was discontinued has its own HLDUMPINFO file. The worker HLDUMPINFO file must be

present in order for the worker to restart from where it stopped. If the worker

HLDUMPINFO file is not present, the program restarts from the beginning. The worker

HLDUMPINFO file is titled

<database name>/HLDUMPINFO/<job number>/<worker number>

The DMRECONFILTER program uses its parameter file <database

name>/RECONFILTERINFO as its restart information file. As each audit is processed, the

restart information is updated. If a halt/load occurred or the program discontinued,

rerunning the DMRECONFILTER restarts each worker back to the audit file the worker

was processing at the time of termination.

Following the successful completion of the DMUTILITY run, all HLDUMPINFO files

created during the DMUTILITY run are automatically removed.

Because the job number is part of the title of the DMUTILITY halt/load restart file, never

run more than one copy of DMUTILITY within a single WFL job deck.

Using DMUTILITY

8600 0759-622 4–9

Continuing DMUTILITY

DMUTILITY runs can be continued for those options of the RECOVER statement that

require tape or disk input; that is, a rebuild request or row recovery where USING BACKUP

is specified. If the original request did not load the complete set of files or rows because of

input/output errors or user oversight in specifying the recover source, the continued

request allows the missing files and rows to be added before DMRECOVERY or

RECONSTRUCT is initiated.

To continue a DMUTILITY run, you must supply a task value of 8 and an unchanged

RECOVER request. Only the RECOVER list or RECOVER source statements can be

changed to add the necessary files. If you supply a task value other than 8, the printer

backup file generated by the operation might contain internal diagnostic debugging

information.

Depending on the input request, DMUTILITY uses the RECONSTRUCTINFO or

REBUILDINFO file created by the previous DMUTILITY run and simply adds to it. The

RECONSTRUCTINFO or REBUILDINFO file must be present at the time of the

continuation run. These files are titled as follows:

<database name>/RECONSTRUCTINFO
<database name>/REBUILDINFO

As many continuation runs as necessary can be performed to load the needed files or

rows.

Example

The following example illustrates the use of a continuation request.

Assume the database was dumped to four tapes: T1, T2, T3, and T4. Further assume that

the following REBUILD request was specified:

RUN SYSTEM/DMUTILITY
("<db statement> RECOVER
(REBUILD THRU AUDIT 5) FROM T1,T2,T3");

Because REBUILD must load the entire database, DMUTILITY would notice that some of

the database files were not loaded and would prevent the REBUILD. Using the

continuation request, you could load the missing tape without reloading the other dump

tapes. This is accomplished as follows:

RUN SYSTEM/DMUTILITY
("<db statement> RECOVER
(REBUILD THRU AUDIT 5) FROM T4");
VALUE = 8;

DMRECOVERY would be initiated normally following the successful loading of all

database files.

Using DMUTILITY

4–10 8600 0759-622

DMUTILITY Error Handling

DMUTILITY can encounter input/output errors during the dumping or loading of a database

or partial database. How DMUTILITY handles these errors is described on the following

pages.

Tape Input/Output Errors During Dump

Single Dump Tapes

DMUTILITY handles both hard input/output errors and timeouts that occur while writing to

tape. An appropriate error message is displayed, and the tape on which the error occurred

is labeled BADTAPE and closed. The following message is then displayed:

<error message> AX ’OK’ FOR RETRY OR NEW TAPE

You can enter AX OK or discontinue the job using the DS system command. Entering

AX OK causes DMUTILITY to restart the dump for the tape that failed. If a failure occurs,

try using any of the following techniques to resolve the problem:

• Clean the tape drive.

• Switch reels.

• Clean the tape that has the error.

• Change tape drives.

Other DMUTILITY workers proceed with their dumping while this worker is waiting on

the accept message.

Multidump Tapes

Because this style of dump tape contains multiple backup files that have already been

created successfully, the tape cannot be labeled as BADTAPE without also losing all the

previous work.

When a hard I/O error or timeout occurs while writing to a multidump tape, DMUTILITY

follows one of two courses of action:

• When the error occurs while writing to the first dump on the tape, the events are the

same as if the tape were a single dump tape.

• For creation of another dump on the tape, DMUTILITY returns to the end of the

previous good dump and marks the tape as being closed. This action preserves the

previous data while assuring that new backups do not encounter the bad area again.

DMUTILITY then displays the following message:

<error message> AX ’OK’ FOR RETRY OR NEW TAPE

You can enter AX OK or discontinue the job with the DS system command. Entering

AX OK causes DMUTILITY to create a new multidump tape and restart the dump for

the tape that failed. The title of the fast access directory created for the new tape

contains the current date and time.

Using DMUTILITY

8600 0759-622 4–11

Disk Stream Input/Output Errors During Dump

Input/output errors that occur while DMUTILITY is reading from disk are fatal. DMUTILITY

cannot successfully complete a dump unless all rows specified in the dump list are

dumped. The row on disk that caused the error must be reconstructed before it can be

dumped. In this case, DMUTILITY discontinues itself, leaving its restart files present so it

can restart the dump where it stopped.

The same error conditions are detected by DMUTILITY during a disk stream dump as

during a tape dump. The error handling description under “Tape Input/Output Errors during

Dump” also applies to disk stream I/O errors. Keep in mind that all references to tape

must be translated for disk.

Disk I/O error messages are prefixed by DISKSTREAM to distinguish them from tape

dump I/O error messages and database disk I/O error messages.

DMUTILITY attempts to mark (retitle) the bad disk stream file with the name

BADDISKSTREAMFILE. The following accept message is then displayed:

DISKSTREAM FILE: <error message> - AX 'OK' FOR RETRY OR NEW DUMP

You can enter AX OK or discontinue the job using the DS system command. Entering

AX OK causes DMUTILITY to restart the dump for the disk stream dump file that failed.

Unlike tape dump I/O errors, a disk stream dump I/O error indicates a fault with the disk

pack, rather than a particular file.

On a retry attempt, the bad disk stream file remains resident while DMUTILITY retries the

disk stream dump. At the system ODT, reserve disk areas on the bad disk stream file as

needed; then remove the bad disk stream file.

Tape Input/Output Errors During Load

If DMUTILITY encounters hard input/output errors or timeouts while loading rows from a

dump (DMUTILITY commands RECOVER and COPY), an error message is printed.

When I/O errors occur during a RECOVER command, the following message is displayed:

AX 'RETRY' OR 'SKIP ROW' OR 'QUIT RECOVER'

When I/O errors occur during a COPY command, the following message is displayed:

AX 'RETRY' or 'SKIP ROW' OR 'QUIT COPY'

If RETRY is entered, DMUTILITY starts over at the beginning of the tape and attempts to

read it again.

If SKIP ROW is entered, DMUTILITY tries to pass over the row on the tape that has the

input/output error. If DMUTILITY skips a row in this manner while a RECOVER command

is in progress, DMRECOVERY is not automatically initiated. This action enables you to

reload the row by using a DMUTILITY continuation run before initiating DMRECOVERY.

Using DMUTILITY

4–12 8600 0759-622

If DMUTILITY attempts a RETRY or a SKIP ROW that is unsuccessful, one or more error

messages are displayed.

QUIT RECOVER or QUIT COPY causes the rest of the rows on tape and any subsequent

reels in the tape CYCLE to be skipped. If there are other input tapes, DMUTILITY proceeds

to load those tapes. As with the SKIP ROW response, DMRECOVERY is not initiated

automatically if a RECOVER command was in progress. This allows the missing rows to

be loaded from other tapes.

Disk Stream Input/Output Errors During Load

The same error conditions are detected by DMUTILITY during a disk stream load as during

a tape load. The error handling description under “Tape Input/Output Errors During Load”

also applies to disk stream I/O errors. Keep in mind that all references to tape must be

translated for disk.

Disk I/O error messages are prefixed by DISKSTREAM to distinguish them from tape load

I/O messages and database disk I/O error messages.

Database Disk Input/Output Errors

If DMUTILITY encounters input/output errors (either hardware or

CHECKSUM/ADDRESSCHECK) while accessing database files on disk, the procedure

RETRYIO is called. RETRYIO displays information regarding the error and, if so requested,

retries the input/output operation and displays the results of the retry. If the retry fails,

RETRYIO discontinues the worker that caused the error.

However, if a number of bad rows occurred for a particular DMUTILITY worker during a

dump, the operator can try the LOCKBADROWS option to lock all rows with the read

errors. The operator can then obtain a report from a previous printer file and review the bad

rows assigned to that worker.

DMUTILITY detects ADDRESSCHECK and CHECKSUM errors after successful reads;

therefore, no result descriptor is displayed for these errors. All successful writes are

reread and compared against the original before they are considered acceptable.

RETRYIO Error Messages

When RETRYIO is entered, two messages are displayed. The following text describes the

messages.

RETRYIO Message 1

The first message indicates whether the input/output operation was a read or a write, for

which structure the input/output operation was intended, and the name of the file in

which the error occurred. Examples of the first message follow:

DISPLAY:***READ ERROR ON STR #2, FILE:(DMSII)DB/D/DATA ON DMS.

DISPLAY:***WRITE ERROR ON STR #3, FILE:(DMSII)DB/D/S ON DMS.

Using DMUTILITY

8600 0759-622 4–13

RETRYIO Message 2

The second message gives detailed information about the input/output operation.

Examples of this second message follow:

DISPLAY:***RSLT=CHECKSUM FAILED, FAMILYNAME=DMS, FAMILYINDEX=2,
ADDRESS=108355, ROW=3, BLOCK=42.

DISPLAY:***RSLT=400002860009 : UNIT NOT READY, FAMILYNAME=DMS,
FAMILYINDEX=1, ADDRESS=2917, ROW=1, BLOCK=1.

These examples show RETRYIO messages that give details of failed input/output

operations. No result descriptor is displayed in the first example because DMUTILITY

detects ADDRESSCHECK and CHECKSUM errors only after successful read operations.

The elements of the example are described in Table 4–2.

Table 4–2. Elements of RETRYIO Messages

Message Description System Representation

RSLT I/O result descriptor, followed

by an explanation of the error.

<buffer>.IORESULT

FAMILYNAME Name of the family on which

the file resides.

<fid>.FAMILYNAME

FAMILYINDEX Family index of the unit to

which the I/O operation was

attempted.

<fid>(<row>).FAMILYINDEX

ADDRESS Hardware address of the

block.

<fid>(<row>).

ROWADDRESS.[47.08].

ROW Row of the file on which the

I/O operation was attempted.

<block> DIV <fid>.AREASIZE

BLOCK Relative segment number of

the first segment of the block

of the file on which the I/O

operation was attempted.

<buffer>.IORECORDNUM

After these messages are displayed, the I/O operation is automatically retried once. If this

retry fails, RETRYIO displays a message asking the operator whether or not another retry

should be attempted. If the operator requests another retry, the I/O operation is retried up

to the number of times specified by the value of MAXRETRIES. In this case, if the retry

fails a second time, RETRYIO repeats the DISPLAY messages and the prompt to the

operator. If the operator requests that no more retries are to be performed, the worker

that caused the error is discontinued, and DMUTILITY can be restarted to recover the

work that the worker left unfinished.

Using DMUTILITY

4–14 8600 0759-622

Examples of RETRYIO Messages

Example 1

DISPLAY:***READ ERROR ON STR #19, FILE:(DMSII)DB/D/E/DATA ON DMS.
DISPLAY:***RSLT=CHECKSUM FAILED, FAMILYNAME=DMS, FAMILYINDEX=3,

ADDRESS=671124, ROW=26, BLOCK=263.
DISPLAY:***READ FOR STR #19 ON DMS WAS RETRIED 1 TIMES BEFORE

SUCCEEDING.

In this example, a CHECKSUM error is detected and corrected after one retry.

Example 2

DISPLAY:***READ ERROR ON STR #4, FILE:(DMSII)DB/D/E/DATA
ON DMS...

***RSLT=007080000000 : CHECKSUM FAILED,
FAMILYNAME=DMS,,
FAMILYINDEX=1, ADDRESS=469846, ROW-0, BLOCK=0.

DISPLAY:***READ FOR STR #4 ON DMS HAS BEEN RETRIED
1 TIME WITHOUT SUCCESS.

ACCEPT: R TO RETRY I/O FOR STR #4 ON DMS, QUIT TO
ABORT THIS WORKER
OR LOCKBADROWS TO LOCK ALL BAD ROWS ASSIGNED TO
THIS WORKER BEFORE ABORTING.

In this example, a CHECKSUM error is detected and is not corrected after one retry. The

operator could use the option LOCKBADROWS to lock all the bad rows assigned to this

worker, as follows:

OPERATOR ENTERED: ?AX<MIX #> LOCKBADROWS
DISPLAY:** FATAL ERROR : A WRITEVOLUME HAS BEEN QUIT
- SOME SPECIFIED ROWS HAVE NOT BEEN DUMPED.
#P-DS

Example 3

DISPLAY:***WRITE FOR STR #3 ON DMS HAS BEEN RETRIED 1 TIMES
WITHOUT SUCCESS.

ACCEPT:R TO RETRY I/O FOR STR #3 ON DMS, OR 'SKIP ROW' OR
'QUIT COPY'.

This example shows the prompt displayed after an unsuccessful retry attempt. Any

operator response to this prompt that begins with R is interpreted to mean RETRY.

Example 4

DISPLAY:***WRITE FOR STR #3 ON DMS WAS RETRIED 14 TIMES BEFORE
SUCCEEDING.

This example shows the message displayed after a successful retry attempt. All

successful write operations are reread and compared against the original before they are

considered acceptable.

Using DMUTILITY

8600 0759-622 4–15

Example 5

DISPLAY:***WRITEERROR ON STR #63, FILE:(DMSII)DB/D/ISSET ON DMS.
DISPLAY:***RSLT=400010B20501 : WRITE LOCK OUT, FAMILYNAME=DMS,

FAMILYINDEX=4, ADDRESS=495092, ROW=4, BLOCK=4015.
DISPLAY:***WRITE FOR STR #63 ON DMS WAS RETRIED 1 TIMES BEFORE

SUCCEEDING.

In this example, a transient write operation error is detected and corrected on the first

retry.

Example 6

DISPLAY:***WRITE ERROR ON STR #1, FILE:(DMSII)DB/DATA ON DMS.
DISPLAY:***RSLT=400007840801 : MPX OR CONTROLLER ERROR,

FAMILYNAME=DMS, FAMILYINDEX=1, ADDRESS=493688, ROW=0, BLOCK=0.
DISPLAY:***WRITE FOR STR #1 ON DMS HAS BEEN RETRIED 1 TIMES

WITHOUT SUCCESS.
ACCEPT:R TO RETRY I/O FOR STR #3 ON DMS, OR 'SKIP ROW' OR

'QUIT RECOVER'.

In this example, a write operation error occurred during an attempted recovery of the

database. After the operator has diagnosed and corrected the error, the following

message is displayed:

OPERATOR ENTERED: AX:R.
DISPLAY:***WRITE FOR STR #1 ON DMS WAS RETRIED 2 TIMES BEFORE

SUCCEEDING.

If R is designated, the write operation is retried. If SKIP ROW is designated, the row that

gets the I/O error is omitted. However, if QUIT TAPE is entered, the remaining rows that

are to be loaded by the READVOLUME that handles the I/O error are skipped.

DMUTILITY Warnings During Dump

The database disk I/O errors must not be confused with the warning messages

DMUTILITY issues during a dump. The following warning message appears if the row

was marked by the Accessroutines as having an error in a read operation:

** WARNING: THIS ROW HAS A NON-FATAL READ ERROR AND THE
ROW'S READ ERROR BIT HAS BEEN SET BY THE ACCESSROUTINES.

If you specified AXREADERROR in the dump option, and this read operation error occurs,

DMUTILITY stops and displays a message asking you to enter one of the following

commands:

• OK to continue

• SKIP ROW to skip the row

• TERMINATE to quit the DMUTILITY run

The following warning message appears if the row was locked out by an error in a write

operation:

**WARNING: THIS ROW LOCKED OUT (NOT DUMPABLE).

Using DMUTILITY

4–16 8600 0759-622

If this write operation error occurs, the row must be reconstructed before it can be

dumped.

The following warning message appears if the row was locked out by DMUTILITY during

an unsuccessful reconstruction:

** WARNING: UNRECONSTRUCTED ROW (NOT DUMPABLE).

If this lockout warning message appears, the row must be reconstructed before it can be

dumped.

Using DMUTILITY

8600 0759-622 4–17

Using DMUTILITY

4–18 8600 0759-622

Section 5
Initializing and Maintaining

Both the control file and the database data files must be initialized before any actions can

be performed on a database. The first part of this section describes the initialization and

maintenance of the control file. The second part describes the initialization of database

files.

Note: The tasks identified in this section can be initiated through Database Operations

Center.

Initializing and Maintaining the Control File

All Enterprise Database Server databases depend on the system-maintained control file

for their control information. This file, titled <database name>/CONTROL, must be

present whenever a database is used. The control file is used for database interlock

control (exclusive use), storage of audit control information and dynamic database

parameter values, and file compatibility checking. Because the control file is used for all

database operations, it is important that you are thoroughly familiar with the control file

information contained in Section 2, Control File.

The control file is created and maintained by the control file program,

SYSTEM/DMCONTROL. The control file program requires exclusive use of the control file

to perform the functions described in this section.

Running DMCONTROL

There are two ways to run DMCONTROL. The first method requires that the Data and

Structure Definition Language (DASDL) description file be file-equated to the database

description file. The run statement for this method is as follows:

RUN SYSTEM/DMCONTROL ("<control file parameter>");
FILE DASDL = DESCRIPTION/<database name>;

In some cases, an existing control file, CFOLD, must be used as input. It might be

necessary to file-equate CFOLD. Input commands are submitted to DMCONTROL with a

string parameter.

The second method to run DMCONTROL does not require file equation. For this method,

the run statement is as follows:

RUN SYSTEM/DMCONTROL ("<dmcontrol statement>")

8600 0759-622 5–1

If both forms of the run statement are used in combination, the second method takes

precedence over the first method.

If the DASDL compiler control option DMCONTROL is SET, the DASDL compiler

automatically initiates the control file program as a dependent process to create or update

the control file. DASDL does not process the control file program if the compiler control

option DMCONTROL is RESET, or when compiling for syntax. DMCONTROL is SET by

default.

If you are updating the DASDL, you should remember the following points about the

control file:

• Because the control file is a dynamic extension of the database description file, the

control file program must be run after every nonsyntax DASDL run. When the

database is to be reorganized, the control file is handled in a special fashion by the

REORGANIZATION program.

• The database cannot be in use when the control file program updates the control file.

• Because an old DMSUPPORT library does not accept a newly created control file (their

update levels do not match), it is advisable to run a DASDL update with the compiler

option DMCONTROL equaling RESET to avoid updating the control file until it is time

for the new DMSUPPORT library to be put into production. (Note also that the new

DMSUPPORT library does not accept an old control file.)

• Because there might not be any other way to conveniently get back to the old update

level, the old control file and old database description file should be saved before every

DASDL update.

• When executing a DASDL update on a database in which a partitioned structure has

been deleted, it is imperative that the DMSUPPORT library successfully complete

compilation before the control file update. The control file update requires the use of

the newly compiled DMSUPPORT library. The DASDL compiler option DMCONTROL

should be RESET to prevent execution of SYSTEM/DMCONTROL.

The control file program is also used to recover the control file in the event it is lost. Much

of the information in the control file is recovered from the DASDL description file;

however, some of the information is restored with the aid of the user, for example, the

current audit file number.

SYSTEM/DMCONTROL can also be used to change the pack families upon which the

audit trail, the database structures, and the Enterprise Database Server code files reside

without having to do a DASDL update. However, if you can do a DASDL update, this

capability is not recommended as a replacement. If SYSTEM/DMCONTROL is used, a

family change bit in the control is turned on. Any subsequent DASDL update does not

return the family designations to the pre-SYSTEM/DMCONTROL change specification as

long as the family change bit is 1. The family change bit can be changed using the

OVERRIDE FAMILY command.

The LOCKEDFILE file attribute is set for the control file if the LOCKEDFILE option is

specified in DASDL. When SYSTEM/DMCONTROL is running, it automatically unlocks or

locks the control file as needed. However, the LOCKEDFILE file attribute is always set

Initializing and Maintaining

5–2 8600 0759-622

according to the DASDL specifications once SYSTEM/DMCONTROL has finished. Refer

to the Data and Structure Definition Language (DASDL) Programming Reference Manual

for more information about the LOCKEDFILE option.

The success of a DMCONTROL run can be determined in the Work Flow Language (WFL)

by examining the task attribute TASKVALUE of the DMCONTROL task at the completion

of the run. The task attribute TASKVALUE when used in WFL is called VALUE.

The TASKVALUE task attribute has the following meanings.

Value Meaning

0 OK

1 Error (fatal or nonfatal)

2 Warning given

When DMCONTROL detects an error of any kind, an error message is displayed. This

message generally indicates that DMCONTROL has detected an error in the user input,

such as a syntax error or an incompatibility in the control and description file update levels.

(The printer listing should be examined for a detailed explanation.) Similarly, a warning

message is displayed when a warning has been issued.

DMCONTROL Statement

The control file program syntax is illustrated and explained on the following pages.

Syntax

<dmcontrol statement>

─┬────────────────┬─<control file parameter>──────────────────────────┤
└─<db statement>─┘

<control file parameter>

─┬─ INITIALIZE ─┬──┬────┤
│ ├─ ABSN ───┤
│ ├─ OVERWRITE ────────────────────────────────────┤
│ └─ DONTOVERWRITE ────────────────────────────────┤
├─ UPDATE ──┤
├─ QUIESCERDBRESET ───┤
├─ LOCKEDFILE ───────┬─ SET ─────────┬──────────────────────────┤
│ └─ RESET ───────┘ │
├─ SECURITYADMIN ────┬─ SET ─────────┬──────────────────────────┤
│ └─ RESET ───────┘ │
├─ SENSITIVEDATA ────┬─ SET ─────────┬──────────────────────────┤
│ └─ RESET ───────┘ │
├─ LOGACCESS ──────┬─── <log access enable/disable> ───────┬────┤
│ │ ┌──◄────────── , ──────────────────┐ │ │
│ └─┴─ <log access dmverbs change> ────┴──┘ │
├┬─ LOCKPROGRAM ─┬────┬───────────────┬─────────────────────────┤
│└───── LP ─────┘ ├─ + ───────────┤ │

Initializing and Maintaining

8600 0759-622 5–3

│ └─ - ───────────┘ │
├─ DOC ───── < role-based access control > ─────────────────────┤
├─ MAXUPDATEPERTR = <integer>───────────────────────────────────┤
├─ RECOVER ─┬─ UPDATE ─┬──┤
│ │ └─ AUDITNUM ── = ──<integer>─────────────┤
│ ├─ PARTITIONS ──────────────────────────────────────┤
│ └─ INITIALIZE ─┬────────────────────────────────────┤
│ │ ┌◄────────────── , ──────────────┐ │
│ └─┴─┬─/1\─┬─ OVERWRITE ──────────┬─┴─┤
│ │ └─ DONTOVERWRITE ──────┤ │
│ ├─/1\─┬─ TAPEDIR ────────────┤ │
│ │ └─ NOTAPEDIR ──────────┤ │
│ └─ AUDITNUM ── = ──<integer>─┘ │
├─ OVERRIDE ─┬─ AUDITBUFFERS ───────────────────────────────────┤
│ ├─ AUDITSECTIONS ──────────────────────────────────┤
│ ├─ HL ───┤
│ ├─ FAMILY ───┤
│ ├─ POPULATIONWARN ─────────────────────────────────┤
│ ├─ POPULATIONINCR ─────────────────────────────────┤
│ ├─ USEREORGDB ─────────────────────────────────────┤
│ ├─ DATAPATH ───────────────────────────────────────┤
│ ├─ LOCKEDFILE ─────────────────────────────────────┤
│ ├─ AUDITFAMINDEX ──────────────────────────────────┤
│ ├─ SECURITYADMIN ──────────────────────────────────┤
│ └─ SENSITIVEDATA ──────────────────────────────────┤
│ ┌◄─────────────── , ───────────────┐ │
└─┴─┬─<data file family change>────┬─┴──────────────────────────┘

├─<code file family change>────┤
├─<code file title change>─────┤
├─<security file title change>─┤
├─<data path change>───────────┤
├─<statistics location change>─┤
└─<audit family index change>──┘

<log access enable/disable>

──┬─ SET ──────────┬──┤
└─ RESET ────────┘

<log access dmverb change>

──STRUCTURE ┬─ ALL ───────────────┬─ DMVERBS ─ = ──<dmverb definition>─┤
└─ <structure list> ──┘

<structure list>

┌◄──────── , ────────────┐
──┴─── <structure name> ───┴───┤

<dmverb definition>

──┬──── <dmverb list>────────────────────────────────┬─────────────────┤
└───── ALL───────┬─────────────────────────────────┤

└────── EXCEPT ──<dmverb list>────┘

<dmverb list>

┌◄──────── , ─────────┐
──┴── (─ <dmverb> ──) ─┴───┤

Initializing and Maintaining

5–4 8600 0759-622

<dmverb>

────┬─ ASSIGN ───────────────────────────────────┬──────────────────────┤
├─ ASSIGNLOB ────────────────────────────────┤
├─ CREATESTORE ──────────────────────────────┤
├─ DELETE ───────────────────────────────────┤
├─ DELETELOB ────────────────────────────────┤
├─ FIND ─────────────────────────────────────┤
├─ FINDLOB ──────────────────────────────────┤
├─ FREE ─────────────────────────────────────┤
├─ GENERATE ─────────────────────────────────┤
├─ INSERT ───────────────────────────────────┤
├─ LOCK ─────────────────────────────────────┤
├─ LOCKSTORE ────────────────────────────────┤
├─ REMOVE ───────────────────────────────────┤
└─ SECURE ───────────────────────────────────┘

<data file family change>

──┬─ STRUCTURE ──<structure name>── FAMILY = <family name> ─┬──────────┤
├─ FAMILY <packfamily1> = <packfamily2> ──────────────────┤
├─┬──────────────┬─ AUDITFAMILY = <family name> ──────────┤
│ └─ ALTERNATE ──┘ │
└─┬──────────────┬─ SECAUDITFAMILY = <family name> ───────┘
└─ ALTERNATE ──┘

<code file family change>

──┬─ ACCESSROUTINES ──┬─ FAMILY = ─┬─<family name>─┬──────────────────┤
├─ DMSUPPORT ───────┤ └─ DEFAULT ─────┘
├─ RECOVERY ────────┤
├─ DATARECOVERY ────┤
├─ DMCONTROL ───────┤
├─ DMUTILITY ───────┤
├─ RECONSTRUCT ─────┤
├─ LOBUTILITY ──────┤
├─ REORGANIZATION ──┤
├─ RMSUPPORT ───────┤
├─ COPYAUDITPRIWFL ─┤
└─ COPYAUDITSECWFL ─┘

<code file title change>

──┬─ ACCESSROUTINES ──┬─ TITLE = ──<file title>────────────────────────┤
├─ DMSUPPORT ───────┤
├─ RECOVERY ────────┤
├─ DATARECOVERY ────┤
├─ DMCONTROL ───────┤
├─ DMUTILITY ───────┤
├─ RECONSTRUCT ─────┤
├─ LOBUTILITY ──────┤
├─ REORGANIZATION ──┤
├─ RMSUPPORT ───────┤
├─ COPYAUDITPRIWFL ─┤
└─ COPYAUDITSECWFL ─┘

Initializing and Maintaining

8600 0759-622 5–5

<security file family change>

──┬─/1\─ DBGUARDFILE ───────────┬─ FAMILY = ──┬──<family name>────┬────┤
├─/1\─ CONTROLGUARDFILE ──────┤ └──── DEFAULT ──────┘
├─/1\─ PRIAUDITGUARDFILE ─────┤
├─/1\─ SECAUDITGUARDFILE ─────┤
├─<structure security change>─┤
└─<logical database change>───┘

<security file title change>

──┬─/1\─ DBGUARDFILE ───────────┬─ TITLE = ──<file title>──────────────┤
├─/1\─ CONTROLGUARDFILE ──────┤
├─/1\─ PRIAUDITGUARDFILE ─────┤
├─/1\─ SECAUDITGUARDFILE ─────┤
├─<structure security change>─┤
└─<logical database change>───┘

<structure security change>

── STRUCTURE ──<structure name>── STRSECURITYGUARD ────────────────────┤

<logical database change>

── LOGICALDB ──<logical database name>── GUARDFILE ────────────────────┤

<data path change>

── DBPATH = <path name>──┤

<statistics location change>

── STATISTICSLOC = ─┬─ PRINTER ────┬─────────────────────────────────┤
└─ <packname> ─┘

<audit family index change>

── AUDIT = ─┬── SETFAMINDEX ────────┬─────────────────────────────┤
└── RESETFAMINDEX ──────┘

<role-based access control>

──┬─ <role> ──────────┬──┤
├─ <permission> ────┤
└─ <user id> ───────┘

<role>

┌─────── , ───────────┐
──┬─ ADD ──────────────────┬─ ROLE = ─┴─ <role id> ─────────┴──┤
├─ + ───────────────────┤
├─ DELETE ───────────────┤
└── ─ ───────────────────┘

<role id>

── < identifier > ──┤

Initializing and Maintaining

5–6 8600 0759-622

<permission>

┌────── ,───────────┐
── IN ROLE──<role id> ─┬ ADD ─┬──PERMISSION ─ = ─┴<permission name>──┴─┤

├ + ───┤
├ DELETE┤
└ - ────┘

<permission name>

──┬─ ANALYSIS ────────┬──┤
├─ BACKUP ──────────┤
├─ CONFIGURATION ───┤
├─ DASDLGENERATOR ──┤
├─ QDC ─────────────┤
├─ REORG ───────────┤
├─ RECOVERY ────────┤
├─ RDBADMIN ────────┤
└─ RDBMONITOR ──────┘

<user id>

┌────── ,───────────┐
── IN ROLE──<role id> ─┬ ADD ─┬──USER ─────── = ─┴─<user id>─────────┴─┤

├ + ───┤
├ DELETE┤
└ - ────┘

<user id>

── <identifier>───┤

<db statement>

Communicates the database name and location of its description file to the DMCONTROL

program. Because DMCONTROL is not a tailored program, it needs this user-supplied

information to locate the description file.

A complete description of the database statement can be found in Appendix A, Common

Syntactic Items.

<control file parameter>

Parameters can be expressed using the statements described in the following text.

INITIALIZE

Creates the initial control file for a new database from the information in the description

file. The state flags are initialized; the audit information is initialized; the partition

information is assigned the value NULL; all structure state flags are assigned the value

INITIALIZATION REQUIRED; and the version and creation timestamps for each structure

are marked as INVALID.

Initializing and Maintaining

8600 0759-622 5–7

This function invalidates any existing database files. Therefore, if a control file is resident at

the time of the run, an acceptance message is displayed, and a response from the user is

required to continue the run. This prevents the accidental removal of a good control file.

The INITIALIZE function can also be used to create a temporary control file for use with

the DMUTILITY COPY command. If the control file is lost, an old copy must be obtained

from a DMUTILITY backup dump. However, DMUTILITY requires a control file in order to

perform the COPY. The INITIALIZE function can be used to create a temporary control file,

as the COPY overwrites it with the one from the backup dump.

To ensure a level of continuity between the newly copied control file and the other data

management software, run RECOVER UPDATE on the newly copied file.

The Transaction Processing System (TPS) information in the new control file is assigned

the value 0.

If the RECORDCOUNT option is set in the DASDL, the structure record count is no longer

valid after this operation. A garbage collection with the CHECKRECORDCOUNT option

should be performed to recalculate the number of records in a structure. A warning

message, such as the following, is displayed if the structure is touched by the first opener:

WARNING:
RECORD COUNT function for <structure name> is temporarily
deactivated due to the previous INITIALIZE, RECOVER INITITIALIZE
or RECOVER UPDATE operation. Perform a garbage collection
reorganization with the CHECKRECORDCOUNT option to reactivate
with the correct record count.

ABSN

Resets the audit block serial number (ABSN).

Caution

This option is no longer required or recommended because the ABSN in the

audit file increases automatically. Refer to “Handling Audit Block Serial

Number (ABSN) Rollover” in Section 2 for additional information.

OVERWRITE and DONTOVERWRITE

If neither OVERWRITE nor DONTOVERWRITE is specified and a control file exists,

DMCONTROL waits and issues a message asking if you wish to continue. If OVERWRITE

is specified and a control file for the database exists, DMCONTROL overwrites the

existing control file. If DONTOVERWRITE is specified and a control file for the database

exists, DMCONTROL returns an error.

Initializing and Maintaining

5–8 8600 0759-622

UPDATE

Causes a new control file to be created from the existing control file and the new DASDL

description file after a DASDL update run.

The DASDL update level must be greater than 1. The update level in the old control file

must be no more than one update level less than that in the database description file. If

the old control file format level is greater than the current level, an error results. If the old

control file format level is less than the current format level, it is still accepted. The new

control file has the update level of the database description file, and the current control file

format level.

If a reorganization is in progress, the control file program terminates with an error;

otherwise, the state flags are transferred from the old control file to the new control file.

The dynamic database parameters are transferred from the new database description file.

The ranges for audit to designated serial numbers are also transferred from the description

file. The dynamic audit information is transferred from the old control file. If the current

tape serial number is not within the new range of designated serial numbers, it is changed

to the start of the new range. Deleted structures are dropped out of the control file.

Partitioned records relating to a deleted partitioned structure are marked as being deleted

within the control file. Added structures are marked as INITIALIZATION REQUIRED.

The scratch pool name for the audit tape is also transferred.

For a reorganized structure, the reorganization alters the creation timestamp when it

reorganizes the structure. In addition, the reorganization alters the format timestamp

appropriately if it changes the format of the structure. Because partitions cannot be

reorganized, the partition records section of the control file remains unaltered.

If you alter pack assignments using SYSTEM/DMCONTROL, the family change bit in the

control file is set to 1. As a result, any future DASDL updates or reorganizations do not

affect the family specifications in the control file. If you want the DASDL update or the

reorganization to update pack assignments, then before performing the DASDL update or

reorganization reset the family change bit in the control file by using

SYSTEM/DMCONTROL with the OVERRIDE FAMILY option.

After a file or a record format reorganization completes, the description file contains the

new reorganization information as well as the old information. After the reorganization, if

you try to update the control file without first recompiling the DASDL source file, the

control file update fails with a format timestamp mismatch on the reorganized structure.

To avoid this situation

• Remove any reorganization statements from the DASDL source file after a file or a

record format reorganization.

• Recompile the DASDL source file with the UPDATE option to remove old information

from the description file.

Once the old reorganization information is removed from the description file,

DMCONTROL updates can process successfully.

Initializing and Maintaining

8600 0759-622 5–9

QUIESCERDBRESET

Disables the Remote Database Backup capability of a database copy in the state of

quiesce. This operation is required before the copy can be used for processing.

LOCKEDFILE

Sets or resets the LOCKEDFILE file attribute of the database files (including the control

file) to TRUE or FALSE. It allows the LOCKEDFILE attribute setting to be specified without

performing a DASDL update.

Specifying LOCKEDFILE SET, sets the LOCKEDFILE file attribute of all the database files

to TRUE.

Specifying LOCKEDFILE RESET, resets the LOCKEDFILE file attribute of all the database

files to FALSE.

The modification of the LOCKEDFILE attribute will take effect on the next created audit

file.

DMUTILITY sets the LOCKEDFILE file attribute on all dump files when LOCKEDFILE is set

in the control file.

SECURITYADMIN

This option sets the SECURITYADMIN file attribute of the control file, data files, new

audits, and backup files. It allows the SECURITYADMIN attribute to be SET or RESET

without performing a DASDL update. Refer to the DASDL Programming Reference

Manual for SECURITYADMIN restrictions.

Specifying SECURITYADMIN SET sets the SECURITY ADMIN file attribute of all the

database files, including the control, audit, and backup files to TRUE. Specifying

SECURITYADMIN RESET resets the SECURITY ADMIN file attribute of all of the database

files, including the control, audit, and database backup files to FALSE. By default, this

attribute is RESET.

The SECURITYADMIN attribute for data files and the control file is modified immediately.

The SECURITYADMIN attribute for audit files is modified at the next audit switch for the

new audit file. The modified SECURITYADMIN attribute is applied when new backup files

are created.

When SECURITYADMIN is set for a database, it places restrictions on how a database is

maintained. For example, only a security administrator (someone who has a usercode

designated as PU (privilege user) and has SECADMIN privileges) can copy files with the

SECURITYADMIN file attribute set. In addition, only a security administrator can perform a

backup procedure such as DMUTILITY DUMP. For additional information, refer to the

Security Overview and Implementation Guide.

Initializing and Maintaining

5–10 8600 0759-622

The OVERRIDE SECURITYADMIN option causes the database override SECURITYADMIN

change bit in the control file to be RESET. Subsequent DASDL updates can then set the

SECURITYADMIN designation to the values specified in the DASDL source.

SENSITIVEDATA

Sets the SENSITIVEDATA file attribute of the database files (including the control, audit

and backup files) to TRUE or FALSE. Use this option to specify the SENSITIVEDATA

attribute setting without performing a DASDL update.

Specifying SENSITIVEDATA SET sets the SENSITIVEDATA file attribute of all the database

files (including the control, audit and backup files) to TRUE.

Specifying SENSITIVEDATA RESET resets the SENSITIVEDATA file attribute of all the

database files (including the control, audit and backup files) to FALSE. By default, this

attribute is RESET.

The SENSITIVEDATA file attribute of the data and control files is modified immediately.

The SENSITIVEDATA file attribute of the audit files is modified at the next audit switch for

the new audit file. The modified SENSITIVEDATA attribute is applied when the new

backup files are created.

Refer to the File Attributes Programming Reference Manual for additional information

about the SENSITIVEDATA file attribute.

LOGACCESS

Enables or disables all LOGACCESS-capable structures in the database or changes the

DMVERB list for a LOGACCESS-capable structure. The LOGACCESS command can only

be performed when the database is closed, and the changes take effect on the next

database open.

Specifying LOGACCESS SET enables all LOGACCESS-capable structures in the database.

Specifying LOGACCESS RESET disables all LOGACCESS-capable structures in the

database.

The <dmverb list> is the list of permitted verbs.

Specifying the <log access dmverb change> option allows changing the DMVERB list for

a LOGACCESS-capable structure without performing a DASDL update. The <structure

name> is a data set name and changes to the data set are applied to its associated sets

and or subsets.. The data set must be LOGACCESS-capable, and duplicate structure

specification causes a syntax error.

When specifying the EXCEPT <dmverb list> option, the <dmverb list> construct

following the word EXCEPT indicates the DMVERBS that are to be removed from the list

of DMVERBS that were permitted by the ALL option

Initializing and Maintaining

8600 0759-622 5–11

When specifying ALL as the structure name, the change applies to all LOGACCESS-

capable data sets in the database.

The ALL option in <dmverb definition> specifies all DMVERBS. While the DMVERB list

displayed in the control file listing for the structure includes FINDLOB, ASSIGNLOB and

DELETELOB, these DMVERBS only apply to XE structures.

Examples

The following are LOGACCESS examples.

Example 1

The following example changes the DMVERB list for all LOGACCESS-capable structures

in the database so only the DELETE and LOCKSTORE commands can be logged.

R$SYSTEM/DMCONTROL ("DB=MYDB LOGACCESS STRUCTURE ALL DMVERBS =
(DELETE,LOCKSTORE)");

Example 2

The following example changes the DMVERBS list for structure D1 and D2 to perform

logging on the LOCK DMVERB and for structure D3 to perform logging on the

LOCKSTORE DMVERB.

R$SYSTEM/DMCONTROL ("DB=MYDB LOGACCESS
STRUCTURE D1, D2 DMVERBS=(LOCK),
STRUCTURE D3 DMVERBS = (LOCKSTORE)");

Note: This function can only be performed when the database is closed; the changes

take effect on the next database open. On the next database open, a DMS ACCESS log

entry which shows the mix number and BOT timestamp of the last DMCONTROL

LOGACCESS run, is written to the system log.

Example 3

The following log entry example shows the information on the last DMCONTROL

LOGACCESS RESET statement.

DMS 7808 (PROD)OBJECT/HLI/TESTDB ON TESTPK. (STACK 09C1)
DATABASE ACCESS : DISABLE LOGACCESS
USERCODE : PROD
SOURCENAME : US-USER1/LPROD/263808/CANDE/1
DATABASE NAME : (PROD) TESTLOBDB (MIX 7809,

STACK 09C1)
STRUCTURE NAME : *
DMCONTROL MIX : 7807
DMCONTROL BOT : 08/14/2013 14:39:52

Example 4

The following log entry example shows the information on the last DMCONTROL

LOGACCESS statement which changed the DMVERB list on structures.

Initializing and Maintaining

5–12 8600 0759-622

DMS 7669 (PROD)OBJECT/HLI/TESTDB ON TESTPK. (STACK 0862)
DATABASEACCESS : CHANGE VERBLIST
USERCODE : PROD
SOURCENAME : US-USER1/LPROD/263808/CANDE/1
DATABASE NAME : (PROD) TESTLOBDB (MIX 7670,

STACK 0862)
DMCONTROL MIX : 7668
DMCONTROL BOT : 08/14/2013 14:17:26

Refer to the “Logging Data Access” section later in this guide for additional information.

LOCKPROGRAM

Initiates the database stack, DMSUPPORT, and RDBSUPPORT as locked processes by

making use of the LP (Lock Program) MCP system command. This prevents these three

processes from being discontinued. For additional information, refer to LP (Lock Program)

in the System Commands Reference .

By default, the LOCKPROGRAM option is reset.

The LOCKPROGRAM option can be changed either by a DASDL update or by performing a

DMCONTROL operation. The value of the option is listed in the control file content.

DOC

Role-based access control enables administrative access to a database from Database

Operations Center (DOC) in order to prevent unintended or accidental access by any user

for a given Database Operations Center-supported function. It allows the owner of an

Enterprise Database Server database defined in the DASDL source file to provide

additional restrictions for Database Operations Center users. These restrictions include

accessing the database as well as accessing certain operations of the database. Database

Operations Center role-based access control allows a database owner to define a role that

permits certain predefined permissions of Database Operations Center task groups. After

defining the roles, the owner can assign roles to each usercode.

Database Operations Center facilitates the policy setting of role-based access control for a

database. Only the user who is defined as the owner of the DASDL-defined database can

use role-based access control to perform the policy management. Once a policy is

created, it stays in the control file of the database. Database Operations Center users have

rights to perform database tasks as defined in the security policies.

The following are valid permissions and the permissions contained in each of them:

ANALYSIS

• List Audit File Contents (Print Audit)

• List Database Contents (DMUTILITY LIST)

• List the Status of Database files

• Monitor Database and Status

Initializing and Maintaining

8600 0759-622 5–13

• Check Database Integrity (DBCertification)

• Verify Database backup

• List Backup Directory

• Verify Audit Files

• View Multi-Dump Tape Directories

• View Audit File Tape Directory

BACKUP

• Copy a Dump from disk

• Create Database backup

• Duplicate Database backup

• Create Multi-Dump Tape Directories

• Copy Audit files

• Create Audit file Tape Directory

• Verify Database backup

• List Backup Directory

• Verify Audit Files

• View Multi-Dump Tape Directories

• View Audit File Tape Directory

• Maintain Catalog backup

CONFIGURATION

• Control File Override Functions

• Unlock Control File

• Update Control File

• Set/Reset LOCKEDFILE Option

• Set/Reset Audit Family Index Option

• Change File Titles/Family

• Change Data File Family

• Change Security File Title

• Change Data Path

• Change Statistics Location

• LOB Maintenance

• Maintain Catalog backup

Initializing and Maintaining

5–14 8600 0759-622

DASDL GENERATION

• Compile Database from DASDL

• Create new Control File

• Initialize Database

QDC

• Suspend Database

• Resume Database

• Create Quiesce database Copy

• Disable/Enable Database Access

REORGANIZATION

• Defragment Database

• Reorganize Database (Buildreorg/Run Reorg)

• Reorganization Wizard

RECOVERY

• Partial/Whole Database Recovery

• Recover Database

• Recover Control File

• Restore Control File from QDC

• Restore from Quiesce Database Copy

• Copy Database from Backup

• Reset Database In-use bit

RDBADMIN

• Initialize the Remote Auditing Control File

• Modify or View Host Information

• Modify the Audit File Transmission Mode

• Enable the Remote Auditing Capability

• Clone the DB

• Clone Specific Structures

• Perform a Host Takeover or Type Change

• Acknowledge the Manual Transfer of Audit file

• Cancel the Remote Auditing Capability

Initializing and Maintaining

8600 0759-622 5–15

RDBMONITOR

• View Remote Audit Status

• View Remote Audit Statistics

Notes:

• Users with privileged usercodes can use CANDE, but not Database Operations

Center, to define or redefine the Database Operations Center role-based access

control for the database.

• Once Database Operations Center role-based access control is set-up, no user is

permitted to access the database from Database Operations Center unless

authorized.

• Once Database Operations Center role-based access control is set-up, the database

owner is added to the SUPERUSER role. The SUPERUSER role allows users

unrestricted access to all forms in Database Operations Center for the specific

database. The user is assigned all permissions of Database Operations Center task

groups, and these permissions cannot be removed by any privileged user codes until

the database owner is changed.

Examples

The following is an example of how to create a role:

RUN $SYSTEM/DMCONTROL ("DB=MYDB DOC ADD ROLE = GROUP1ROLE")

The following example assigns permissions to a role:

RUN $SYSTEM/DMCONTROL("DB = MYDB DOC IN ROLE GROUP1ROLE
ADD PERMISSION = ANALYSIS")

The following example assigns users to a role:

RUN $SYSTEM/DMCONTROL("DB = MYDB DOC IN ROLE GROUP1ROLE ADD
USER = MYUC1,MYUC2")

The following example deletes permissions from a role:

RUN $SYSTEM/DMCONTROL("DB = MYDB DOC IN ROLE GROUP1ROLE
DELETE PERMISSION = ANALYSIS")

The following example deletes users from a role:

RUN $SYSTEM/DMCONTROL("DB = MYDB DOC IN ROLE GROUP1ROLE
DELETE USER=MYUC1")

The following example deletes a role:

RUN $SYSTEM/DMCONTROL("DB = MYDB DOC DELETE ROLE =GROUP1ROLE")

Initializing and Maintaining

5–16 8600 0759-622

MAXUPDATEPERTR

MAXUPDATEPERTR allows you to control the maximum number of updates per

transaction. The value of MAXUPDATEPERTR must be greater than 0 and not exceed

50,000. The update value of MAXUPDATEPERTR is affected at the next syncpoint. When

the limit is exceeded, all of the previous updates are backed-out and the program receives

a LIMITERROR 8. This feature can only be turned-off by performing a DASDL update.

RECOVER UPDATE

If the current control file is lost or corrupted, the RECOVER UPDATE function can be used

to create a good control file from an old copy of the control file, the current database

description file, and user input.

The control file used for recovery should be copied from the most recent DMUTILITY

dump. For a tape dump, the control file is always dumped by DMUTILITY to cycle one,

version one, of the dump tape. For a disk stream dump, the control file is always present

on the disk stream file. For both tape dumps and disk stream dumps, the control file is

present even if the control file was not specified in the dump list when the dump was

taken.

For proper recovery of the control file, file discontinuities must not have occurred.

Recovering from a control file that was dumped prior to a file discontinuity can invalidate

dumps or cause incorrect recovery of database files. For this reason, it is mandatory that a

dump of all affected structures be taken whenever a discontinuity occurs in any structure.

Note: Using the RECOVER UPDATE option disables the Remote Database Backup

capability of a database. For more information on recovering lost and corrupted database

files in a Remote Database Backup environment, refer to the Remote Database Backup

Operations Guide.

A check is performed for RECOVER UPDATE to ensure that the description file and the old

control file have compatible update levels. If the description file is marked as requiring

reorganization, the update levels must be identical. If the description file is not marked as

requiring reorganization, then the update level of the old control file must be the same as,

or one less than, the description file update level.

If the update levels are not compatible, the RECOVER UPDATE function is not allowed and

the following error message is displayed:

GIVEN CONTROL FILE TOO OLD FOR PROPER CONTROL FILE RECOVERY

When this level of incompatibility occurs and a proper control file is not available,

RECOVER INITIALIZE must be used to recover the control file.

During control file recovery, version timestamps are obtained from the database files, and

the creation timestamps are taken from the old control file. The database description file is

used to initialize the rest of the control file.

You are asked to supply information which cannot be correctly recovered from either the

current database description file or the old control file.

Initializing and Maintaining

8600 0759-622 5–17

If the database is audited, you are asked for the current audit file number. You can specify

the current audit file number through the AUDITNUM = <integer> syntax. The database

in-use bit is turned on, forcing DMRECOVERY to run. DMRECOVERY then assigns the

next audit block serial number in the control file.

The RECOVER UPDATE function should be used when recovering a control file that

contains preallocated direct data set information. Preallocated direct data sets contain a

format level of 1 in the control file, indicating that word 0 (zero) of block 0 (zero) contains a

DATAEOF value. If a control file is used which indicates a conventional direct data set

(format level 0) when the direct data set is actually preallocated (format level 1), then all

software functions correctly, except that DMUTILITY dumps both the conventional and

preallocated rows of the file.

If the transaction file number in the TPS information of the old control file is greater than

zero, you are asked for the current transaction file number. In addition, if you input a

nonzero value for the transaction file number, you are asked for the current transaction

block number and current transaction offset. If you input the value 0 for the current

transaction number, the transaction block number and offset are automatically assigned

the value 0 by DMCONTROL.

If you encounter difficulties while using the RECOVER UPDATE option, refer to “Potential

Problems with RECOVER UPDATE” later in this section.

If any settings associated with either the POPULATIONINCR or POPULATIONWARN

option have been changed through the VDBS interface, you can reenter the settings the

next time the database is active. The preferred alternative is to make the changes by

performing a DASDL update. This action has the advantage of also updating the

description file.

If the POPULATIONINCR option is defined in the schema, performing a RECOVER

UPDATE resets the AREAS value to the value contained in the description file. If an

automatic population increase took place, the new control file is adjusted to match the

physical data file the first time an update program opens the affected structures.

If the RECORDCOUNT option is set in the DASDL, the structure record count is no longer

valid after this operation. A garbage collection with the CHECKRECORDCOUNT option

should be performed to recalculate the number of records in a structure. A warning

message, such as the following, is displayed if the structure is touched by the first opener:

WARNING:
RECORD COUNT function for <structure name> is temporarily
deactivated due to the previous INITIALIZE, RECOVER INITITIALIZE
or RECOVER UPDATE operation. Perform a garbage collection
reorganization with the CHECKRECORDCOUNT option to reactivate
with the correct record count.

RECOVER PARTITIONS

Used only when RECOVER UPDATE or RECOVER INITIALIZE fails to recover the partition

information in the control file. This situation occurs if the PARTITIONINFO data set needs

to be reconstructed. The PARTITIONINFO data set should be reconstructed, and then

RECOVER PARTITIONS used to finish recovery of the control file.

Initializing and Maintaining

5–18 8600 0759-622

RECOVER INITIALIZE

Used to create a usable control file when the control file is lost or corrupted, and a control

file cannot be loaded from any DMUTILITY dump tape. This function creates a new control

file from the database description file and user input. The creation timestamp of all

structures is assigned the value 0. Therefore, you should immediately dump the entire

database after using this function. The TPS information in the new control file is also

assigned the value 0.

The control file should be recovered using the RECOVER INITIALIZE function only as a last

resort. RECOVER UPDATE is the preferred recovery method.

If any settings associated with either the POPULATIONINCR or POPULATIONWARN

option have been changed through the Visible DBS interface, you can reenter the settings

the next time the database is active. The preferred alternative is to make the changes by

performing a DASDL update. This action has the advantage of also updating the

description file.

If neither OVERWRITE nor DONTOVERWRITE is specified and a control file exists,

DMCONTROL waits and issues a message asking if you wish to continue. If OVERWRITE

is specified and a control file for the database exists, DMCONTROL overwrites the

existing control file. If DONTOVERWRITE is specified and a control file for the database

exists, DMCONTROL returns an error.

You have the option to specify the current audit file number through the

AUDITNUM = <integer> syntax. If you do not, DMCONTROL prompts you for the current

audit file number. You also have the option to specify through the TAPEDIR or NOTAPEDIR

syntax whether a tape directory is present. If you do not, DMCONTROL prompts you for

information on the current directory.

If you do not want DMCONTROL to prompt you, you must specify information for all of

the following syntax: OVERWRITE or DONTOVERWRITE, AUDITNUM, and TAPEDIR or

NOTAPEDIR.

If the RECORDCOUNT option is set in the DASDL, the structure record count is no longer

valid after this operation. A garbage collection with the CHECKRECORDCOUNT option

should be performed to recalculate the number of records in a structure. A warning

message, such as the following, is displayed if the structure is touched by the first opener:

WARNING:
RECORD COUNT function for <structure name> is temporarily
deactivated due to the previous INITIALIZE, RECOVER INITITIALIZE
or RECOVER UPDATE operation. Perform a garbage collection
reorganization with the CHECKRECORDCOUNT option to reactivate
with the correct record count.

OVERRIDE AUDITBUFFERS

Causes the database OVERRIDE AUDITBUFFERS change bit in the control file to be

turned off so that the subsequent DASDL update returns the audit buffers designations to

the audit buffers specified in the DASDL source and changes the audit buffers value of the

code files to the value specified in the DASDL source.

Initializing and Maintaining

8600 0759-622 5–19

If the audit buffers change bit is 1, the audit buffers specification in the new control file

remains as it was in the old control file.

If you decide to change the value for audit buffers by way of a DASDL update after you

change the value by using the Visible DBS command AUDIT BUFFERS, you must specify

OVERRIDE AUDITBUFFERS. The override enables the system to recognize that the

DASDL update value takes precedence over the value you specified with the Visible DBS

command AUDIT BUFFERS.

OVERRIDE AUDITSECTIONS

Causes the database OVERRIDE AUDITSECTIONS change bit in the control file to be

turned off so that the subsequent DASDL update returns the audit sections designations

to the audit sections specified in the DASDL source and changes the audit sections value

of the code files to the value specified in the DASDL source.

If the audit sections change bit is 1, the audit sections specification in the new control file

remains as it was in the old control file.

If you decide to change the value for audit sections by way of a DASDL update after you

change the value by using the Visible DBS command AUDIT SECTIONS, you must specify

OVERRIDE AUDITSECTIONS. The override enables the system to recognize that the

DASDL update value takes precedence over the value you specified with the Visible DBS

command AUDIT SECTIONS.

OVERRIDE HL

Causes the database in-use bit (also referred to as the halt/load bit) in the control file to be

changed to zero. This option is only valid for unaudited databases.

In general, when the database in-use bit is on, questions are raised about the integrity of

the database; therefore, OVERRIDE HL is intended for use only in very limited

circumstances when you have more knowledge about the state of the database than does

the control file. It is not an alternative to a normal recovery with reloading and

reprocessing. Using this function requires the utmost care; it must not be used when

there is any doubt about the state of the database.

Error messages are produced if the database is audited, or if the database in-use bit is

initially off.

The control file program requires exclusive use of the control file in order to perform this

function.

OVERRIDE FAMILY

Causes the database family change bit in the control file to be turned off so that the

subsequent DASDL update returns the family designations to the family names specified

in the DASDL source and changes the name texts of the code files to the names specified

in the DASDL source.

Initializing and Maintaining

5–20 8600 0759-622

If the family change bit is 1, the update of the control file is done directly on the current

control file in order to retain the family specifications.

If you decide to change the family name by way of a DASDL update after you have

changed the name by using a DMCONTROL operation, you must perform a control file

override. The override enables the system to recognize that the family name in the DASDL

update takes precedence over the name you specified in the DMCONTROL operation.

OVERRIDE GUARDFILETITLE

Causes the database security file change bit in the control file to be turned off so that a

subsequent DASDL update returns the security file designations to the titles specified in

the DASDL source.

When the database security file change bit is set, the DASDL changes to the security file

titles stored in the control file are ignored in order to retain the security specifications

modified through a DMCONTROL operation.

If you decide to change any of the security file titles by way of a DASDL update after you

have changed a title by using a DMCONTROL operation, you must perform a control file

override. The override enables the system to recognize that the security title in the DASDL

update takes precedence over the title you specified in a previous DMCONTROL

operation.

OVERRIDE POPULATIONWARN

Causes the database population warning protection bit in the control file to be reset so that

the next DASDL update changes the POPULATIONINCR settings to the values specified in

the DASDL source.

If you decide to change the value for POPULATIONWARN by way of a DASDL update after

you change the value by using the Visible DBS command POPULATIONWARN, you must

specify OVERRIDE POPULATIONWARN. The override enables the system to recognize

that the DASDL update value takes precedence over the value you specified with the

Visible DBS command POPULATIONWARN.

OVERRIDE POPULATIONINCR

Causes the database population increment protection bit in the control file to be reset so

that the next DASDL update changes the POPULATIONINCR settings to the values

specified in the DASDL source.

If you decide to change the value for POPULATIONINCR by way of a DASDL update after

you change the value by using the Visible DBS command POPULATIONINCR, you must

specify OVERRIDE POPULATIONINCR. The override enables the system to recognize that

the DASDL update value takes precedence over the value you specified with the Visible

DBS command POPULATIONINCR.

Initializing and Maintaining

8600 0759-622 5–21

OVERRIDE USEREORGDB

Discontinues a USEREORGDB option that has been recessed and that you no longer want

to complete. You can also use this option to reset the USEREORGDB status when a

REORGDB reorganization fails.

OVERRIDE DATAPATH

Causes the database override datapath change bit in the control file to be reset.

Subsequent DASDL updates can then set the DBPATH designation to the values specified

in the DASDL source.

Refer to Section 16, Using Permanent Directory Databases.

OVERRIDE LOCKEDFILE

Causes the database override LOCKEDFILE change bit in the control file to be reset.

Subsequent DASDL updates can then set the LOCKEDFILE designation to the values

specified in the DASDL source.

OVERRIDE SECURITYADMIN

Causes the database override SECURITYADMIN changed bit in the control file to be reset.

Subsequent DASDL updates can set the SECURITYADMIN designation to the values

specified in the DASDL source

OVERRIDE SENSITIVEDATA

Causes the database override SENSITIVEDATA changed bit in the control file to be reset.

Subsequent DASDL updates can set the SENSITIVEDATA designation to the values

specified in the DASDL source.

OVERRIDE AUDITFAMINDEX

Causes the database override famindex bit in the control file to be reset. Subsequent

DASDL updates can then set either SETFAMINDEX or RESETFAMINDEX designation to

the values specified in the DASDL source.

<data file family change>

Allows changes to the pack family specifications of structures, the primary audit, and the

secondary audit, as described in the following text.

To ensure the DMCONTROL statement changes the family in the correct control file when

the database is a quiesce database copy or has been used to create a quiesce database

copy, CF and CFOLD must be file-equated. If file equation is not used, a syntax error is

issued, and the DMCONTROL statement does not update the control file.

Initializing and Maintaining

5–22 8600 0759-622

For more information about quiesce database copies, refer to Section 6, Backing Up a

Database.

STRUCTURE

Changes the pack family designation of structure <structure name> to family <family

name>. A structure name can be a data set, set, or subset name. It also can be the alias

name of a data set, set, or subset. Refer to the Data and Structure Definition Language

(DASDL) Programming Reference Manual for additional information about alias names.

Only structures that have physical data (data sets and sets) can have their family

designation changed. Structures that do not have physical data, such as Access

structures, are treated as though they could not be found, and an appropriate message is

returned.

If a structure is added to an existing database, the new structure is created on the default

pack or on the pack designated for the structure in the DASDL source file. Any previous

runs of SYSTEM/DMCONTROL that altered pack designations have no effect on the new

structure. To alter the pack designation for the new structure, run SYSTEM/DMCONTROL

again.

In the following example, the family of the structure INVENTORY is changed to the family

INVENTORYDATA. When the database is opened, the Accessroutines opens the

INVENTORY structure on the pack family INVENTORYDATA:

STRUCTURE INVENTORY FAMILY = INVENTORYDATA

FAMILY

Changes the pack family designation of all structures that reside on the family

<packfamily1> to the family <packfamily2>. If no structures reside on <packfamily1>, a

warning is returned when this function is attempted.

If a structure is added to an existing database, the new structure is created on the default

pack or on the pack designated for the structure in the DASDL source file. Any previous

runs of SYSTEM/DMCONTROL that altered pack designations have no effect on the new

structure. To alter the pack designation for the new structure, run SYSTEM/DMCONTROL

again.

In the following example, all structures that resided on the family INVENTORYDATA are

opened on the family DBDATA:

FAMILY INVENTORYDATA = DBDATA

AUDITFAMILY

Changes the designation of the pack family on which the audit trail resides to the family

<family name>. If the database is not audited or the audit is being directed to tape, a

warning message is returned when this function is attempted.

In the following example, the audit trail is created on the family AUDITPACK:

Initializing and Maintaining

8600 0759-622 5–23

AUDITFAMILY = AUDITPACK

Note: If you set the DASDL audit trail attribute COPY, then the disk audits are copied to

tape automatically. If you set this DASDL attribute and change the primary or secondary

audit from one pack to another, then the last disk audit written to the old destination is not

copied automatically to tape. Instead, you must manually initiate the COPYAUDIT job to

back up the last disk audit on the old pack.

ALTERNATE AUDITFAMILY

Changes the designation of the pack family on which the alternate audit trail resides to the

family <family name>. If the database is not audited or the alternate audit is being directed

to tape, a warning message is returned when this function is attempted. The semantics

for this function are similar to the AUDITFAMILY command.

SECAUDITFAMILY

Changes the designation of the pack family on which the audit trail is duplicated to the

family <family name>. If the database specification does not include duplicated audit, or if

the duplicated audit trail is being directed to tape, the command is not processed and a

warning message is returned.

In the following example, the duplicated audit trail is created on the family

DUPAUDITPACK:

SECAUDITFAMILY = DUPAUDITPACK

ALTERNATE SECAUDITFAMILY

Changes the designation of the pack family on which the alternate audit trail is duplicated

to the family <family name>. If the database is not audited or the alternate audit is being

directed to tape, a warning message is returned when this function is attempted. The

semantics for this function are similar to the SECAUDITFAMILY command.

<code file family change>

Changes the family of the designated code file or COPYAUDIT WFL job. You can either

designate a family or use the keyword DEFAULT. The DEFAULT keyword causes the code

file or WFL job to have no family designation. Therefore, the FAMILY DISK specification of

the user opening the database determines the location of the code file.

To ensure the DMCONTROL statement changes the code file title in the correct control

file when the database is a quiesce database copy or has been used to create a quiesce

database copy, CF and CFOLD must be file-equated. If file equation is not used, a syntax

error is issued, and the DMCONTROL statement does not update the control file.

For more information about quiesce database copies, refer to Section 6, Backing Up a

Database.

Initializing and Maintaining

5–24 8600 0759-622

Use the COPYAUDITPRIWFL option to change the family of the COPYAUDIT WFL job

used to copy the primary audit file. Use the COPYAUDITSECWFL option to change the

family of the COPYAUDIT WFL job used to copy the secondary audit file.

In the following example, the pack family of the DMSUPPORT code file is changed to

DBDATA:

DMSUPPORT FAMILY = DBDATA

<code file title change>

Changes the title of the designated code file. The title can include a usercode, code file,

and family. To override the title change, use the OVERRIDE FAMILY command. This

command enables you to update the code file title in the control file without performing a

DASDL update.

In the following example, the title of the DMSUPPORT code file has been changed to

(PROD) DMSUPPORT/TESTDB ON DBDATA:

DMSUPPORT TITLE = (PROD) DMSUPPORT/TESTDB ON DBDATA

<security file title change>

Changes the title of the designated security file. The title can include a usercode, code file,

and family name. To override the title change, use the OVERRIDE GUARDFILETITLE

command. This command enables you to update the security file titles in the control file

without performing a DASDL update. For a security file title change to take effect, the

SECURITYGUARD option must be specified in DASDL first. Once the guard file title is

defined in DASDL, the title can then be changed using DMCONTROL.

In the following example, the title of the guard file for the secondary audit is changed to

(PROD) XXX on DBDATA:

DB=TEST SECAUDITGUARDFILE TITLE = (PROD) XXX on DBDATA

<data path change>

Changes the permanent directory location. When making a data path change, you must

move the data files, audit files, control file, and the tailored software to the new location.

Once you have moved a database to a location that differs from the specified DASDL

source (a new DBPATH specification), equate the files CFOLD and CF when running

DMCONTROL. For additional information, refer to “<data file family change>” and

“<code file family change>” earlier in this topic.

Also, refer to Section 16, Using Permanent Directory Databases.

<statistics location change>

Changes the location of the statistics report. If you choose to specify the packname, the

statistics output is reported as follows:

Initializing and Maintaining

8600 0759-622 5–25

<dbusercode>DBSTATS/<dbname>/YYYYMMDD/HHMMSS ON <packname>

If it is a permanent directory database, the DATAPATH is assumed and stored as the

following, where YYYYMMDD and HHMMSS are the date and time when the statistics

are generated:

<path name>/DBSTATS/<dbname>/YYYYMMDD/HHMMSS ON <packname>

<audit family index change>

SETFAMINDEX

Forces all rows of a sectioned audit file to be assigned to the same family.

RESETFAMINDEX

Enables the MCP to assign rows of a sectioned audit file using a round-robin method.

RESETCLONED option

The RESETCLONED option is intended for internal use only in the Remote Database

Backup environment by clone WFL jobs generated by Database Operations Center. For

additional information about the clone process in the Remote Database Backup

environment, refer to the Remote Database Backup Planning and Operations Guide.

SETCLONED option

The SETCLONED option is intended for internal use only in the Remote Database Backup

environment by clone WFL jobs generated by Database Operations Center. For additional

information about the clone process in the Remote Database Backup environment, refer

to the Remote Database Backup Planning and Operations Guide.

Potential Problems with RECOVER UPDATE

The following text lists problems that can occur when you use the RECOVER UPDATE

option with the TPS RECOVERTPSINFO option. The text also identifies solutions for the

problems.

Example 1

No TPS users exist but the CFTPSFLAG flag is corrupted and now has a nonzero value.

RECOVERTPSINFO asks the nonTPS user to enter the transaction file number.

Solution

The solution is to transmit the number 0. All other TPS information is assigned the value 0,

which is normal for a nonTPS user.

Initializing and Maintaining

5–26 8600 0759-622

Example 2

TPS users exist but the CFTPSFLAG flag is corrupted and now has the value 0.

RECOVERTPSINFO automatically sets all TPS information to the value 0. If the TPS

TRHISTORY file has audited a transaction and the TPS user reinitiates the TPS

TRHISTORY file, the user loses all transactions that would have been processed between

the latest transaction in the TPS TRHISTORY file.

Solution

The solution is to manually correct the TPS information in the new control file after the

RECOVER UPDATE run, or to perform a RECOVER UPDATE run again using the old control

file.

Example 3

A TPS user mistakenly inputs the number 0 instead of a nonzero value for the CFTPSFLAG

flag. There is no synchronized recovery.

Solution

The solution is either to perform another RECOVER UPDATE run using a copy of the old

control file, or to manually update the TPS information in the new control file.

Example 4

A TPS user performs a RECOVER INITIALIZE run.

Solution

The problems and solutions are exactly the same as in the Example 2.

Control File Recovery

You can recover the control file by loading it from a backup dump and rebuilding the entire

database. This process, however, has several drawbacks. It involves much processing, is

time-consuming, risks input/output errors on the dump tapes and audit files, requires that

the database software used be at the same update level as the control file, and might not

be able to bring the database past a point in the audit where the update level was

increased. However, upon successful completion of this process, the database is in phase.

As an alternative, the control file program can be run specifying one of the RECOVER

options. The creation timestamps cannot be recovered exactly if the RECOVER INITIALIZE

option is used, but they can be recovered if the RECOVER UPDATE option is used and the

control file loaded is recent enough. If the creation timestamps are not recovered exactly,

it is not generally possible to rebuild the database through any discontinuities in the audit.

Initializing and Maintaining

8600 0759-622 5–27

For unaudited databases, the RECOVER functions are intended for use only under very

limited circumstances. In all cases, you should have extra knowledge about the state of

the database. In general, when a control file is lost for an unaudited database, the only

safe action is to reload the database and reprocess the input. In some cases, creating a

new control file is all that is necessary; for example, if the control file resides on a separate

pack from the other files and that pack was corrupted. It is for such cases that the

RECOVER functions are permitted for unaudited databases.

Control File Recovery and Change of Family

When you have changed the families of the database and code files with DMCONTROL

rather than a DASDL update, a RECOVER UPDATE or RECOVER INITIALIZE statement

might not rebuild all of the control file. The following paragraphs show how to recover a

control file when a DMCONTROL family change has been made.

Nonpartitioned Databases

For nonpartitioned databases, do the following:

1. Mount the most current DMUTILITY dump tape and run DMUTILITY to copy the

control file to disk.

2. Run DMCONTROL with a RECOVER option, preferably RECOVER UPDATE.

DMCONTROL creates the new control file from the description file and from the

control file copied from the dump tape.

3. Run DMCONTROL to change the families of the data and code files to the correct

family.

4. An automatic recovery is performed when a user next opens the database.

Partitioned Databases

For partitioned databases, do the following:

1. Mount the most current DMUTILITY dump tape and run DMUTILITY to copy the

control file to disk.

2. Run DMCONTROL with a RECOVER option, preferably RECOVER UPDATE.

DMCONTROL creates the new control file from the description file and from the

control file copied from the dump tape, locks the new control file, then performs a

RECOVER PARTITIONINFO to recover the partition entries.

The PARTITIONINFO data set is read, causing database recovery. Recovery opens the

data files that need to be recovered. If the data files were moved, a NO FILE condition

occurs for each data file that could not be found. To allow the recovery to complete, do

one of the following:

• Move the data files.

• Terminate recovery and DMCONTROL by entering DS.

• Relabel the pack.

3. Run DMCONTROL to change the families of the database and the code files.

Initializing and Maintaining

5–28 8600 0759-622

If data files have been moved to allow database recovery to complete (the first

alternative in step 2) and the families are changed with DMCONTROL (step 3), the

data files need to be moved to reflect their designation in the control file.

If recovery and DMCONTROL were terminated (the second alternative in step 2), run

DMCONTROL with a RECOVER PARTITIONS to perform the recovery. This causes

database recovery to be performed and recovers the partition entries.

4. The RECOVER PARTITIONS might cause the partition data structure families to revert

to the family specification of the description file. If the family specifications were

changed with DMCONTROL, run DMCONTROL again to change the partition

structures to the correct families.

Control File Recovery and Change of Population Control
Attributes

When you have changed the population of the control attributes with DMCONTROL rather

than a DASDL update, a RECOVER UPDATE or RECOVER INITIALIZE statement might not

rebuild all of the control file. The following procedure shows how to recover a control file

when a change of population control attributes has been made:

1. Mount the most current DMUTILITY dump tape and run DMUTILITY to copy the

control file to disk.

2. Run DMCONTROL with a RECOVER option, preferably RECOVER UPDATE.

DMCONTROL creates the new control file from the description file and from the

control file copied from the dump tape.

An automatic recovery is performed the next time the database is opened.

3. Following the recovery, you can use the VDBS interface to change any population

attributes that have been dynamically altered since the last DMUTILITY dump. The

preferred alternative is to make the changes by performing a DASDL update. This

action has the advantage of also updating the description file.

DMUTILITY CANCEL Statement

The DMUTILITY CANCEL statement unlocks the control file.

Syntax

── CANCEL ───┤

Explanation

The CANCEL statement can unlock the control file if it was locked for the following

reasons:

Initializing and Maintaining

8600 0759-622 5–29

• An offline dump fails.

To perform an offline dump, DMUTILITY must ensure that no programs are updating

the database during the time of the dump. To guarantee that no programs are updating

the database, DMUTILITY marks the database control file as being in exclusive use by

DMUTILITY.

If a CANCEL statement is executed during an offline dump, update programs would

be allowed to begin executing before the actual completion of the offline dump. This

would result in a corrupted offline dump. In order to ensure the validity of an offline

dump, the CANCEL function must have exclusive use of the control file to prevent any

premature cancels from taking place.

If for any reason DMUTILITY is discontinued before the offline dump completes, the

control file must be unlocked before any processing against the database (other than a

restart of the offline dump) can proceed.

• An offline copy fails.

To perform an offline copy, DMUTILITY must ensure that no programs are accessing

the database during the copy. To guarantee that no programs access the database,

DMUTILITY marks the source control file as being in exclusive use by DMUTILITY.

DMUTILITY also marks the destination control file if the copy is AS or ONTO another

database. If DMUTILITY fails to complete the copy, use the CANCEL statement to

unlock the source control file.

• An offline certification fails.

If the certification is not online, Database Certification marks the control file as being

in exclusive use by Database Certification.

Initializing Database Files

A database must first be initialized before it can be used by any Enterprise Database

Server program. The initialization procedure is handled by DMUTILITY.

The INITIALIZE statement initializes the entire database or specific structures within the

database. This statement creates files with a security type of PRIVATE. To create files with

a security type of GUARDED, use structure SECURITYGUARD files in the DASDL

specifications.

Following a successful initialization, the file-state field in the control file for initialized

structures is assigned the value CFAUDINZ for audited databases and CFFILENORMAL

for unaudited databases.

Although DMUTILITY ensures that there are no dangling set references, a structure

initialization only creates that structure and does not logically delete all records. Thus,

AGGREGATE, POPULATION, COUNT item, and AA words (such as links that point to the

structure being updated) are not updated. To delete all records in the Enterprise Database

Server and appropriately update AGGREGATE, POPULATION, COUNT items, and

pointers, each record of the data set must be deleted with a user program or with the

Extended Retrieval with Graphic Output (ERGO) program.

Initializing and Maintaining

5–30 8600 0759-622

Rules for Initialization

Initialization has the following rules:

• When a disjoint data set is initialized, all sets that refer to the data set and all

embedded structures within the data set are automatically initialized.

• If you initialize a disjoint structure and there is a population item in the global data

record for the structure, the population information in the global data record is not

updated. As a result, the population information stored in the global data record and

the actual number of records that are in the structure might not match. Despite the

inconsistency in population information, all the records in the structure are accessible.

• If you initialize the global data record to update the population item of the initialized

structure, then all the population items declared in the global data record are initialized.

As a result, the population information in the global data record and the actual number

of records in the structures might not match. Despite the inconsistency in population

information, all the records in the structure are accessible.

• If you initialize a disjoint structure for which an aggregate item exists in the global data

record, all disjoint structures having an aggregate item in the global data record must

be initialized along with the global data record.

• If you initialize a structure containing a counted link, you must also initialize the

structure referenced by the link.

• If the INITIALIZE statement fails for any reason, reissue the command to initialize the

database structure or structures.

Note: The CANCEL statement does not override a failed INITIALIZE statement.

• If you initialize a structure that is referenced by an embedded manual subset, you

should also initialize the owner of the embedded manual subset.

• You can initialize disjoint sets and automatic subsets only when you are also initializing

the data sets they reference. You can initialize disjoint manual subsets even when you

are not initializing the data sets they reference.

• You cannot initialize structures if the DASDL LOCKEDFILE option is set. Either update

the database with the LOCKEDFILE option reset, or set the LOCKEDFILE file attribute

for the structures you want to initialize to false.

• You cannot initialize structures if a DMUTILITY DUMP of the same database is in

progress.

• If you are initializing a permanent directory database, refer to Section 16, Using

Permanent Directory Databases, for information.

Refer to the Data and Structure Definition Language (DASDL) Programming Reference

Manual for more information on the LOCKEDFILE option.

Before initializing structures, DMUTILITY locks the control file to ensure that it has

exclusive use of the database. Initialization can be performed in several steps. Different

structures can be initialized in each step.

Initializing and Maintaining

8600 0759-622 5–31

DMUTILITY INITIALIZE Statement

The following information illustrates the syntax required to run the initialization process:

Syntax

<initialize statement>

─── INITIALIZE ──────────────┬─ = ──┬─┤
├─ ALL ──────────────────────────────────────┤
│ ┌◄───────────────── , ───────────────────┐ │
└─┴─<structure name>──<initialize options>─┴─┘

<online initialize statement>

── ONLINE ─── INITIALIZE ──────<structure name> ──<initialize options> ────┤

<initialize options>

──┬────────────────────────────────────┬───────────────────────────────┤
├─ (── PREALLOCATE ──<integer>──)──┤
└─ (REMOVEOLDFILE) ────────────────┘

ALL or =

Initializes the entire database.

ONLINE INITIALIZE

The ONLINE INITIALIZE command allows the initialization of one structure at a time.

DMUTILITY does not require exclusive use of the database control file during online

initialization.

A structure can be ONLINE INITIALIZED if it meets the following criteria:

• The structure is a disjoint data set.

• The structure is not a restart data set.

• The structure is not linked to or from another data set.

• The structure is not partitioned.

• REAPPLYCOMPLETED and INDEPENDENTTRANS are SET.

• The structure cannot have a manual set or subset.

During the brief period that a structure is being initialized online, any application that

executes a DMVERB for an affected structure encounters a DEADLOCK #4 exception.

During the online initialization process, the data set that is to be initialized and its

corresponding sets will be saved as old files.

The old files for a data set are called:

Initializing and Maintaining

5–32 8600 0759-622

OLD/<database name>/<data set name>/DATA

The old files for a set are called:

OLD/<database name>/<data set name>/<set name>

Use these saved files to restore the data set and its sets in the event the online

initialization process is terminated abnormally. Use the REMOVEOLDFILE option to

remove the old file at the end of the successful ONLINE INITIALIZE process.

<structure name>

Designates an identifier that represents the symbolic name of the structure as specified in

DASDL. In the case of the global data record, it is recommended that the database name

be used. In the case of the global data record of a modeled database, the name of the

original database must be used. For ONLINE INITIALIZE, this must be a data set.

<initialize options>

Allows a fixed number of records to be preallocated when a direct data set is initialized by

DMUTILITY. The <integer> construct specifies the number of records to be preinitialized.

Any attempts to preallocate records for other than direct data sets are flagged as errors.

In addition, the PREALLOCATE option cannot be specified for sectioned direct data

sets.

Direct data set preallocation reduces the overhead involved when new records are added

to a direct data set that contains key values significantly larger than the last previous

records. The overhead is saved by preallocating all of the required data blocks when

convenient.

Specifically, to preallocate a direct data set, you must specify a fixed number of direct data

set records to be preallocated when a direct data set is initialized using DMUTILITY. No

run-time initialization is necessary when the Accessroutines adds a record anywhere

within the preallocated area. Also, when the structure is dumped through DMUTILITY, the

preallocated areas are not dumped, but information is recorded that allows the structure to

be reconstructed or rebuilt. Initialization can be repeated if interrupted by a halt/load or

other failure.

With the ONLINE INITIALIZE command, the REMOVEOLDFILE option when specified,

removes old files after a successful initialization. Note that during the initialization process,

if the old file is present, the old files are renamed as follows:

For data set, they are renamed:

OLD/<database name>/DATA/<mmdd>/<hhmmssyy>

Initializing and Maintaining

8600 0759-622 5–33

For set, they are renamed:

OLD/<database name>/<data set name>/<set name>/<mmdd>/<hhmmssyy>

When initialization is performed on a database or on structures within a database, all

changes to the database are audited in the control file. When the database is next opened

and updated, the changes are written to the audit file. DMRECOVERY can rebuild all

specified structures in a database on which a DMUTILITY INITIALIZE has been performed,

providing the audit file has been updated or the control file is not lost. If the control file is

lost (because, for example, an old control file was reloaded) before the database is open

updated, DMUTILITY INITIALIZE must be redone.

Notes:

• The INITIALIZE statement should be used only to create a new structure, and not to

erase records contained within an existing structure.

• If the INITIALIZE statement is used to delete records within a structure, it does not

update the POPULATION and COUNT control items that pertain to the structure or the

AA words that point into the structure. To delete all records in a structure and ensure

that AGGREGATE items, POPULATION items, COUNT items, and pointers are

updated, you must delete each record of the data set by using either the ERGO

program or a user program.

• If you are using the Open Distributed Transaction Processing product for the first time,

use the DMUTILITY INITIALIZE statement to initialize the RXGLOBALTR and

RXSIBDESCS data sets. When you update a database to include the OPENOLTP

option and the RMSUPPORT library title, the Open Distributed Transaction Processing

software automatically adds these two inquiry-only data sets to your database

description file. If you try to update the data sets, a security error occurs.

REDISTRIBUTE Command

The REDISTRIBUTE command redistributes a database file of a disjoint data set across the

family pack members of a multifamily pack while the database is in use. This command is

useful when additional families are added to an existing multifamily pack. It can also

improve I/O performance.

Syntax

── <options>── REDISTRIBUTE── <database file> ────────────────────┤

<options>

OPTIONS (───── WORKERS = <integer> ─────)

<database file>

────────────┬── <structure name> ───────────┬──────────────────┤
└── <file name> ───────────────┘

Initializing and Maintaining

5–34 8600 0759-622

<options>

You can specify the number of copy phase tasks to be run concurrently. Use this option for

sectioned data sets or sectioned sets. The default is 1.

<database file>

The <structure name> must be a disjoint data set name. It redistributes the entire

database file of the disjoint data set and it is set across the family pack member. The <file

name> must be the file name of the data set or set.

Explanation

The REDISTRIBUTE command involves the following phases:

• INITIALIZE PHASE – initializes temporary files

• COPY PHASE – copies live database files to temporary files

• SWAP PHASE – swaps live database files with temporary files

• PURGE PHASE – purges old database files

There is no restart capability for this function. If DMUTILITY fails, DMUTILITY removes all

temporary files. If a system fails during the REDISTRIBUTE command, you must manually

remove temporary files. If a system fails during the SWAP phase, you must manually copy

the old files as live database files.

Notes:

• For disjoint index sequential sets, it is recommended to use online garbage collection

to generate the new set where the areas will also be redistributed evenly.

• The pack must have sufficient space to accommodate the new and old database files.

• This command does not have the capability of redistributing a specific area of a file.

Examples

The following example redistributes the disjoint data set and its sets:

RUN *SYSTEM/DMUTILITY("DB=TESTDB ON UITEST REDISTRIBUTE DS8");

The following example redistributes the one database file:

RUN *SYSTEM/DMUTILITY("DB=TESTDB ON UITEST REDISTRIBUTE
TESTDB/DS8/DATA");

The following example redistributes the database file under the DS8 data set:

RUN *SYSTEM/DMUTILITY("DB=TESTDB ON UITEST
REDISTRIBUTE TEST/DS8/=");

The following example redistributes one database file, which in this example is the set:

Initializing and Maintaining

8600 0759-622 5–35

RUN *SYSTEM/DMUTILITY("DB=TESTDB ON UNITEST
REDISTRIBUTE TEST/DS8/SKEY");

Note: For disjoint index sequential sets, it is recommended to use the OLGC.

The following example redistributes the sectioned data set using the WORKERS option. In

this example, the data set has 20 sections. The worker is set to 5 which means that 5

copy phase tasks will run concurrently until all the database files have been redistributed:

RUN *SYSTEM/DMUTILITY("DB=TESTDB ON UITEST OPTIONS(WORKERS=5)
REDISTRIBUTE TESTDB/DS9/DATA");

MIGRATEDB Command

The MIGRATEDB command allows you to add or delete disjoint data sets and their

spanning sets and subsets without bringing down the database. This feature does not

support adding sets or subsets to an existing data set; continue to use reorganization.

── MIGRATEDB ──┤

You can automatically run the MIGRATEDB command through a DASDL UPDATE with the

MIGRATEDB, ZIP and DMCONTROL DASDL options set. Refer to the DASDL

Programming Reference Manual for the MIGRATEDB DASDL option. The command can

also be run as a separate task if the MIGRATEDB DASDL option is set, and the ZIP and

DMCONTROL DASDL options are reset.

Running DMUTILITY with the MIGRATEDB command performs the following tasks:

1. Initiates USEREORGDB REORG for new data set(s)

2. Waits for a quiet point, no transactions in progress

3. Stops all applications

4. Updates the control file

5. Replaces the DMSUPPORT library with a new DMSUPPORT library

6. Creates a new audit file for the update level change

7. Resumes all applications

Notes:

• The MIGRATEDB command only supports disjoint data sets.

• The MIGRATEDB command is not allowed for modeled databases.

• The data set cannot be a restart data set or a global data set.

• The data set cannot contain a link item or a structure of a link item.

• The data set cannot contain an embedded structure.

• The MIGRATEDB command is not supported for databases that have Remote

Database Backup enabled.

Initializing and Maintaining

5–36 8600 0759-622

Section 6
Backing Up a Database

In This Section

The following topics are covered in this section:

• Tools available for creating and managing database backups

• Understanding the database backup process

• Tasks related to creating and managing database backups

• Using the DMUTILITY DUMP and APPEND commands

• Using the DMUTILITY VERIFYDUMP command

• Copying database backups

- Using the DMUTILITY COPYDUMP command

- Using the DMUTILITY DUPLICATEDUMP command

• Listing a directory of a dump tape reel or disk file using the DMUTILITY

TAPEDIRECTORY command

• Listing the contents of multidump tapes or recreating the fast access directory file for

multidump tapes with the DMUTILITY TAPESET DIRECTORY command

• Cataloging the information in database backups

• Using the DMDUMPDIR program

• Using the DMUTILITY BUILDDUMPDIRECTORY command

• Recovering database backup catalog information

• Quick-reference information for all the syntax diagrams provided in this section

The information in this section applies to backing up a database to both tape and disk.

Terminology

Knowing the following terminology can help you understand the information in this

section:

• A database backup is also referred to as a database dump or a dump.

• When a database is backed up to tape, the result of the operation is called a tape

dump.

• Single dump tapes contain a single database backup from a single database.

8600 0759-622 6–1

• Multidump tapes can contain many database backups from one or multiple

databases.

• Database backups can be created on a multidump tape by using the DUMP and

APPEND commands.

• When a database is backed up to disk, the result of the operation is called a disk dump.

Tools Available for Creating and Managing Database
Backups

Table 6–1 identifies the tasks you can perform in relation to creating and managing

database backups and the headings in this section under which these tasks are described.

Note: The tasks identified in this section can be initiated through Database Operations

Center.

Table 6–1. Tasks Related to Creating and Managing Database Backups

To perform this task . . . Refer to . . .

Create a database backup. DUMP and APPEND Commands (DMUTILITY)

Verify a database backup. VERIFYDUMP Command (DMUTILITY)

Copy a database backup. Copying Database Backups

COPYDUMP Command (DMUTILITY)

DUPLICATEDUMP Command (DMUTILITY)

Identify the information on a

dump tape reel or in a dump disk

file and report the contents of a

multidump tape.

TAPEDIRECTORY Command (DMUTILITY)

TAPESET DIRECTORY Command (DMUTILITY)

List the contents or recreate the

fast access directory for a

multidump tape or set of

multidump tapes

TAPESET DIRECTORY Command (DMUTILITY)

Catalog the information stored in

database backups.

Cataloging the Information in Database Backups

DMDUMPDIR Program

BUILDDUMPDIRECTORY Command (DMUTILITY)

Recover database backup

catalog information.

Recovering Database Backup Catalog Information

Another method of creating backups is to create a quiesce database or a quiesce database

copy. Refer to Section 14, Using a Quiesce Database, for more information about this

approach to creating a backup.

Backing Up a Database

6–2 8600 0759-622

Understanding the Database Backup Process

Introduction

A database backup is a snapshot of an entire database or of parts of a database. A

database backup is used for two primary purposes:

• To recover, with minimal loss of data, from a database or hardware failure

• To move or copy a database from one location to another

The DMUTILITY program through the DUMP command provides the facilities you need to

create a database backup. Many options are provided with the DUMP command,

including the ability to

• Create a backup copy of the database on tape or on disk.

• Generate the backup copy of the database when the database is offline or online.

• Select whether all or part of the database is to be backed up.

• Select whether the dump tape should be checked for errors as part of the dump

process. By default, the DMUTILITY program automatically includes this check to

ensure dump tapes have been written correctly and can be read.

Notes:

• The DMSUPPORT title, including usercode and family, must be defined in the DASDL

of a database for a backup to be accessed from a usercode that is different from the

usercode of the initiator of the backup.

• While it is possible to back up a database by copying database and audit files with

Library Maintenance, this method provides no database integrity checking and you

are strongly discouraged from using it.

The database backup process provided by the DUMP command does not back up the

following files:

• Tailored software, such as the DMSUPPORT library and RMSUPPORT library

• Database description file

• Database application programs

While these files are not always needed for database recovery purposes, keeping a

backup copy of the files enhances your ability to maintain, upgrade, and recover your

database. Use the Library Maintenance COPY or ADD command with the COMPARE or

VERIFY option to back up these files.

In addition, use the COPYAUDIT program to back up audit files. Refer to

Section 9, Copying Audit Files, for information on using the COPYAUDIT program.

Backing Up a Database

8600 0759-622 6–3

Backing Up to Tape or Disk

You can choose to back up a database to tape or to disk. Choose the output medium that is

most convenient for your site.

Multidump Tapes

Duplicate dump names are not permitted on the same multidump tape. In the event that

an APPEND or COPYDUMP APPEND operation must be restarted, using the negative task

value from the previous attempt does permit the dump name to be reused.

Dump names and multidump tape names can have only one node.

DMUTILITY creates a fast access directory for each multidump tape. The directory is

created at the location specified by the DL LIBMAINTDIR system command. If there is no

DL specification for LIBMAINTDIR, the directory is created on the default family of the

user who created the multidump backup tape (that is, the family of the user who created

the tape by using the DUMP command).

When multidump backup tapes are created, their ASSOCIATEDFILENAME attribute is set

to the name of the fast access directory file. Each directory file is uniquely named and

includes the date and time when the tape was created. This directory is used to provide

the FASTLOCATE position for accessing the backup dumps stored on the tape.

Note: Whenever you use an existing multidump tape on a system, the fast access

directory for that tape must be present on the system. You can copy the directory from

another system or create the directory for the tape by using the TAPESET DIRECTORY

CREATE command.

Unisys recommends that you do not move multidump tapes between systems to add

dumps to them because this can result in inconsistent fast access directory files on the

different systems. These inconsistent directory files can cause existing dumps to be

overwritten.

Creating the Database Backup with the Database Offline or
Online

You can control user access to a database while a database backup is in progress. During

the backup process you can choose to

• Prevent all update users from accessing the database; that is, during the backup

process, the database can be used only for inquiry purposes.

• Allow both update and inquiry users to access the database.

Selecting All or Part of the Database to Back Up

Each time you use the database backup process you can select which parts of the

database to back up. The options available to you include selecting

Backing Up a Database

6–4 8600 0759-622

• All database files

• Files according to the pack on which the files are located

• Files according to the directory

• Rows within a file

• Only those data blocks that have changed since the last dump

Database Control File

The database control file is automatically copied to the beginning of each tape reel or disk

file of the backup dump.

For more information on the purpose and content of the control file, refer to

Section 2, Control File.

Timestamp Mismatch Errors

If a timestamp mismatch error occurs during the database backup process, the following

message displays:

DISPLAY: <database name>: WRONG VERSION OF
<file name>[<timestamp>]

ACCEPT: <database name>:
CORRECT VERSION=<timestamp>.
"AX RETRY OR OVERRIDE"

A timestamp mismatch error usually indicates an error that should be investigated and

resolved before continuing with the backup process. If necessary, you can override the

timestamp error—for example, when recovering the database control file. However, this

action is not usually recommended.

To override the timestamp error, use the following command:

<mix number> AX OVERRIDE

If you choose to override the timestamp mismatch error, the backup process continues

but the timestamp is not actually adjusted. The error repeats each time the structure with

the timestamp mismatch is accessed during the backup process.

The timestamp of the structure is not adjusted to prevent any recovery operation that uses

the backup dump from corrupting the database. Any timestamps that are overridden are

not stored in the control file that is written to the backup media as part of the backup

process.

Effect of DASDL LOCKEDFILE Option

If the DASDL LOCKEDFILE option is set in the database description file, then the

LOCKEDFILE file attribute is set for the tape reels or disk files generated during the

database backup process.

Backing Up a Database

8600 0759-622 6–5

For more information on the LOCKEDFILE option, refer to the Data and Structure

Definition Language (DASDL) Programming Reference Manual. For more information on

the LOCKEDFILE file attribute, refer to the File Attributes Programming Reference

Manual.

Tasks Related to Creating and Managing Database
Backups

Introduction

Besides creating the actual database backup, you might want to perform several

associated tasks as described in the following text.

Verifying the Database Backup

Before starting a database recovery process or before reloading a database from a backup

tape, you can check that the database backup is free from the following types of errors:

• Block checksum errors

• Block sequencing errors

• I/O errors

You can use the DMUTILITY VERIFYDUMP command to perform this task.

Copying the Database Backup

Generating a copy of your database backup can provide you with extra security for your

database since disk files and tapes can be lost or damaged, and the information can be

accidentally erased. Two DMUTILITY commands are available for copying backup dumps:

• COPYDUMP

• DUPLICATEDUMP

Both commands generate a copy of the database backup, but the DUPLICATEDUMP

command also enforces a reelforreel or fileforfile similarity between the original and the

copy of the database backup.

Advantages of the DUPLICATEDUMP Command

• If a problem occurs with a particular tape reel or disk file during a reload or database

recovery operation, you have a substitute reel or file and do not need to restart the

complete reload or recovery operation.

• You can restart a DUPLICATEDUMP request, but you cannot restart a COPYDUMP

request.

Refer to Section 4, Using DMUTILITY, for information on restarting the DMUTILITY

program.

Backing Up a Database

6–6 8600 0759-622

Disadvantages of the DUPLICATEDUMP Command

• During the copy process if the destination tape reel or disk file cannot contain all the

information stored on the source tape reel or disk file, the copy process terminates.

• You cannot copy from tape to disk or disk to tape using the DUPLICATEDUMP

command.

Terminology Convention

To differentiate between the output generated by the COPYDUMP and the

DUPLICATEDUMP commands, the following naming convention is used in this section:

• The terms copying and copy refer to the task performed by and the output generated

by the COPYDUMP command.

• The terms duplicating and duplicate refer to the task performed by and the output

generated by the DUPLICATEDUMP command.

Identifying the Information on a Dump Tape Reel or in a
Dump Disk File

As the DMUTILITY program creates a database backup, it generates a directory of the

information dumped.

Single Dump Tapes

A dump to a single dump tape can include several continuation reels. If continuation reels

are necessary, the directory of each successive tape reel or disk file created in the

database backup is cumulative.

You can choose to use one tape drive for the database dump. Or, you can use the TAPES

option in the tape specification to split the database backup into two or more logical parts

and dump the logical parts to different tape drives in parallel. In both instances, the last

tape reel created contains the complete backup dump directory.

Be aware that the last tape reel created might not be the reel with the highest cycle and

version number. For instance, the tape labeled cycle 1, version 2 might be created after

the tape labeled cycle 3, version 2 and would therefore contain the more complete

directory.

Multidump Tapes

The following are facts about multidump tapes:

• The WORKERS or TAPES options cannot be used when backing up a dump to a

multidump tape. As a result, the CYCLE value is always 1.

• Multidump tapes do not have continuation reels. As a result, the value of VERSION is

always 1. If the total dump does not fit on a reel, the dump contents that has been

written on the reel is deleted and the operator is requested to initiate a new DUMP

command rather than an APPEND command.

• Each multidump DUMP or APPEND statement creates a uniquely named dump file.

Backing Up a Database

8600 0759-622 6–7

Notes:

• When you are using the multidump format, be careful not to create a single point-of-

failure scenario. For example, this situation could occur if a single tape were used to

hold all the backups for a single database.

• Whenever you use an existing multidump tape on a system, the fast access directory

for that tape must be present on the system. You can copy the directory from another

system or create the directory for the tape by using the TAPESET DIRECTORY

CREATE command.

• Do not append a dump to a multidump tape that was created on another system.

Finding Information About Dumps

Knowing the dump information on a particular tape reel or disk file of a database backup

can be useful when you are performing a database recovery operation.

Use the TAPESET DIRECTORY command to either list the contents or re-create the fast

access directory file for a multidump tape. This command provides you with general

information about the contents of the tape.

Use the TAPEDIRECTORY command to list specific information about one database

backup only. If you want to track the information contained in all the database backups for

a particular database, refer to the following discussion on cataloging the information in

database backups.

Cataloging the Information in Database Backups

You can choose to back up all or part of a database. If you choose to use partial database

backups and you must perform a database recovery process, ensure that you use the

most current and the most accessible information.

Also, if you must perform a rollback or recovery process to undo incorrect transactions,

you might not want to use the most current database backup. In such cases, you need a

method of tracking the information in the database backups. Use the DMDUMPDIR

program and the BUILDDUMPDIRECTORY command to track the information.

Use the DMDUMPDIR program to set up and maintain an automatic database backup

catalog called a dump tape directory. The dump tape directory is a twolevel file directory

that stores information about all the tape and disk dumps for a particular database.

The BUILDDUMPDIRECTORY command enables you to reconstruct catalog information

for inclusion in a dump tape directory. You can use this command to reconstruct catalog

information that has been lost or destroyed, or to generate catalog information for old

database backups for which catalog information has not previously been created.

Backing Up a Database

6–8 8600 0759-622

DUMP and APPEND Commands (DMUTILITY)

Introduction

Use the DUMP command to create a database backup. Use the APPEND command to

create a database backup that is appended to an existing multidump tape. Using the

DUMP or APPEND commands you can choose to

• Create the backup.

• Allow users or prevent users from accessing the database during the backup process.

• Identify the pieces of the database that you want to back up.

• Request the use of compressed tapes.

• Identify such items as tape serial numbers, tape density, and number of workers.

Notes:

• APPEND enables you to add a database dump only to a multidump tape.

• When you use the <dump disk specification> clause for a permanent directory

database, the dump is placed under the usercode from which the DMUTILITY task

was initiated. The specification cannot be a permanent directory. Refer to

Section 16, Using Permanent Directory Databases, for examples.

Syntax

The following diagrams illustrate the syntax for the DUMP command. Explanations of

these syntax elements follow the diagrams. The syntax elements are explained in the

order in which they appear in the syntax diagrams.

DUMP and APPEND Commands

──┬───────────────┬─┬───────────┬─┬───────────────────┬─┬─ DUMP ───┬───►
└─<dump option>─┘ └─ OFFLINE ─┘ ├─/1\─ INCREMENTAL ─┤ └─ APPEND ─┘

├─/1\─ INCR ────────┤
├─/1\─ ACCUMULATED ─┤
└─/1\─ ACCUM ───────┘

┌◄────── ; ─────┐
►─┴─<dump clause>─┴──┤

<dump option>

┌◄────────────────── , ─────────────────┐
── OPTIONS ── (─┴─┬─/1\─ WORKERS ── = ──<integer>─────┬─┴─) ─────────┤

├─/1\─┬─ FORWARD COMPARE ───────────┤
│ └─ NOCOMPARE ─────────────────┤
├─/1\─ AXREADERROR ─────────────────┤
├─/1\─ AUDITSWITCH ─────────────────┤
├─/1\─ CORRECTREADERROR ────────────┤
├─/1\─ DATACOMPRESSION ─────────────┤
├─/1\─ DUMPDISKSIZE ────────────────┤
├─/1\─ ENCRYPTTYPE ── = ─┬─ TDES ───┤
│ ├─ AES256 ─┤
│ └─ AESGCM ─┤

Backing Up a Database

8600 0759-622 6–9

├─/1\─ NOENCRYPT ───────────────────┤
├─/1\─ OVERWRITEDISK ───────────────┤
└─/1\─ WAITTIME ────────────────────┘

<dump clause>

──<dump list>─┬──────────────────┬─ TO ────────────────────────────────►
└─ BY FAMILYINDEX ─┘

►─┬─<dump tape specification>──────┬───────────────────────────────────┤
├─<multidump tape specification>─┤
└─<dump disk specification>──────┘

<dump list>

┌◄──────────────────────────────── , ───────────────────────────────┐
──┴─┬─<database file name>─┬──────┬──┬───────────────────┬──────────┬─┴──┤

│ └─ /= ─┘ └─ <dump selector> ─┘ │
│── = ──│
└─────┬─<dump selector>───┤

└─ (── EXCLUDE ──<exclude list>──) ──<portion selector>─┘

<dump selector>

──┬─<portion selector>───┬─┤
└───── (── DUMPENCRYPT ── = ─┬─ FALSE ─┬────────────────────┬─) ─┘

│ └─<portion selector>─┤
└─ TRUE ───────────────────────┘

<exclude list>

┌◄──────────────── , ────────────────┐
──┴─ <database name>/<data set name/= ─┴───────────────────────────────┤

<portion selector>

┌◄──────────────┬── AND ─┬───────────────┐
│ └◄─ & ───┘ │

── (─┴─┬─/1\─ FAMILYINDEX ── = ──<range>────┬─┴─) ───────────────────┤
├─/1\─ ROW ── = ──<range>────────────┤
└─/1\─ PACKNAME ── = ──<family name>─┘

<range>

┌◄───────────── , ─────────────┐
──┴─<integer>─┬────────────────┬─┴─────────────────────────────────────┤

└─ - <integer> ─┘

Backing Up a Database

6–10 8600 0759-622

<dump tape specification>

──<tape name>──►
►─┬───┬────┤
│ ┌◄──────────────────────── , ───────────────────────┐ │
└─ (─┴─┬─/1\─ TAPES ── = ──<integer>───────────────────┬─┴─) ─┘

├─/1\─┬─<serial number specification>───────────┤
│ └─ SCRATCHPOOL ── = ──<scratch pool name>─┤
├─/1\─┬─ COMPRESSED ────────────────────────────┤
│ └─ NONCOMPRESSED ─────────────────────────┤
├─/1\─ DENSITY ── = ──<density mnemonic>────────┤
└─/1\─ BLOCKSIZE ── = ──<integer>───────────────┘

<multidump tape specification>

──<dump name>── TAPE ── = ──<tape name>──────────────────────────────►
►─┬───┬────────┤
│ ┌◄────────────────────── , ─────────────────────┐ │
└─ (─┴─┬─/1\─┬─<serial number specification>───────┬─┴─) ─┘

│ └─ SCRATCHPOOL = <scratch pool name> ─┤
├─/1\─┬─ COMPRESSED ────────────────────────┤
│ └─ NONCOMPRESSED ─────────────────────┤
├─/1\─ DENSITY ──<mnemonic>─────────────────┤
└─/1\─ BLOCKSIZE ── = ──<integer>───────────┘

<serial number specification>

┌◄───────────────────────── , ─────────────────────────┐
│ ┌◄────── , ─────┐ │

──┴─ SERIALNO ─┬─────────────────┬─ = ─┴─┬─<integer>─┬─┴─┴─────────────┤
└─ (<integer>) ─┘ └─<string6>─┘

<dump disk specification>

──<file title>─┬───┬────────────┤
│ │
│ ┌◄───────────── , ─────────────────┐ │
└─ (─┴┬─ /1\─ FILES = <integer> ───────┬┴─) ──┘

└─ /1\─ BLOCKSIZE = <integer> ───┘

Dump Option

Purpose

Use the dump option to designate the following options:

• WORKERS

• FORWARD COMPARE

• NOCOMPARE

• AXREADERROR

• AUDITSWITCH

• CORRECTREADERROR

• DATACOMPRESSION

• DUMPDISKSIZE

Backing Up a Database

8600 0759-622 6–11

• NOECRYPT

• OVERWRITEDISK

• WAITTIME

The WORKERS, FORWARD COMPARE, NOCOMPARE, and AXREADERROR options are

valid only with tape output. If you use any of these options with disk output, a warning is

displayed but no syntax error occurs.

Syntax

<dump option>

┌◄────────────────── , ─────────────────┐
── OPTIONS ── (─┴─┬─/1\─ WORKERS ── = ──<integer>─────┬─┴─) ─────────┤

├─/1\─┬─ FORWARD COMPARE ───────────┤
│ └─ NOCOMPARE ─────────────────┤
├─/1\─ AXREADERROR ─────────────────┤
├─/1\─ AUDITSWITCH ─────────────────┤
├─/1\─ CORRECTREADERROR ────────────┤
├─/1\─ DATACOMPRESSION ─────────────┤
├─/1\─ DUMPDISKSIZE ────────────────┤
├─/1\─ ENCRYPTTYPE ── = ─┬─ TDES ───┤
│ ├─ AES256 ─┤
│ └─ AESGCM ─┤
├─/1\─ NOENCRYPT ───────────────────┤
├─/1\─ OVERWRITEDISK ───────────────┤
└─/1\─ WAITTIME ────────────────────┘

WORKERS Option

Single Dump Tapes

Use the WORKERS option to control the maximum number of tape drives to which you

can dump files in parallel. You can designate a maximum of 50 tape drives or workers.

Increasing the number of workers can decrease the total time required to complete the

database backup process. Limiting the number of workers can free up tape drives for

other purposes.

The number you assign to the WORKERS option does not determine the number of tapes

or disk files created. To designate the number of tapes, use the TAPES option in the dump

tape specification. To designate the number of disk files, use the FILES option in the dump

disk specification. You can designate a maximum of 50 tapes or files.

If you do not use the WORKERS option, then the number of parallel workers is the same

as the number of tapes or files you designate in the TAPES or the FILES option.

Multidump Tapes

WORKERS and TAPES are not valid options when you are dumping a database to

multidump tapes.

Backing Up a Database

6–12 8600 0759-622

Disk Dumps

If you choose to do a tape or disk dump in the same DUMP command, then you are limited

to processing one tape or disk dump list at a time. This limitation applies to any DUMP

command that uses disk as the backup medium.

If you include more than one dump clause in your DUMP command but the output

medium for all of the dump clauses is tape, the dump clause requests can process in

parallel. The number of parallel workers in this instance is the smallest of the following

values:

• The sum of all the values assigned to the TAPES option in each dump clause.

• The default value (20) for the WORKERS option.

• The number of workers you designate in the WORKERS option.

If you use one dump clause only, the number of parallel workers is set to the smallest of

the following values:

• The number of tapes designated in the TAPES option

• The number of files designated in the FILES option

• The number of workers designated in the WORKERS option

• The default value (20) for the WORKERS option

For disk dumps, the WORKERS option is ignored and a warning message displayed. The

number of parallel workers used is the number of disk files you designate in the FILES

option in the dump disk specification.

FORWARD COMPARE Option

Use the FORWARD COMPARE option when the DMUTILITY program performs an implicit

VERIFY operation to verify newly created dump tapes for tape drives that can only perform

reads in the forward direction.

For tape drives that can only perform reads in the forward direction, the default

comparison technique is forwardcompare. For tape drives that support the readreverse

capability, the default comparison technique is readreverse.

FORWARDCOMPARE is the default option for multidump tape devices as they do not

have read reverse capability. Multidump tapes are generally faster than single dump tapes

when the tape is being repositioned for comparison, because multidump tapes use a fast

access capability.

Setting the FORWARD COMPARE option has no effect on disk dumps.

Backing Up a Database

8600 0759-622 6–13

NOCOMPARE Option

Use the NOCOMPARE option to skip automatic checking of a newly created tape. The

primary reason for having this option is to delay verification of the tape or disk until a more

convenient time or to allow verification of the tape on a different machine to make better

use of resources. Using the NOCOMPARE option is not recommended without a

subsequent DMUTILITY run to verify the newly created tape.

The NOCOMPARE and FORWARD COMPARE options are mutually exclusive. This

means you cannot specify these two options at the same time. If you specify both options

at the same time, a syntax error occurs. If you do not explicitly designate the

NOCOMPARE option, the DMUTILITY program automatically starts the tape verification

after each dump operation.

If you designate the NOCOMPARE option, the output listings from the DMUTILITY DUMP

and TAPEDIRECTORY commands display the following:

NOCOMPARE OPTION HAS BEEN SET TO TRUE

Use of the NOCOMPARE option is recorded on the dump tape. This information is never

changed on the tape, even if a successful VERIFYDUMP operation is subsequently

completed, because data cannot be overwritten on tape devices. When performing a

COPYDUMP operation of a dump tape created using the NOCOMPARE option, the newly

created copy also indicates that the dump was created using the NOCOMPARE option.

The NOCOMPARE option enables you to make better use of available resources by

postponing the verification operation until a later time or until you can perform the

verification on another system. Because tapes created by using the NOCOMPARE option

do not indicate if a VERIFYDUMP operation was subsequently performed, there is no

guarantee of the integrity of the dump tapes created using the NOCOMPARE option.

Therefore, it is recommended that you use the DMUTILITY program to explicitly verify all

database dumps created using the NOCOMPARE option.

Note: The NOCOMPARE option suppresses automatic verification of dump tapes and

should only be used with a VERIFYDUMP operation.

AUDITSWITCH Option

Use the AUDITSWITCH option to close the current audit before the dump is performed.

Note: Only use this option for an OFFLINE dump. It is recommended to use this option

when performing a dump for the first time after upgrading to a new release.

AXREADERROR Option

Use the AXREADERROR option to enable you to take a specific action if a read operation

error occurs during a DMUTILITY program dump. If the AXREADERROR option is

specified and a read operation error occurs, the DMUTILITY program stops and displays a

message asking you to enter one of the following commands:

Backing Up a Database

6–14 8600 0759-622

• OK to continue

• SKIP ROW to skip the row

• TERMINATE to quit the DMUTILITY run

If the AXREADERROR option is not specified, the row on which an error occurred is

automatically included in the dump and a warning message is included in the report.

CORRECTREADERROR Option

Use the CORRECTREADERERROR option to enable DMUTILITY to reset the

READERROR flag of a row if there is no checksum error and no I/O error. This option is

mutually exclusive with the AXREADERROR option.

DATACOMPRESSION Option

Use the DATACOMPRESSION option to enable DMUTILITY to compress the data during

the dump process.

Note: The DATACOMPRESSION option is only supported for a full dump.

DUMPDISKSIZE Option

Use the DUMPDISKSIZE option to generate a report on the estimated disk size that the

dump to disk will use. Use this option only for a full dump to disk. When the DUMPDISK

option is specified, the dump to disk will not take place.

ENCRYPTTYPE Option

Use the ENCRYPTTYPE option to override the encryption type defined in the DASDL

definition of the database.

If the ENCRYPTTYPE option is not defined in the DASDL definition and is not specified by

the DMUTILITY DUMP and APPEND statements, TDES is the default encryption algorithm

used for any encryption directives in the DASDL definition. The AESGCM authenticated

encryption algorithm ensures the confidentiality, integrity, and the authenticity of the

encrypted data.

Refer to Section 15, Using Database Tape Encryption, for specific examples and additional

information about the ENCRYPTTYPE option.

NOENCRYPT Option

Use the NOENCRYPT option to override any encryption directives in the DASDL definition

of the database.

Refer to Section 15, Using Database Tape Encryption, for specific examples and additional

information about the NOENCRYPT option.

Backing Up a Database

8600 0759-622 6–15

OVERWRITEDISK Option

Use the OVERWRITEDISK option if you want to overwrite an existing disk dump with the

same file name. The existing disk dump will be removed and replaced by the new disk

dump.

WAITTIME Option

Use the WAITTIME option to set the amount of time in seconds for a DMUTILITY

DUMP/APPEND task to wait for all update users to leave the mix before the task is

started. If all update users have not left the mix before the designated amount of seconds,

the DMUTILITY task terminates and its task value is set to 4.

OFFLINE Option

Purpose

Use the OFFLINE option to prevent database users from updating the database during the

database backup process.

A database backup that is performed with the database unavailable for update purposes is

called an offline dump. A database backup that is performed with the database available

for update purposes is called an online dump. Inquiry-only users can access a database

during both offline and online dumps.

You can use offline dumps to back up and recover both audited and unaudited databases.

For unaudited databases, you cannot perform online dumps and therefore do not need to

include the OFFLINE option in the DUMP command. This limitation exists because the

online dump can be used for recovery purposes only if the appropriate audit information is

available.

If you want to perform an offline dump for an audited database, you must include the

OFFLINE option in the DUMP command. By default, audited databases are available for

both inquiry and update purposes during the backup process.

Syntax

To use the OFFLINE option, precede the keyword DUMP with the keyword OFFLINE in

the DUMP command.

Offline Dump Process

Performing an offline dump ensures that the database is in a consistent state throughout

the backup process.

Before initiating the offline dump process, the DMUTILITY program performs the

following steps:

Backing Up a Database

6–16 8600 0759-622

1. Waits for all programs that have the database open for update to complete processing

2. Locks the control file

Access to the database is limited to inquiry use only.

Following the successful completion of the offline dump, the DMUTILITY program unlocks

the control file.

Resolving Locked Control File Situations

The DMUTILITY program locks the control file during the offline dump process. If the

DMUTILITY program is discontinued during the offline dump, or if the DMUTILITY

program fails to unlock the control file, use the CANCEL command to unlock the control

file.

Storing the Last Audit File with an Offline Dump

Keep a copy of the last audit file with the offline dump in case the database needs to be

copied back to disk at a later time using the COPY command. When using the COPY

command, ensure that the exact copy of the audit file that was in use just before the dump

process is also restored to disk. Without the audit file, a subsequent recovery process that

uses the dump might fail.

Online Dump Process

When performing an online dump, the DMUTILITY program bypasses the database guard

file and opens the database for inquiry only. This mechanism prevents security errors

when dump worker processes try to open the database for online dumps.

At the beginning of a recovery process that uses an online dump, the audit file in use at the

time that the dump was created, is opened and positioned two control points before the

time the dump started. In order to position itself correctly, the recovery process may

search backwards prior to these two control points.

Additional steps can be added to a backup script to ensure that use of an online dump for a

database recovery does not require an audit file that was created prior to the audit file in

use at the time of the dump. The following is an example of a pseudo-coded script:

<dbs mix#> SM AUDIT CLOSE
RUN SYSTEM/DMUTILITY("DB=<db name> QUIESCE")
RUN SYSTEM/DMUTILITY("DB=<db name> RESUME")
RUN SYSTEM/DMUTILITY ("DB=<db name> DUMP = TO FRIDAYDUMP")

ENDCOMMENT

Performing Reorganizations and Online Dumps
Simultaneously Is Not Supported

An online dump cannot be performed while a reorganization is in progress. Any attempt to

do so results in a fatal error and the following message is displayed:

Backing Up a Database

8600 0759-622 6–17

ONLINE DUMP IS ILLEGAL WHEN REORGANIZATION IS IN PROGRESS

INCREMENTAL Option

Purpose

Use the INCREMENTAL option to back up all data sets, sets, and subsets that have

been modified since the last full, incremental, or accumulated dump.

The data that is included in the dump depends on the physical option of the data set in the

DASDL source for the structure.

• If the DUMPSTAMP option for a structure is not enabled, the whole structure is

placed in the dump.

• If the DUMPSTAMP option is set for a structure, only the blocks with a dumpstamp

that is equal to or greater than the last dumpstamp stored in the control file during the

previous dump are placed in the dump.

For example, if the dumpstamp stored in the control file by the previous dump is 150,

the incremental dump will include all blocks with a dumpstamp equal to or greater

than 150.

For more information on the DUMPSTAMP option, refer to the Data and Structure

Definition Language (DASDL) Programming Reference Manual. A full database dump is

always required before any incremental dump can start. In addition, the first dump taken

after any of the following operations must be a full dump:

• Any REORGANIZATION run

• Initialization of the control file

• RECOVER UPDATE of the control file

• Any online garbage collection

• Initialization of a database structure

When incremental or accumulated dumps are used to back up to a single dump tape, an

additional tape is needed to store the updated tape directory information. You need an

additional tape because the tape directory cannot be overwritten after it has been written

out to tape, and information pertaining to modified blocks is not available until the end of

the incremental and accumulated dumps.

When you create accumulated or incremental backups on a multidump tape, DMUTILITY

stores the final tape directory information as an additional file appended to the backup on

the same tape, so no extra tape is required.

Backing Up a Database

6–18 8600 0759-622

Syntax

To use the INCREMENTAL option, precede the keyword DUMP with the keyword

INCREMENTAL or INCR in the DUMP command. To dump all database structures, you

must specify the “DUMP = ” syntax.

Examples

The following examples illustrate the use of the INCREMENTAL option.

Example 1

The following command initiates an incremental tape dump, which includes all data blocks

that have been modified since the last full, incremental, or accumulated dump. All

incremental dumps must include the syntax “DUMP =” so that all database files are in the

incremental dump.

INCREMENTAL DUMP = TO INCTAPE

Example 2

The following command initiates an incremental disk dump, which includes all data blocks

that have been modified since the last full, incremental, or accumulated dump. All

incremental dumps must include the syntax “DUMP =” so that all database files are in the

incremental dump.

INCREMENTAL DUMP = TO INCDUMP ON DATAPACK

ACCUMULATED Option

Purpose

Use the ACCUMULATED option to back up all data sets, sets, and subsets that have

been modified since the last full dump was performed.

The data that is included in the dump depends on the physical option of the dataset in the

DASDL source for the structure.

• If the DUMPSTAMP option for a structure is not enabled, the whole structure is

placed in the dump.

• If the DUMPSTAMP option is set for a structure, only the blocks with a dumpstamp

that is equal to or greater than the last dumpstamp stored in the control file during the

previous dump are placed in the dump.

For example, if the dumpstamp stored in the control file by the previous dump is 150, the

incremental dump will include all blocks with a dumpstamp equal to or greater than 150.

Backing Up a Database

8600 0759-622 6–19

For more information on the DUMPSTAMP option, refer to the Data and Structure

Definition Language (DASDL) Programming Reference Manual.

A full database dump is always required before any accumulated dump can start. In

addition, the first dump taken after any of the following operations must be a full dump:

• Any REORGANIZATION run

• Initialization of the control file

• RECOVER UPDATE of the control file

• Any online garbage collection

• Initialization of a database structure

When incremental or accumulated dumps are used to back up to a single dump tape, an

additional tape is needed to store the updated tape directory information. You need an

additional tape because the tape directory cannot be overwritten after it has been written

out to tape, and information pertaining to modified blocks is not available until the end of

the incremental and accumulated dumps.

When you create accumulated or incremental backups on a multidump tape, DMUTILITY

stores the final tape directory information as an additional file appended to the backup on

the same tape, so no extra tape is required.

Syntax

To use the ACCUMULATED option, precede the keyword DUMP with the keyword

ACCUMULATED or ACCUM in the DUMP command. To dump all database structures, you

must specify the “DUMP = ” syntax.

Example 1

The following command initiates an accumulated tape dump, which includes all data

blocks that have been modified since the last full dump. All accumulated dumps must

include the syntax “DUMP =” so that all database files are in the accumulated dump.

ACCUMULATED DUMP = TO ACCUMTAPE

Example 2

The following command initiates an accumulated disk dump, which includes all data

blocks that have been modified since the last full dump. All accumulated dumps must

include the syntax “DUMP =” so that all database files are in the accumulated dump.

ACCUMULATED DUMP = TO ACCUMDUMP ON DATAPACK

Dump Clause

Purpose

The dump clause enables you to define

Backing Up a Database

6–20 8600 0759-622

• The parts of the database you want to back up

• The backup media you want to use

Single Dump Tapes

By supplying multiple dump clauses separated by semicolons (;), you can also use the

dump clause to

• Dump different parts of the database to

- Tapes with different names

- Disk files with different names

- A combination of tape and disk destinations

• Make multiple copies of the information you want to back up

Supplying multiple dump clauses also affects the number of dump workers assigned to

the dump operation. For more information on the assignment of dump workers, refer to

“WORKERS Option” under “DUMP Option” earlier in this section.

Multidump Tapes

The following usage restrictions apply to multidump tapes:

• Using more than one dump clause is not valid when you are dumping to a multidump

tape.

• Duplicate dump names are not permitted when you use APPEND to add dumps to a

multidump backup tape.

• If you must restart an APPEND action, use the negative task value from the previous

attempt. To avoid leaving an incomplete dump on the tape, you must perform a restart

action.

• Whenever you use an existing multidump tape on a system, the fast access directory

for that tape must be present on the system. You can copy the directory from another

system or create the directory for the tape by using the TAPESET DIRECTORY

CREATE command. If you perform an APPEND action and the fast access directory is

not present, DMUTILITY automatically creates the directory.

• Do not append a dump to a multidump tape that was created on another system.

Syntax

<dump clause>

── <dump list> ─┬──────────────────┬─ TO ──────────────────────────────►
└─ BY FAMILYINDEX ─┘

►─┬─<dump tape specification>──────┬───────────────────────────────────┤
├─<multidump tape specification>─┤
└─<dump disk specification>──────┘

Backing Up a Database

8600 0759-622 6–21

Examples

The following examples illustrate the use of multiple dump clauses.

Example 1

The following DUMP command contains three dump clauses and produces three dumps:

• A dump containing database restart information only

• A dump containing client information only

• A dump containing vendor information only

DUMP TESTDB/RDS/= TO RESTARTDUMP;
TESTDB/CLIENTS/= TO CLIENTDUMP;
TESTDB/VENDORS/= TO VENDORSDUMP

Example 2

The following DUMP command contains two dump clauses and backs up the complete

database twice, once to a disk file called TESTDB/DUMP/1 and once to a disk file called

TESTDB/DUMP/2. In both cases the backup disk files are created on a pack called

TESTPK.

DUMP = TO TESTDB/DUMP/1 ON TESTPK;
= TO TESTDB/DUMP/2 ON TESTPK

Dump List Clause

Purpose

Use the dump list clause to designate the parts of the database you want to back up. The

dump list consists of one or more database file names and one or more dump selector

clauses. The dump selector clauses refine the information provided by the database file

names.

When you perform a partial database dump, dump all the related structures together.

Otherwise, this dump is rendered useless for a rebuild recovery of these structures.

Related structures include all the following combinations:

• A data set and its sets and subsets

• A data set and its embedded structures

• Data sets and their linked data sets

Limitations

Be aware of the following limitations:

Backing Up a Database

6–22 8600 0759-622

• When the DMUTILITY program dumps all, or a portion, of a preallocated direct data

set, the DATAEOF value is recorded in the tape or file directory. Only the portion of the

direct data set prior to the DATAEOF block is actually written to the dump media. If the

DATAEOF value is unavailable (for example, because row 0 (zero) is locked out), all

data set rows, including the preallocated ones, are dumped.

Refer to “DMUTILITY INITIALIZE Statement” in Section 5, Initializing and

Maintaining, for more information.

• You cannot make a backup of only the database control file.

• COPYDUMP and DUPLICATEDUMP do not support incremental and accumulated

dumps.

Note: When you use the INCREMENTAL and ACCUMULATED dump options, you must

specify “DUMP =” to perform a full dump.

Syntax

<dump list>

┌◄──────────────────────────────── , ───────────────────────────────┐
──┴─┬─<database file name>─┬──────┬─<dump selector>─────────────────┬─┴──┤

│ └─ /= ─┘ │
└─ = ─┬─<dump selector>───┤

└─ (── EXCLUDE ──<exclude list>──) ──<portion selector>─┘

<dump selector>

──┬─<portion selector>───┬─┤
└─/1\─ (── DUMPENCRYPT ── = ─┬─ FALSE ─┬────────────────────┬─) ─┘

│ └─<portion selector>─┤
└─ TRUE ───────────────────────┘

<exclude list>

┌◄──────────────── , ────────────────┐
──┴─ <database name>/<data set name/= ─┴───────────────────────────────┤

<portion selector>

┌◄──────────────┬── AND ─┬───────────────┐
│ └◄─ & ───┘ │

── (─┴─┬────────────────────────────────────┬─┴─) ───────────────────┤
├─/1\─ FAMILYINDEX ── = ──<range>────┤
├─/1\─ ROW ── = ──<range>────────────┤
└─/1\─ PACKNAME ── = ──<family name>─┘

<range>

┌◄───────────── , ─────────────┐
──┴─<integer>─┬────────────────┬─┴─────────────────────────────────────┤

└─ - <integer> ─┘

Database File Name Clause

Use the database file name clause to identify the title of a database file.

Backing Up a Database

8600 0759-622 6–23

To dump a family of files, use /= (a slash followed by an equal sign). For example, to dump

all files in the ORGDB database with the first nodes of ORGDB/PROJECT, supply the

following file name:

ORGDB/PROJECT/=

To dump all the files in the database, use the = (an equal sign) branch of the <dump list>

clause.

Dump Selector Clause

Use the dump selector clause to refine the information provided by the database file

names in any of the following ways:

• Use the portion selector clause if the DUMPENCRYPT specification is not used for the

specified file or files.

• Use the DUMPENCRYPT = FALSE clause if no encryption is necessary during this

dump. As a result, the DUMPENCRYPT specification in DASDL for the specified file or

files is ignored during the dump and the portion selector clause is used.

• Use the DUMPENCRYPT = TRUE clause if encryption must be done during this dump.

As a result, the DUMPENCRYPT specification in DASDL for the specified file or files is

ignored during the dump.

Refer to Section 15, Using Database Tape Encryption, for specific examples and additional

information on the DUMPENCRYPT option.

Exclude List Clause

Use the exclude list clause to select one or more database structures you want to leave

out of a database dump. The exclude list can consist of one or more database files. This

clause provides more flexibility to the DUMP command, and it is especially useful when

you want to exclude a small percentage of structures from a DUMP operation.

When you want to perform a full database dump, but you want to exclude one or more

database files, you must exclude all structures related to the file or files. Related

structures include data sets, sets, subsets, and embedded structures.

Notes:

• DMUTILITY tape encryption is not available when data sets are included in the

exclude list clause of a dump list. For example, a full database dump performed

without the data sets CLIENTS and VENDORS would use the following command:

(EXCLUDE TESTDB/CLIENTS/=, TESTDB/VENDORS/=)

• If the database is a permanent directory database, do not include the data path. Only

include the database name and data set name.

Backing Up a Database

6–24 8600 0759-622

Example 1

The following command dumps all files that reside on family index 1 to 6 and pack family

DBDATA, except all structures associated with the EMPLOYEE and CUSTOMER data

sets:

DUMP = (EXCLUDE ALLDB/EMPLOYEE/=, ALLDB/CUSTOMER/=)

(PACKNAME=DBDATA & FAMILYINDEX = 1 - 6) TO TAPEX

Example 2

The following command dumps all rows that reside on pack family DBDATA, except the

files that are part of the PAYROLL1, PAYROLL2, and PAYROLL3 disjoint data sets and all

their related sets, subsets, and embedded structures.

DUMP = (EXCLUDE ALLDB/PAYROLL1/=, ALLDB/PAYROLL2/=,
ALLDB/PAYROLL3/=)

(PACKNAME=DBDATA) TO TAPEX

Note: If the database is a permanent directory database, do not include the data path.

Only include the database name and data set name.

Portion Selector Clause

Use the portion selector clause to refine the information provided by the database file

names in any of the following ways:

• Use the FAMILYINDEX construct to limit the backed up data to the data rows that

reside on a particular family index.

For example, the following dump list backs up all the information on family index 1

through 4 for any files that have the first nodes ORGDB/PROJECT:

ORGDB/PROJECT/= (FAMILYINDEX = 1 - 4)

If none of the designated family indexes exist, or if no rows of the specified file exist

on the designated family indexes, the following warning message is displayed:

NO ROWS MATCH THE REQUEST

• Use the ROW construct to limit the backed up data to the information in the

designated rows.

For example, the following dump list backs up the information in rows 17 through 33

in the file ORGDB/PROJECT/DATA:

ORGDB/PROJECT/DATA (ROW = 17 - 33)

If none of the designated rows exist, or if no data from the specified file exists on

the designated rows, the following warning message is displayed:

NO ROWS MATCH THE REQUEST

• Use the PACKNAME construct to limit the backed up data to the data that resides on

a particular pack.

Backing Up a Database

8600 0759-622 6–25

For example, the following dump list backs up all the information that resides on the

pack called DATAPACK:

= (PACKNAME = DATAPACK

You can use the FAMILYINDEX, ROW, and PACKNAME constructs together in a dump

selector clause. Frequently the constructs PACKNAME and FAMILYINDEX are used

together as shown in the following example. In this example, only the data that resides on

the pack MYDATAPACK on family index 1 through 5 is backed up.

ORGDB/PROJECT/DATA (FAMILYINDEX = 1 - 5 AND
PACKNAME = MYDATAPACK)

Creating Compound Dump Lists

To designate the same dump selector clause for several files, use a parenthetical

statement to identify the database files and follow the parenthetical statement with a

dump selector clause.

For example, the following statement includes in the database backup all data in rows 25

through 35 in the files ORGDB/PROJECT/DATA and ORGDB/INTERIMMANAGER/DATA:

(ORGDB/PROJECT/DATA, ORGDB/INTERIM-MANAGER/DATA)
(ROWS = 25 - 35)

Database files in the dump list that already have a dump selector clause have the outer

selection constraints related to the inner constraints through the Boolean construct OR.

For example, both of the following statements back up any data that resides on the pack

called MYDATA or that resides on family index 25 through 35:

(ORGDB/= (PACKNAME = MYDATA)) FAMILYINDEX = 25 - 35

(ORGDB/= (FAMILYINDEX = 25 - 35)) (PACKNAME = MYDATA)

BY FAMILYINDEX Option

Purpose

Use the BY FAMILYINDEX option to modify the order in which database information on

disk is backed up. The BY FAMILYINDEX option causes information to be backed up by

structure within a disk family index within a disk family. If the dump is likely to be used for

reconstruction purposes, having all the structure-related information from a single disk

family or family index together can make the reconstruction process faster.

A disk family can be made up of one or more disk family indexes. Each disk family index

relates to a physical disk unit.

Backing Up a Database

6–26 8600 0759-622

Syntax

To use the BY FAMILYINDEX option, precede the keyword TO with the keywords BY

FAMILYINDEX in the DUMP command. For example,

DUMP = BY FAMILYINDEX TO TAPEX

Dump Tape Specification

Purpose

Use the dump tape specification to identify your output tape requirements for the backup

process.

Syntax

<dump tape specification>

──<tape name>──►
►─┬───┬────┤
│ ┌◄──────────────────────── , ───────────────────────┐ │
└─ (─┴─┬─/1\─ TAPES ── = ──<integer>───────────────────┬─┴─) ─┘

├─/1\─┬─<serial number specification>───────────┤
│ └─ SCRATCHPOOL ── = ──<scratch pool name>─┤
├─/1\─┬─ COMPRESSED ────────────────────────────┤
│ └─ NONCOMPRESSED ─────────────────────────┤
├─/1\─ DENSITY ── = ──<density mnemonic>────────┤
└─/1\─ BLOCKSIZE ── = ──<integer>───────────────┘

<serial number specification>

┌◄───────────────────────── , ─────────────────────────┐
│ ┌◄────── , ─────┐ │

──┴─ SERIALNO ─┬─────────────────┬─ = ─┴─┬─<integer>─┬─┴─┴─────────────┤
└─ (<integer>) ─┘ └─<string6>─┘

TAPES Clause

Single Dump Tapes

Use the TAPES clause to designate the maximum number of families (cycles) of tapes to

which you want the database dumped. The database files in the dump list are divided into

the maximum specified number of equal parts, and each part is dumped to a unique family

of tapes. The minimum number of tapes you can assign is 1 and the maximum is 50. The

default value is 1.

Specifying a large number of tapes for a small database might produce fewer tapes than

you expect because there is not enough data to fill the designated number of tapes.

If you do not provide a value for the WORKERS option, then the TAPES clause also sets

the number of parallel workers. If you request more than 50 tapes, the number of parallel

workers is limited to 20 since this is the maximum value allowed for the WORKERS

option.

Backing Up a Database

8600 0759-622 6–27

After a successful tape dump, the printout provided by the DMUTILITY program displays

the last cycle, version, and serial number of the tape containing the latest directory

information.

Multidump Tapes

WORKERS and TAPES are not valid options when you are creating dumps to multidump

tapes.

Tape Labels

Unique cycle and version numbers are assigned to the tape reels. The cycle number

indicates the tape family; the version number indicates the position of the reel within the

family. The version number of multidump tapes is always 1.

MTVERSION – revisit text and examples in this subsection when continuation reels for

multidump tapes are reinstated.

For example, if you specify TAPES = 2, the tapes in the first family are labeled CYCLE=1

VERSION=1, CYCLE=1 VERSION=2, and so on. Similarly, the tape reels in the second

family are labeled CYCLE=2 VERSION=1, CYCLE=2 VERSION=2, and so on. The result of

a PER MT command on an ODT provides a display similar to the following:

--------------------- MT STATUS -----------------------
20*P[050543] 6250 #1 1:1 <05/25/2004> TESTDUMP
21*P[050544] 6250 #1 2:1 <05/25/2004> TESTDUMP
22*P[051754] 6250 #1 1:2 <05/25/2004> TESTDUMP
23*P[051755] 6250 #1 2:2 <05/25/2004> TESTDUMP

For multidump tapes, the result of a PER MT command on an ODT provides a display

similar to the following:

--------------------- MT STATUS -----------------------
153*H[021404] 36TRK #1/1 1:1 <01/22/2004> DBDUMP01/TAPESET
250*H[021403] 36TRK C#1/1 1:1 <01/28/2004> TESTTAPE/TAPESET
723*H[021401] ST9840 C#1/1 1:1 <01/27/2004> MDRDBSTRC/TAPESET
724*H [021401] ST9840 C#1/1 1:1 <01/06/2004> ACU2TAPE/TAPESET

In the displays, the cycle and version numbers are provided in the following format:

<cycle number>:<version number>

Tape Security

By default, DMUTILITY dump tapes are created with the SECURITY=PRIVATE clause. This

clause indicates that the dump tapes can be read only by the usercode under which the

tapes were created or by a user under a privileged usercode.

COMPRESSED and NONCOMPRESSED Options

By default, if you mount

Backing Up a Database

6–28 8600 0759-622

• An uncompressed tape, no data compression occurs

• A compressed tape, data compression occurs

To ensure that data compression either does or does not occur, include the

COMPRESSED or the NONCOMPRESSED option in your DUMP command.

Density Specification

By including a tape density in the dump tape specification, you ensure that all dump tapes

are written at that density. Refer to the explanation of the DENSITY file attribute in the File

Attributes Programming Reference Manual for a complete list of available tape densities.

Data is written in different data block sizes, depending on the density that you designate.

By default, 10922-word data blocks are written, and the wait time is 165 seconds. To

improve tape use, include a density or block size specification in your DUMP command.

The following table identifies tape densities and block sizes that you can designate.

Density (BPI) Data Block Size (Words) Wait Time

11000 10922 165 seconds

The wait time is the amount of time in which a tape drive must respond to a command. If

the tape drive does not respond within the specified time, a timeout error occurs and is

reported.

BLOCKSIZE Clause

Use the BLOCKSIZE clause to set the BLOCKSIZE value for the destination dump tape.

The DMUTILITY program accepts a block size from 900 to 65535 words, however, the

universal default block size 10922.

The assignment of the block size is based on the following criteria:

Is Block Size

Specified?

Is Density

Specified? Block Size Calculated

Yes Yes Use the specified block size. If the block size specified is

more than 10922 words, a warning message appears.

Yes No Use the specified block size. If the block size specified is

more than 10922 words, a warning message appears.

No Yes Use the default block size and the specified density.

No No Use the default block size, 10922 words.

Backing Up a Database

8600 0759-622 6–29

Serial Number Specification

Use the serial number specification to identify the specific tape or set of tapes you want to

use. Serial numbers can be any 1 to 6digit integer or character string. The

SERIALNO (<integer>) construct enables you to designate the serial numbers for a

particular cycle of tapes. The integer designates the tape cycle number. This form of the

serial number specification is valid only when the number of cycles is greater than one. Up

to 1000 serial numbers can be recorded in a dump tape directory.

The following serial number specification associates the serial numbers 346783, 346784,

and 346785 with two cycles of tapes using the SERIALNO(<integer>) construct:

SERIALNO (1) = 346783, 346784, 346785
SERIALNO (2) = 346783, 346784, 346785

The SERIALNO (<integer>) form of the serial number specification is not valid for

multidump tapes.

You cannot designate a scratch pool name and serial numbers for the same tape.

If you are not using the SCRATCHPOOL option, and if you are using a cartridge tape library

(CTL), tapes can have the same name but must have unique serial numbers. When

retrieving tapes, the CTL needs this serial number to mount the correct tape on a cartridge

library unit (CLU) device.

If you do not provide the serial numbers, the CTL might accept an incorrect tape with the

same name as the correct one, or suspend the task until an operator response is received.

After a successful tape dump, the printout provided by the DMUTILITY program displays

the last cycle, version, and serial number of the tape containing the latest directory

information.

When you use the UNSTACK function of the MCP TapeStack utility on a stacked dump

tape, ensure that the serial number of the unstacked tape is the same as the serial number

of the tape when it was first stacked. To ensure that the two numbers match, perform the

following steps:

1. Use the DIR system command to determine the serial number of the stacked tape.

2. To assign the appropriate serial number to the unstacked tape, do one of the following:

a. Use the SN system command.

b. Use the UNSTACK AS syntax of the MCP TapeStack utility.

Refer to the System Software Utilities Manual for more information on tape stacking and

unstacking.

SCRATCHPOOL Option

Use the SCRATCHPOOL option to designate the scratch pool from which you want to

retrieve a tape. The scratch pool name construct is a 17-character identifier.

You cannot designate a scratch pool name and serial numbers for the same tape.

Backing Up a Database

6–30 8600 0759-622

Multidump Tape Specification

Purpose

Use the multidump tape specification to identify your output tape requirements for the

backup process when you want to store more than one backup dump on the same tape.

Syntax

<multidump tape specification>

──<dump name>── TAPE ── = ──<tape name>──────────────────────────────►
►─┬───┬────────┤
│ ┌◄────────────────────── , ─────────────────────┐ │
└─ (─┴─┬─/1\─┬─<serial number specification>───────┬─┴─) ─┘

│ └─ SCRATCHPOOL = <scratch pool name> ─┤
├─/1\─┬─ COMPRESSED ────────────────────────┤
│ └─ NONCOMPRESSED ─────────────────────┤
├─/1\─────<mnemonic>────────────────────────┤
└─/1\─ BLOCKSIZE ── = ──<integer>───────────┘

Density Specification

When you use a density specification for a multidump tape, it must correspond to a tape

drive that has fast access capability.

Multidump Serial Number Specification

The SERIALNO (<integer>) form of the serial number specification is not valid for

multidump tapes.

Dump Disk Specification

Purpose

If you are dumping to disk, use the dump disk specification to provide

• The base name for the output disk files

• The number of backup disk files you want to create

• The BLOCKSIZE attribute for dump files

Backing Up a Database

8600 0759-622 6–31

Syntax

<dump disk specification>

──<file title>─┬──┬──────────┤
│ ┌◄───────────────── , ────────────┐ │
└─ (─┴─┬─/1\─ FILES = <integer> ─────┬─┴─)──┘

└─/1\─ BLOCKSIZE = <integer> ─┘

FILES Clause

Use the FILES clause to identify the number of backup disk files that should be created for

the dump. You can request that the dump be divided into at most 50 files. By default, only

one file is created for a dump.

Examples

The naming convention for the output disk files is illustrated in the following examples.

Example 1

Assume you designate the following items:

• ORGDB/DUMP ON ISYS as the file title

• FILES = 1 as the number of files you want to create

In this instance, one disk file called ORGDB/DUMP on ISYS is created.

Example 2

Assume you designate the following items:

• ORGDB/DUMP ON BACKPACK as the file title

• FILES = 4 as the number of files you want to create

In this instance, the following five dump disk files are created. The file ORGDB/DUMP

contains control information only.

• ORGDB/DUMP ON BACKPACK

• ORGDB/DUMP/01 ON BACKPACK

• ORGDB/DUMP/02 ON BACKPACK

• ORGDB/DUMP/03 ON BACKPACK

• ORGDB/DUMP/04 ON BACKPACK

BLOCKSIZE Clause

Use the BLOCKSIZE clause to set the BLOCKSIZE attribute for the dump files. This value

must be a multiple of 60 words, and range from 900 to 65,520 words.

Backing Up a Database

6–32 8600 0759-622

If the BLOCKSIZE option is not specified, the default disk dump block size is 19,200

words.

If you specify an invalid BLOCKSIZE value, the DMUTILITY program terminates with the

following error message:

BLOCKSIZE MUST BE A MULTIPLE OF 60 WORDS AND RANGE FROM
900 TO 65520 WORDS

Disk Usage

With a default disk dump block size of 19,200 words and the option to specify a

BLOCKSIZE value up to 65,520 words, it is possible that increased disk space is required.

The disk dump function reads each area from the source file and copies each area to one

or more fixed-length data blocks. Consequently, the last block that corresponds to each

area of the source file might contain some unfilled space. Depending on the area size of

the source file, this unfilled space might increase as the BLOCKSIZE value increases.

When running disk dumps on databases where the average area size of each file is less

than 900 words, it is recommended that you set the BLOCKSIZE value to 900 words to

minimize the increased disk usage. For databases with files of varying sizes, expanding

the BLOCKSIZE value improves the performance of the disk dump. However, some

testing might be required to assess the impact of the increased disk usage.

Examples

The specification of the blocking factor for dump files is illustrated in the following

examples.

Example 1

Assume you designate the following items:

• ORGDB/DUMP ON DATAPACK as the file title

• BLOCKSIZE = 3600 as the blocking factor you want to use

In this instance, one disk file called ORGDB/DUMP ON DATAPACK is created with the

BLOCKSIZE value of 3600 words.

Example 2

Assume you designate the following items:

• ORGDB/DUMP ON BACKUP as the file title

• FILES = 3 as the number of files you want to create

• BLOCKSIZE = 6000 as the blocking factor you want to use

In this instance, the following dump files are created. Except for the first file,

ORGDB/DUMP ON BACKPACK, all files are created with the BLOCKSIZE value of

6000 words.

Backing Up a Database

8600 0759-622 6–33

• ORGDB/DUMP ON BACKPACK

• ORGDB/DUMP/01 ON BACKPACK

• ORGDB/DUMP/02 ON BACKPACK

• ORGDB/DUMP/03 ON BACKPACK

File Title Clause

Use the file title clause to provide the base name for the backup disk files. The backup disk

files are always created under the same usercode as the usercode from which you initiate

the DMUTILITY run.

Naming Requirements for Dump Disk Files

Adhere to the following rules for naming dump disk files:

• Do not supply a usercode.

If you supply a usercode, a syntax error occurs.

• Do supply a family name.

If you do not supply a family name, the DMUTILITY program assumes you want to

back up the database to tape.

Naming Recommendations for Dump Disk Files

Avoid using any file name that might be the name of an existing database file. For

example, avoid using any of the following file name formats:

• <database name>/< database name>/DATA

• <database name>/<data set name>/DATA

• <database name>/<data set name>/<set name>

• <database name>/CONTROL

If you do not supply a unique name, the following warning displays:

DISPLAY: **WARNING: **<pack name>** SPECIFIED DISKSTREAM
DUMP ALREADY EXISTS

<dump file name>
ACCEPT: DISKSTREAM: AX '<file name>' OR ’QUIT DMUTILITY'

If, in response to this warning, you supply the name of a file that also exists, the following

warning displays:

DISPLAY: DISKSTREAM: <dump file name> IS RESIDENT

DUMP Command Examples Where the Backup Medium Is Single
Dump Tape

The following examples illustrate DUMP command syntax when the output medium is

tape.

Backing Up a Database

6–34 8600 0759-622

Example 1

The following command dumps all rows of the database to tape DBDUMP063094:

DUMP = TO DBDUMP063094

Example 2

The following command dumps all rows of the database that reside on family index 3 to

tape TAPEX:

DUMP = (FAMILYINDEX = 3) TO TAPEX

Example 3

The following command divides the database into three equal parts and dumps each part

to a separate tape. Three tapes are dumped in parallel if three tape drives are available. The

first tape is labeled CYCLE=1, VERSION=1; the second tape is labeled CYCLE=2,

VERSION=1; and the third tape is labeled CYCLE=3, VERSION=1. If an overflow tape is

required, the version is incremented; that is, if the first tape overflows, it overflows to a

tape labeled CYCLE=1, VERSION=2.

DUMP = TO TAPEX (TAPES = 3)

Example 4

The following command divides the database into three equal parts and dumps each part

to a separate tape. Two tapes are dumped in parallel. The first tape is labeled CYCLE=1,

VERSION=1; the second tape is labeled CYCLE=2, VERSION=1; and the third tape is

labeled CYCLE=3, VERSION=1. If an overflow tape is required, the version is

incremented; that is, if the first tape overflows, it overflows to a tape labeled CYCLE=1,

VERSION=2.

OPTIONS (WORKERS = 2) DUMP = TO TAPEX (TAPES = 3)

Example 5

The following command dumps the entire database to tapes with the specified serial

numbers. The first tape is labeled CYCLE=1, VERSION=1, SERIALNO=231; the second

tape is labeled CYCLE=1, VERSION=2, SERIALNO=232; and the third tape is labeled

CYCLE=1, VERSION=3, SERIALNO=233.

DUMP = TO TAPEX (SERIALNO = 231,232,233)

Example 6

The following command divides the database into two equal parts and dumps each part to

a separate tape. Two tapes are dumped in parallel. The first tape is labeled CYCLE=1,

VERSION=1, and SERIALNO=240. The second tape is labeled CYCLE=2, VERSION=1,

and SERIALNO=250. If the first tape overflows, it overflows to a tape labeled CYCLE=1,

VERSION=2, and SERIALNO=241. Similarly, if the second tape overflows, it overflows to

a tape labeled CYCLE=2, VERSION=2, and SERIALNO=251.

DUMP = TO TAPEX (TAPES = 2, SERIALNO(1) = 240,241,
SERIALNO(2) = 250,251)

Backing Up a Database

8600 0759-622 6–35

Example 7

The following command explicitly divides the database by structure and dumps all rows of

each file to the specified tape:

DUMP DB/A/DATA TO TAPE1; DB/B/DATA TO
TAPE2; DB/C/DATA TO TAPE3

Example 8

The following command dumps each family index to a separate set of tapes. The rows on

each family index are partitioned into three parts and dumped to different cycles of the

same tape name. Nine tapes could be dumped simultaneously, but the WORKERS=3

clause limits the DMUTILITY program to three tapes at a time.

OPTIONS(WORKERS=3) DUMP
= (FAMILYINDEX=1) TO T1(TAPES=3);
= (FAMILYINDEX=2) TO T2(TAPES=3);
= (FAMILYINDEX=3) TO T3(TAPES=3)

Example 9

The following example is identical to the previous example except that the tapes have

been assigned serial numbers. SERIALNO(1) refers to the first cycle of that tape name.

The first tape for cycle 1 of T1 is assigned serial number 100. If it overflows, the second

tape, or version 2, is assigned serial number 101.

OPTIONS(WORKERS=3) DUMP
= (FAMILYINDEX=1) TO T1(TAPES=3,

SERIALNO(1)=100,101,
SERIALNO(2)=200,201,
SERIALNO(3)=300,301);

= (FAMILYINDEX=2) TO T2(TAPES=3,
SERIALNO(1)=110,111,
SERIALNO(2)=210,211,
SERIALNO(3)=310,311);

= (FAMILYINDEX=3) TO T3(TAPES=3,
SERIALNO(1)=120,121,
SERIALNO(2)=220,221,
SERIALNO(3)=320,321)

Example 10

The following command dumps all rows that reside on family index 1 and 4 of family

DBDATA to tape TAPEX:

DUMP = (FAMILYINDEX=1,4 AND PACKNAME=DBDATA) TO TAPEX

Example 11

The following command dumps all rows in files DB/A/= and DB/B/= that reside on family

index 1 of pack family DBDATA. In addition, all rows of DB/RDS/= are dumped if they

satisfy either the inner condition (PACKNAME = DBDATA) or the outer condition

(PACKNAME = DBDATA) and (FAMILYINDEX = 1). Because the first condition is less

restrictive, all rows of DB/RDS/= on DBDATA meet this condition and are dumped.

Backing Up a Database

6–36 8600 0759-622

DUMP (DB/A/=, DB/B/=, DB/RDS/= (PACKNAME=DBDATA))
(PACKNAME=DBDATA FAMILYINDEX=1) TO TAPEX

Example 12

The following command dumps all rows of the database to tape DUMPTAPE. After the

dump has completed, the tape is rewound and read forward to check for correctness.

OPTIONS (FORWARD COMPARE) DUMP = TO DUMPTAPE

Example 13

The following command dumps all rows except files that are part of the EMPLOYEE1,

EMPLOYEE2 disjoint data sets, subsets, and embedded structures. The NOCOMPARE

option is set, and the structures are dumped according to the family index order.

OPTIONS (NOCOMPARE) DUMP = (EXCLUDE ALLDB/EMPLOYEE1/=,
ALLDB/EMPLOYEE2/=) BY FAMILY INDEX TO TAPEX

Example 14

The following command dumps all rows of the database, using the density FMTST9840

with data block size set to 25,000 words:

DUMP = TO TAPEX (DENSITY=FMTST9840, BLOCKSIZE=25000)

Example 15

The following command initiates an offline accumulated tape dump. All data blocks that

have been modified since the last full dump are included in the file ACCUMTAPEX. The

“DUMP =” syntax specifies that all database files must be included in the accumulated

dump.

OPTIONS (FORWARD COMPARE, WORKERS=2) OFFLINE ACCUM DUMP =
TO ACCUMTAPEX

Example 16

The following command initiates an incremental dump. All data blocks that have been

modified since the last full, incremental, or accumulated dump are included in the file

INCRTAPE. The “DUMP =” syntax specifies that all database files must be included in the

incremental dump.

INCR DUMP = TO INCRTAPE

DUMP and APPEND Examples Where the Backup Medium Is
Multidump Tape

The following examples illustrate both dump and append functions for a multidump tape.

APPEND allows backup to multidump tapes that already contain backups.

Backing Up a Database

8600 0759-622 6–37

Example 1

The following commands dump all rows of the DB1 database and append all rows of the

DB2 database to tape TESTTAPE. These dumps are labeled DB1DUMP and DB2DUMP.

RUN *SYSTEM/DMUTILITY("DB = DB1 DUMP = TO DB1DUMP TAPE
= TESTTAPE")

RUN *SYSTEM/DMUTILITY("DB = DB2 APPEND = TO DB2DUMP TAPE
= TESTTAPE")

Example 2

The following commands dump all rows of the DB1 database that reside on family index 3

to the multidump tape TESTTAPE and append all rows of the DB2 database to the same

tape. These dumps are labeled DB1DUMP and DB2DUMP.

RUN *SYSTEM/DMUTILITY("DB = DB1 DUMP = (FAMILYINDEX = 3)
TO DB1DUMP TAPE = TESTTAPE")

RUN *SYSTEM/DMUTILITY("DB = DB2 APPEND = (FAMILYINDEX = 3)
TO DB2DUMP TAPE = TESTTAPE")

Example 3

The following commands dump and append each family index to the same tape

TESTTAPE. The rows on each family index are partitioned into three parts on the same

tape TESTTAPE.

RUN *SYSTEM/DMUTILITY("DB = DB1 DUMP = (FAMILYINDEX = 1)
TO DB1DUMP TAPE = TESTTAPE")

RUN *SYSTEM/DMUTILITY("DB = DB1 APPEND = (FAMILYINDEX = 2)
TO DB2DUMP TAPE = TESTTAPE")

RUN *SYSTEM/DMUTILITY("DB = DB1 APPEND = (FAMILIYINDEX = 3)
TO DB3DUMP TAPE = TESTTAPE")

Example 4

The following commands dump to DB1DUMP and append to DB2DUMP on a multidump

tape TESTAPE with a serial number specification 394239.

RUN *SYSTEM/DMUTILITY("DB = DB1 DUMP = TO DB1DUMP TAPE =
TESTTTAPE(SERIALNO = 394239)")

RUN *SYSTEM/DMUTILITY("DB = DB2 APPEND = TO DB2DUMP TAPE =
TESTTAPE(SERIALNO = 394239)")

Example 5

The following commands dump to DB1DUMP and append to DB2DUMP on tape

TESTTAPE all rows that reside on family index 1 of family DMTEST.

Backing Up a Database

6–38 8600 0759-622

RUN * SYSTEM/DMUTILITY("DB = DB1 DUMP = (FAMILYINDEX = 1
AND PACKNAME = DMTEST) TO DB1DUMP TAPE = TESTTAPE")

RUN *SYSTEM/DMUTILITY("DB = DB2 APPEND = (FAMILYINDEX = 1
AND PACKNAME = DMTEST) TO DB2DUMP TAPE = TESTTAPE")

Example 6

The following commands dump to DB1DUMP and append to DB2DUMP on tape

TESTTAPE all rows of the database. After each dump has completed, the tape is

positioned to the beginning of the dump and read forward to check for correctness due to

the FORWARD COMPARE option.

RUN *SYSTEM/DMUTILITY("DB = DB1 OPTIONS(FORWARD COMPARE) DUMP =
TO DB1DUMP TAPE = TESTTAPE")

RUN *SYSTEM/DMUTILITY("DB = DB2 OPTIONS(FORWARD COMPARE)
APPEND = TO DB2DUMP TAPE = TESTTAPE")

Example 7

The following commands dump to DB1DUMP and append to DB2DUMP all rows of the

databases DB1 and DB2, using the density FMTST9840 with data block size set to 25,000

words.

RUN *SYSTEM/DMUTILITY("DB = DB1 DUMP = TO DB1DUMP TAPE =
TESTTAPE(DENSITY = FMTST9840, BLOCKSIZE = 25000)")

RUN *SYSTEM/DMUTILITY("DB = DB2 DUMP = TO DB1DUMP TAPE =
TESTTAPE(DENSITY = FMTST9840, BLOCKSIZE = 25000)")

Example 8

The following commands initiate a FULL OFFLINE dump, DB1DUMPFULL, and adds both

an ACCUMULATED dump, DB1DUMPACCUM, and an INCREMENTAL dump,

DB1DUMPINCR, to the same multidump tape. All data blocks that have been modified

since the last full dump are included in the dumps DB1DUMPACCUM and

DB1DUMPINCR.

RUN *SYSTEM/DMUTILITY("DB = DB1 OFFLINE DUMP = TO DB1DUMPFULL
TAPE = TESTTAPE")

RUN *SYSTEM/DMUTILITY("DB = DB1 OFFLINE ACCUM APPEND =
TO DB1DUMPACCUM TAPE = TESTTAPE")

RUN *SYSTEM/DMUTILITY("DB = DB1 OFFLINE INCR APPEND =
TO DB1DUMPINCR TAPE = TESTTAPE")

Example 9

The following commands place the first dump named DB1DUMP on the tape and appends

a second dump named DB2DUMP with the AXREADERROR option, which enables you to

take a specific action if a read operation error occurs during a DMUTILITY backup dump.

Backing Up a Database

8600 0759-622 6–39

RUN *SYSTEM/DMUTILITY("DB = DB1 OPTIONS(AXREADERROR) DUMP =
TO DB1DUMP TAPE = TESTTAPE")

RUN *SYSTEM/DMUTILITY("DB = DB2 OPTIONS(AXREADERROR) APPEND =
TO DB2DUMP TAPE = TESTTAPE")

Example 10

The following command initiates a database dump, DB1DUMP, with the use of a

COMPRESSED specification for a tape TESTTAPE, which will compress the data for

compressed tapes.

RUN *SYSTEM/DMUTILITY("DB = DB1 DUMP = TO DB1DUMP
TAPE = TESTTAPE(COMPRESSED)")

Example 11

The following command initiates a database dump DB1DUMP with the use of a

NONCOMPRESSED specification for a tape TESTTAPE, which will leave the data

uncompressed for uncompressed tapes.

RUN *SYSTEM/DMUTILITY("DB = DB1 DUMP = TO DB1DUMP
TAPE = TESTTAPE(NONCOMPRESSED)")

Example 12

The following command initiates a database dump DB1DUMP with the use of a

SCRATCHPOOL specification for a tape TESTTAPE, which designates the scratch pool

from which you want to retrieve a tape.

RUN *SYSTEM/DMUTILITY("DB = DB1 DUMP = TO DB1DUMP
TAPE = TESTTAPE(SCTACHPOOL = <17-character identifier>)")

Example 13

The following command dumps all rows of the database to a multidump tape. The dump

name is TESTDB063094 and the multidump tape name is DBDUMP063094:

DUMP = TO TESTDB063094 TAPE = DBDUMP063094

Example 14

The following command uses APPEND to add a new dump of all database rows to an

existing multidump tape. The dump name is ANOTHERDB063094 and the multidump

tape name is DBDUMP063094:

APPEND = TO TESTDB063094 TAPE = DBDUMP063094

DUMP Command Examples Where the Backup Medium Is Disk

The following examples illustrate DUMP command syntax when the output medium is

disk.

Backing Up a Database

6–40 8600 0759-622

Example 1

Assume a user with the usercode DBA issues the following disk dump command against

a database called MYDB:

DUMP = TO DBDUMP063094 ON SAVEPACK

The command causes the DMUTILITY program to attempt a dump of all rows of the

MYDB database to a file called DBDUMP063094 on the disk pack called SAVEPACK under

the DBA usercode.

If (DBA)DBDUMP063094 on SAVEPACK already exists; then the DMUTILITY program

requires operator assistance. Refer to “Operator Interface to DMUTILITY for Disk Stream

Dumps” in Section 4, Using DMUTILITY, for more information.

Example 2

The following example is a multiple-file version of example 1:

DUMP = TO DBDUMP063094 ON SAVEPACK(FILES=4)

The results of this command are

• An empty file called DBDUMP063094 located on the pack SAVEPACK

• Four files each containing one quarter of the database: DBDUMP063094/01,

DBDUMP063094/02, DBDUMP063094/03, and DBDUMP063094/04

• All four files are dumped in parallel.

Example 3

Assume a user with the usercode DBA issues the following disk dump command against

a database called TESTDB:

DUMP = (FAMILYINDEX = 3) TO DISKX ON DMS

This command causes the DMUTILITY program to attempt a dump of all rows of the

TESTDB database, residing on family index 3, to a newly created file called (DBA)DISKX on

the pack DMS.

Example 4

The following command creates three files on the pack DMS: DISKX, DISKX/01, and

DISKX/02. The files DISKX/01 and DISKX/02 are dumped in parallel.

DUMP = (FAMILYINDEX = 3) TO DISKX ON DMS (FILES=2)

Example 5

The following command dumps the data file for structure A for the DB database to a disk

file, SAVE/A, on the pack PK1 and the data file for structure B to SAVE/B on pack PK2. Both

are saved under the usercode that is running the DMUTILITY program.

DUMP DB/A/DATA TO SAVE/A ON PK1;
DB/B/DATA TO SAVE/B ON PK2

Backing Up a Database

8600 0759-622 6–41

Example 6

The following command creates two dump files: SAVE/A on pack PK1, and SAVE/B on

pack PK2. The FILES=1 element of the command has no effect on the file naming

convention.

DUMP DB/A/DATA TO SAVE/A ON PK1(FILES=1);
DB/B/DATA TO SAVE/B ON PK2

Example 7

The following command results in a warning message that the WORKERS option is

ignored. The disk dump occurs, but only one worker is used. It dumps all the rows of the

database to the file D1 on the pack DMS.

OPTIONS(WORKERS=3) DUMP = TO D1 ON DMS

Example 8

The following command results in a warning message that the FORWARD COMPARE

option is ignored for a disk dump. However, the disk dump is allowed to continue. The

block size of file D1 is 19,200 words because there is no BLOCKSIZE specification in the

DUMP command.

OPTIONS(FORWARD COMPARE) DUMP = TO D1 ON DMS

Example 9

The following commands result in syntax errors:

• This command returns an error because you cannot use the TAPES option with disk

files.

DUMP = TO TAPEX ON SAVEPACK (TAPES=3)

• This command returns an error because the keyword TO is missing from the

statement.

DUMP = TAPEX ON DISK

• This command returns an error because the keyword FILES was expected and

instead the keyword SERIALNO was found.

DUMP = TO TAPEX ON DISK (SERIALNO= 231,232,233)

Example 10

The following command creates four files on the pack DATAPACK: DBDUMP,

DBDUMP/01, DBDUMP/02, and DDDUMP/03. These files are dumped in parallel and all

have a BLOCKSIZE value of 3600 words, except the DBDUMP file.

DUMP = TO DBDUMP ON DATAPACK (FILES=3, BLOCKSIZE=3600)

Backing Up a Database

6–42 8600 0759-622

Example 11

The following command dumps all rows of the database except files that are part of

DATA1 and DATA2 disjoint data sets, subsets, and embedded structures. The destination

dump file has a BLOCKSIZE value of 15,000 words.

DUMP = (EXCLUDE ALLDB/DATA1/=, ALLDB/DATA2/=)
TO DISKDUMP(BLOCKSIZE=15000) ON SAVEPACK

Example 12

The following command initiates an offline accumulated disk dump. All data blocks that

have been modified since the last full dump are included in the file ACCUMDUMP ON

DATAPACK. The “DUMP =” syntax specifies that all database files must be included in the

accumulated dump.

OPTIONS (FORWARD COMPARE, WORKERS=2) OFFLINE ACCUM
DUMP = TO ACCUMDUMP ON DATAPACK

Example 13

The following command initiates an accumulated disk dump. All data blocks that have

been modified since the last full, incremental, or accumulated dump are included in the

file INCRDUMP ON DATAPACK. The “DUMP =” syntax specifies that all database files

must be included in the incremental dump.

INCR DUMP = TO INCRDUMP ON DATAPACK

DUMP Command Examples Where the Backup Medium Is Both
Single Dump Tape and Disk

The following examples illustrate DUMP command syntax when the output medium is

both tape and disk.

Example 1

The following command backs up all the information on

• Family index 3 to three files on the pack DMS

• Family index 1 and 4 to tape TAPEX

DUMP = (FAMILYINDEX = 3) TO DISKX ON DMS (FILES=3);
= (FAMILYINDEX=1,4) TO TAPEX

Example 2

The following command backs up

• The data file for structure A to a disk file SAVE/A on the family PK1

• The data file for structure B to a disk file SAVE/B on the family PK2

• All of the database files on family index 1 to tape T1

Backing Up a Database

8600 0759-622 6–43

In this instance, because both tape and disk media are being used, the WORKERS option

setting is ignored.

OPTIONS(WORKERS=3) DUMP DB/A/DATA TO SAVE/A ON PK1;
DB/B/DATA TO SAVE/B ON PK2;
= (FAMILYINDEX=1) TO T1

VERIFYDUMP Command (DMUTILITY)

Purpose

Use the VERIFYDUMP command to ensure that a dump is usable. You can use the

VERIFYDUMP command with complete and partial dumps of the database. The

VERIFYDUMP command checks that a dump is free from the following types of errors:

• Block checksum errors

• Block sequencing errors

• I/O errors

If the DMUTILITY program detects a problem with a dump, an error message is displayed.

Depending on the type of error encountered and, if applicable, your response to the error

message, the DMUTILITY program either continues or terminates.

Note: By default, the DMUTILITY program automatically performs the VERIFYDUMP

operation when creating a dump. Unless the dump was created using the NOCOMPARE

option, it is unnecessary to initiate a separate run to perform a VERIFYDUMP operation

immediately following the creation of the dump tape. The NOCOMPARE option

suppresses automatic verification of dump tapes and should only be used in conjunction

with a VERIFYDUMP command at a later time or on another system.

Syntax

The following diagrams illustrate the syntax for the VERIFYDUMP command. Explanations

of the syntax elements follow the diagrams. The syntax elements are explained in the

order in which they appear in the syntax diagrams.

VERIFYDUMP Command

──┬──────────────────────┬─ VERIFYDUMP ────────────────────────────────►
└─<verify dump option>─┘

►─┬─<dump tape specification>───────┬──────────────────────────────────┤
├─<dump disk specification>───────┤
└─<multidump tape specification>──┘

<verify dump option>

── OPTIONS ── (── WORKERS = <integer> ──) ───────────────────────────┤

Backing Up a Database

6–44 8600 0759-622

<dump tape specification>

──<tape name>──►
►─┬──┬───────────┤
│ ┌◄──────────────────── , ────────────────────┐ │
└─ (─┴─┬─/1\─ VERSION ── = ──<integer>──────────┬─┴─) ─┘

├─/1\─ CYCLE ── = ──<integer>────────────┤
├─/1\─ SERIALNO ── = ─┬─<integer>────────┤
│ └─<string6>────────┤
└─/1\─ DENSITY ── = ──<density mnemonic>─┘

<dump disk specification>

──<disk file name>── ON ──<family name>────────────────────────────────┤

<multidump tape specification>

──<dump name>── TAPE ── = ──<tape name>──────────────────────────────►
►─┬──┬───────────┤
│ ┌◄──────────────────── , ────────────────────┐ │
└─ (─┴─┬─/1\─ VERSION ── = 1 ───────────────────┬─┴─) ─┘

├─/1\─ CYCLE ── = 1 ─────────────────────┤
├─/1\─ SERIALNO ── = ─┬─<integer>────────┤
│ └─<string6>────────┤
└─/1\─ DENSITY ── = ──<density mnemonic>─┘

Verify Dump Option

If you are verifying a single tape dump, use the WORKERS option to identify the

maximum number of tape reels that can be processed in parallel. The WORKERS option is

not valid for use with multidump tapes. If you are verifying a disk dump, the WORKERS

option is ignored.

Dump Tape Specifications and Dump Disk Specification

Use the dump tape specification or the dump disk specification to identify the name of the

dump you want to verify.

For single tape dumps, provide the version, cycle, and serial number of the reel in the

dump that was completed last. Otherwise, when automatic verification is done, the

following conditions might occur:

• More reels of the dump tape than necessary might be processed in order to verify the

desired rows.

• The list of the tapes needed to verify the desired rows might not contain every

required cycle and version of the tape.

Copying Database Backups

Introduction

The DMUTILITY program provides the following two commands for copying existing

database dumps from medium to medium: COPYDUMP and DUPLICATEDUMP.

Backing Up a Database

8600 0759-622 6–45

COPYDUMP Command

Use the COPYDUMP command to copy a database dump from one device to another. The

input and output devices do not have to be the same type of device. The copy of the dump

is given the same timestamp as the original dump. While copying the dump, the

DMUTILITY program verifies the dump for correctness. If a problem occurs, an

appropriate error message displays.

DUPLICATEDUMP Command

Single Dump Tape

Use the DUPLICATEDUMP command to copy a database dump from one device to a

device of the same type.

In the case of a tape dump, the DUPLICATEDUMP command enforces a reel-for-reel

duplication. That is, if the original dump consists of five reels, the copy consists of five

reels. The information on any reel of the original dump is copied to exactly one reel of the

copy. As a result, if you need to, you can use reels 1, 3, and 5 from the original dump with

reels 2 and 4 from the copy of the dump for a recovery of the database.

In the case of a disk dump, the DUPLICATEDUMP command enforces a file-for-file

duplication. That is, if the original dump consists of three files, the copy consists of three

files.

Multidump Tape

This option is not allowed for multidump tapes.

Diskstream Dumps

Use the DUPLICATEDUMP command to copy a database dump from one or more disk

files to another set of one or more disk files.

COPYDUMP Command (DMUTILITY)

Purpose

Use the COPYDUMP command to create a copy of a database backup. The copy can be

made on the same or a different type of media as the original database backup. If you

want to enforce reelforreel or fileforfile similarity, use the DUPLICATEDUMP command.

You cannot use COPYDUMP to copy incremental or accumulated dumps. If you attempt to

do so, DMUTILITY produces the following syntax error:

CAN'T COPY OR DUPLICATE DUMP FOR AN INCREMENTAL/ACCUMULATED DUMP

Note: A dump cannot be copied to a permanent directory.

Backing Up a Database

6–46 8600 0759-622

Syntax

The following diagrams illustrate the syntax for the COPYDUMP command. Explanations

of the syntax elements follow the diagrams. The syntax elements are explained in the

order in which they appear in the syntax diagrams.

COPYDUMP Command

──┬──────────────────┬─ COPYDUMP FROM ─┬─<source dump tape>─┬─ TO ─────►
└─<options clause>─┘ └─<source dump disk>─┘

►─┬─<destination dump tape>─┬──┤
└─<destination dump disk>─┘

<options clause>

┌◄────────────── , ─────────────┐
── OPTIONS ── (─┴─┬─/1\─ WORKERS = <integer> ─┬─┴─) ─────────────────┤

└─/1\─┬─ FORWARD COMPARE ───┤
└─ NOCOMPARE ─────────┘

<source dump tape>

──<tape name>──►
►─┬──┬───────────┤
│ ┌◄──────────────────── , ────────────────────┐ │
└─ (─┴─┬─/1\─ VERSION ── = ──<integer>──────────┬─┴─) ─┘

├─/1\─ CYCLE ── = ──<integer>────────────┤
├─/1\─ SERIALNO ── = ─┬─<integer>────────┤
│ └─<string6>────────┤
└─/1\─ DENSITY ── = ──<density mnemonic>─┘

<source dump disk>

──<disk file name>── ON ──<pack>───────────────────────────────────────┤

<destination dump disk>

──<disk file name>── ON ──<pack>────┬───────────────────────────┬──────┤
└─ (BLOCKSIZE = <integer>) ─┘

<destination dump tape>

──<tape name>──►
►─┬───┬────────┤
│ ┌◄────────────────────── , ─────────────────────┐ │
└─ (─┴─┬─/1\─┬─<serial number specification>───────┬─┴─) ─┘

│ └─ SCRATCHPOOL = <scratch pool name> ─┤
├─/1\─┬─ COMPRESSED ────────────────────────┤
│ └─ NONCOMPRESSED ─────────────────────┤
├─/1\─── DENSITY ── = ──<density mnemonic> ─┤
└─/1\─── BLOCKSIZE ── = ──<integer> ────────┘

OPTIONS Clause

Use the OPTIONS clause to

• Identify the maximum number of tape reels that can be processed in parallel. The

maximum value you can assign to the WORKERS option is 50.

• Request that a forwardcomparison technique be used to verify the copy of the dump.

Backing Up a Database

8600 0759-622 6–47

Requesting a forward comparison is valid only when the copy destination is tape.

• Request that the automatic checking of a newly created tape be skipped by using the

NOCOMPARE option. NOCOMPARE and FORWARD COMPARE are mutually

exclusive options.

Note: If you specify the NOCOMPARE option for a disk dump, a warning message is

displayed and the option is ignored.

If you specify the NOCOMPARE option for a tape dump, a message is displayed indicating

that the output dump is not verified.

Source Dump Tape Clause

Use the source dump tape clause to identify the name of the source dump tape.

For tape dumps, provide the version, cycle, and serial number of the reel in the dump that

was completed last. Otherwise, when automatic tape recovery is done, the following

conditions might occur:

• More reels of the dump tape than necessary might be processed in order to load the

desired rows.

• The list of the tapes needed to load the desired rows might not contain every required

cycle and version of the tape.

Source Dump Disk Clause

Use the source dump disk clause to identify the name of the source dump if the dump is

on disk. The dump is expected to be located under the same usercode as the usercode

from which the DMUTILITY run is initiated.

Destination Dump Tape Clauses

Use the destination dump tape clause to identify the tape to which you want to copy the

database dump. Even if you are copying a tape dump, the source and destination tape

drives do not need to be the same type of device.

By default, if you mount

• An uncompressed tape, no data compression occurs

• A compressed tape, data compression occurs

To ensure that data compression either does or does not occur, include the

COMPRESSED or the NONCOMPRESSED option in your COPYDUMP command.

Use the BLOCKSIZE clause to set the BLOCKSIZE value for the destination dump tape.

The DMUTILITY program accepts a block size from 900 to 65535 words; however, the

universal default block size is 10922 words.

Backing Up a Database

6–48 8600 0759-622

Destination Dump Disk Clause

Use the destination dump disk clause to identify the disk file to which you want to copy

the dump. The dump is copied to the same usercode from which the DMUTILITY run is

initiated.

Use the BLOCKSIZE clause to set the BLOCKSIZE attribute for the destination dump file.

This value must be a multiple of 60 words, and range from 900 words to 65,520 words. If

you specify an invalid BLOCKSIZE value, the DMUTILITY program terminates with the

following error message:

BLOCKSIZE MUST BE A MULTIPLE OF 60 WORDS AND RANGE
FROM 900 TO 65520 WORDS

Supply a unique name for the destination dump disk file. If you do not supply a unique

name, the following warning appears:

DISPLAY: **WARNING: **<pack name>** SPECIFIED DISKSTREAM
DUMP ALREADY EXISTS

<dump file name>
ACCEPT: DISKSTREAM: AX '<file name>' OR ’QUIT DMUTILITY'

Cataloging Tape and Disk Backup Information

Tape and disk backup information is cataloged if the DMDUMPDIR program is enabled, the

control file is present, and the main directory is present.

COPYDUMP Command Examples

The following examples illustrate the COPYDUMP command syntax.

Example 1

The following command copies the tape dump TESTDBDUMP as TESTDBDUMP2. Both

the original and the copy of the dump are on tape. In this example, four workers are

requested and the copy of the dump is verified using a forwardcomparison technique.

OPTIONS (WORKERS=4, FORWARD COMPARE) COPYDUMP FROM
TESTDBDUMP TO TESTDBDUMP2

Example 2

The following command copies the disk dump TESTDISKDUMP to a tape, and the copy of

the dump is verified using a forwardcomparison technique.

OPTIONS (FORWARD COMPARE) COPYDUMP FROM TESTDISKDUMP ON SYSPACK
TO TAPEDUMP

Example 3

The following command copies a disk dump TESTDISKDUMP to TESTDISKDUMP2 on

another disk, and the destination dump file is created with a BLOCKSIZE value of 6000

words:

Backing Up a Database

8600 0759-622 6–49

COPYDUMP FROM TESTDISKDUMP ON DATAPACK TO TESTDISKDUMP2
ON BACKUP (BLOCKSIZE = 6000)

DUPLICATEDUMP Command

Purpose

Use the DUPLICATEDUMP command to create a duplicate of a database backup or

backups. The duplicate must be made on the same type of media as the original database

backup. The DUPLICATEDUMP command enforces reelforreel or fileforfile similarity.

Because of this similarity, you can mix and match tape reels or files from the original and

the duplicate in processes such as database recovery.

If you are duplicating a tape dump or a set of tape dumps, ensure that the capacity of the

destination tape reels is at least as great as the original tape reels. If a destination tape reel

has a lesser capacity than the source tape reel and there is insufficient space on the

destination reel for all the data on the source reel, an error occurs and the duplication

process fails.

You cannot use DUPLICATEDUMP to duplicate incremental or accumulated dumps. If you

attempt to do so, DMUTILITY produces the following syntax error:

CAN’T COPY OR DUPLICATE DUMP FOR AN INCREMENTAL/ACCUMULATED DUMP

Note: A duplicate dump cannot be placed in a permanent directory.

Syntax

The following diagrams illustrate the syntax for the DUPLICATEDUMP command.

Explanations of the syntax elements follow the diagrams. The syntax elements are

explained in the order in which they appear in the syntax diagrams.

DUPLICATEDUMP Command

──┬──────────────────┬─ DUPLICATEDUMP FROM ────────────────────────────►
└─<options clause>─┘

►─┬─/1\─ <source dump tape> TO <destination dump tape> ─┬──────────────┤
└─/1\─ <source dump disk> TO <destination dump disk> ─┘

<options clause>

┌◄──────────────── , ───────────────┐
── OPTIONS ── (─┴─┬─/1\─ WORKERS ── = ──<integer>─┬─┴─) ─────────────┤

└─/1\─┬─ FORWARD COMPARE ───────┤
└─ NOCOMPARE ─────────────┘

<source dump tape>

──<tape name>──►
►─┬──┬───────────┤
│ ┌◄──────────────────── , ────────────────────┐ │
└─ (─┴─┬─/1\─ VERSION ── = ──<integer>──────────┬─┴─) ─┘

├─/1\─ CYCLE ── = ──<integer>────────────┤
├─/1\─ SERIALNO ── = ─┬─<integer>────────┤

Backing Up a Database

6–50 8600 0759-622

│ └─<string6>────────┤
└─/1\─ DENSITY ── = ──<density mnemonic>─┘

<source dump disk>

<destination dump disk>

──<disk file name>── ON ──<pack>───────────────────────────────────────┤

<destination dump tape>

──<tape name>──►
►─┬───┬────────┤
│ ┌◄────────────────────── , ─────────────────────┐ │
└─ (─┴─┬─/1\─┬─<serial number specification>───────┬─┴─) ─┘

│ └─ SCRATCHPOOL = <scratch pool name> ─┤
└─/1\─┬─ COMPRESSED ────────────────────────┤

└─ NONCOMPRESSED ─────────────────────┘

OPTIONS Clause

Use the OPTIONS clause to

• Identify the maximum number of tape reels that can be processed in parallel. The

maximum value you can assign to the WORKERS option is 50.

• Request that a forwardcomparison technique be used to verify the duplicate of the

dump. FORWARDCOMPARE is the default value for tape devices that do not have

read reverse capability.

Requesting a forward comparison is valid only when the dump is on tape.

• Request that the automatic checking of a newly created tape be skipped by using the

NOCOMPARE option. NOCOMPARE and FORWARD COMPARE are mutually

exclusive options.

Note: If you specify the NOCOMPARE option for a disk dump, a warning message is

displayed and the option is ignored.

If you specify the NOCOMPARE option for a tape dump, a message is displayed indicating

that the output dump is not verified.

Source Dump Tape and Destination Dump Tape Clauses

The only differences you can have between the source and the destination dump tape

clauses are

• Tape name

• Serial number specification

• Scratch pool name

You can designate a scratch pool name only in the <destination dump tape> clause.

• Compression

Backing Up a Database

8600 0759-622 6–51

While not a recommended action, you can use a compressed source tape and a

noncompressed destination tape, or a noncompressed source tape and a compressed

destination tape. However, the COMPRESSED and NONCOMPRESSED options are

provided only in the destination dump tape specification.

The same type of tape device must be used for the source and for the destination dump

tape files.

You must also ensure that the capacity of any destination reel is at least as great as the

capacity of any source reel. The DMUTILITY program terminates with an error if the

destination tape reel cannot contain the data on the source tape reel. This error occurs

because a reelforreel similarity is enforced by the DUPLICATEDUMP command.

Source Dump Disk and Destination Dump Disk Clauses

Use the source dump disk and the destination dump disk clauses to identify the names of

the source and destination dump files when the dump is on disk. The source dump files

must be located under the same usercode as the usercode from which the DMUTILITY

run is initiated.

Supply a unique name for the destination dump disk files. If you do not supply a unique

name, the following warning displays:

DISPLAY: **WARNING: **<pack name>** SPECIFIED DISKSTREAM
DUMP ALREADY EXISTS

<dump file name>
ACCEPT: DISKSTREAM: AX ’<file name>’ OR ’QUIT DMUTILITY’

Cataloging Tape and Disk Backup Information

Tape and disk backup information is cataloged if DMDUMPDIR is enabled, the control file

is present, and the main directory is present.

DUPLICATEDUMP Command Examples

The following examples illustrate the DUPLICATEDUMP command syntax.

Example 1

The following command duplicates the tape dump TESTDBDUMP as TESTDBDUMP2. In

this example, four workers are requested and the duplicate of the dump is verified using a

forwardcomparison technique.

OPTIONS (WORKERS=4, FORWARD COMPARE) DUPLICATEDUMP
FROM TESTDBDUMP TO TESTDBDUMP2

Example 2

The following command duplicates the disk dump DISKDUMP1:

DUPLICATEDUMP FROM DISKDUMP1 ON SYSPACK TO DISKDUMP2 ON BACKPACK

Backing Up a Database

6–52 8600 0759-622

TAPEDIRECTORY Command (DMUTILITY)

Introduction

Use the TAPEDIRECTORY command to list the tape or disk file directory written by the

DMUTILITY program at the beginning of each database backup tape reel or file. The

directories of successive reels and files are cumulative. Thus, the directory of the last reel

or last file written identifies all the database information that was backed up.

The directory generated by the TAPEDIRECTORY command is useful during recovery

operations. From it, you can identify which reels or files contain the rows of interest, thus

eliminating extra search time.

The directory provided by the TAPEDIRECTORY command describes the information

backed up during one single database backup procedure. If you want to catalog all the

database backup information for a particular database, use the DMDUMPDIR program and

the BUILDDUMPDIRECTORY command. For more information on cataloging database

backup information, refer to “Cataloging the Information in Database Backups” later in

this section.

Syntax

The following diagrams illustrate the syntax for the TAPEDIRECTORY command. For

explanations of the syntax elements, refer to “DMUTILITY DUMP Command” earlier in

this section.

TAPEDIRECTORY Command

┌◄────────────────── , ─────────────────┐
── TAPEDIRECTORY ─┴─┬─<tape directory source>───────────┬─┴────────────┤

├─<disk file directory source>──────┤
└─<multidump tape directory source>─┘

<tape directory source>

──<tape name>──►
►─┬──┬───────────┤
│ ┌◄──────────────────── , ────────────────────┐ │
└─ (─┴─┬─/1\─ VERSION ── = ──<integer>──────────┬─┴─) ─┘

├─/1\─ CYCLE ── = ──<integer>────────────┤
├─/1\─ SERIALNO ── = ─┬─<integer>────────┤
│ └─<string6>────────┤
└─/1\─ DENSITY ── = ──<density mnemonic>─┘

<multidump tape directory source>

──<dump name>── TAPE ── = ──<tape name>──────────────────────────────►
►─┬──┬───────────┤
│ ┌◄──────────────────── , ────────────────────┐ │
└─ (─┴─┬─/1\─ VERSION ── = 1 ───────────────────┬─┴─) ─┘

├─/1\─ CYCLE ── = 1 ─────────────────────┤
├─/1\─ SERIALNO ── = ─┬─<integer>────────┤
│ └─<string6>────────┤
└─/1\─ DENSITY ── = ──<density mnemonic>─┘

Backing Up a Database

8600 0759-622 6–53

Examples

The following examples illustrate the use of the TAPEDIRECTORY command.

Example 1

The following example produces a listing of the location of all rows dumped to the

designated reel and dumped to all previous tape reels during the designated dump:

TAPEDIRECTORY DBTAPE020479 (CYCLE = 2, VERSION = 3)

If the designated reel is the last reel dumped by the DMUTILITY program, the tape

directory contains information about all rows of the database that were dumped.

Example 2

The following example produces a listing of the locations of all rows that are dumped to a

specific backup dump on the designated multidump reel.

TAPEDIRECTORY ANOTERHDB063094 TAPE = DBDUMPS063094 (CYCLE = 1,
VERSION = 1)

TAPESET DIRECTORY Command (DMUTILITY)

Introduction

Use the TAPESET DIRECTORY command to either list the contents or recreate the fast

access directory file for a multidump tape or set of multidump tapes.

Note: Do not use the database name specification “DB =” with this command.

The DMUTILITY program automatically creates or updates a directory file when the first

reel of a set of tapes is created by the DUMP command with the multidump tape

specification. Directory files are created on the pack identified by the DL LIBMAINTDIR

command. If no location is specified, directory files are located on the system halt/load

unit.

Directory file titles use the following format:

<tape name>/TAPESETDIRFILE/<yyyymmdd><hhmmss>
ON <libmaint dir pack name>

The MCP automatically removes a fast access directory file (following a response to a

waiting entry) when you purge a volume, or physical reel, from the set of tapes by using

the PG or SN system command. Be sure to respond to the automatic MCP waiting entry

that requests confirmation that you want to scratch the tape. If the fast access directory

has been previously removed, the MCP does not ask for confirmation. Refer to the

System Commands Reference for more information about the PG and SN commands. At

times, you might want to copy the directory file manually so that you can transport it to

another system.

Backing Up a Database

6–54 8600 0759-622

Note: Unisys recommends that you do not move multidump tapes between systems to

add dumps to them because this can result in inconsistent fast access directory files on

the different systems. These inconsistent directory files can cause existing dumps to be

overwritten.

Syntax

The following diagram illustrates the syntax for the TAPESET DIRECTORY command.

Explanations of the syntax elements follow the diagram.

── TAPESET DIRECTORY ─┬─ CREATE ─┬─ TAPE ── = ──<tape name>────────────┤
├─ LIST ───┤
└─ PRINT ──┘

CREATE Option

Use CREATE to re-create the fast access disk directory that is used for positioning the

tape.

If the multidump tape has been used to hold backups from more than one usercode,

ensure that all of the usercodes have visibility to the fast access directory. One method to

accomplish this task is to give the fast access directory PUBLIC security.

When the fast access directory is manually re-created by using the TAPESET DIRECTORY

CREATE command, the usercode initiating the command must be able to create files

under the usercode of the first dump on the tape. Otherwise, the operating system emits

a security violation error.

LIST or PRINT Option

Use LIST to create reports of the multidump backup tape contents. This option sends the

report to the terminal where you initiated the command.

PRINT creates reports of the multidump backup tape contents. This option sends the

reports to a printer backup file.

DMUTILITY accesses the name of the directory file on disk by way of the

ASSOCIATEDFILENAME attribute. You can obtain a directory listing in one of two ways:

• File-equate the file TSDIR to the appropriate directory file on the library maintenance

directory (LIBMAINTDIR) pack. You can obtain the pack name by using the DL system

command (see Example 2).

• Mount any of the tapes.

Tape contents can also be reported when a fast access directory file is not present. In the

absence of a directory file, DMUTILITY reads the tape to create the report, and all

members of the set must be available.

Backing Up a Database

8600 0759-622 6–55

Examples

Example 1

The following example produces a printed listing of all dumps contained within the Fast

access directory file for the multidump tape labeled QRESCFILETAPE1:

RUN SYSTEM/DMUTILITY ("TAPESET DIRECTORY PRINT
TAPE = QRESCFILETAPE1")

You can use any tape from the set to locate the directory.

The following is a sample of the output produced by the TAPESET DIRECTORY command

with the LIST or PRINT option included:

Unisys Enterprise Database Server for ClearPath
MCP SYSTEM/DMUTILITY

SSR 50.1 (50.140.0077)
Thursday, January 8, 2004 15:56:08.1250

SYSTEM: NX4800 SERIAL NUMBER: 9999
FAST ACCESS DIRECTORY FILE REPORT

DIRECTORY FOR TAPE: QRESCFILETAPE1/TAPESET
MultiDump Directory File Name:
(PROD1)QRESCFILETAPE1/TAPESETDIRFILE/2004010813759 ON SYS009
REELNO: 1 (SERIALNO=HALLAJ)
DUMP# 1 = DBIDUMP DB = (PROD1)QRESCFILE ON SYS009

DUMPED ON 01/08/2004 13:58:12
DUMP IS ONLINE
TYPE IS FULL

DUMP# 2 = DB2DUMP DB = (PROD1)QRESCFILE ON SYS009
DUMPED ON 01/08/2004 13:58:23
DUMP IS ONLINE
TYPE IS ACCUMULATED

DUMP# 3 = DB3DUMP DB = (PROD1)QRESCFILE ON SYS009
DUMPED ON 01/08/2004 13:58:55
DUMP IS ONLINE
TYPE IS INCREMENTAL

END OF TAPE.

Example 2

The following example uses the file-equate method to produce a printed listing of all

dumps contained within the fast access directory file for the multidump tape labeled

DBTAPE020479:

RUN SYSTEM/DMUTILITY ("TAPESET DIRECTORY PRINT
TAPE = DBTAPE020479");

FILE TSDIR = (TITLE = DBTAPE020479/TAPESETDIRFILE/20030903135109
ON DIRECTORYPACK)

Example 3

The following example sends the report of all dumps contained within the fast access

directory file for the multidump tape labeled DBTAPE020479 back to your terminal when

you manually run SYSTEM/DMUTILITY:

Backing Up a Database

6–56 8600 0759-622

RUN SYSTEM/DMUTILITY
("TAPESET DIRECTORY LIST TAPE = DBTAPE020479")

You can use any tape from the set to locate the directory.

Example 4

The following example creates a new fast access directory for the dumps on the

multidump tape labeled DBTAPE020479:

RUN SYSTEM/DMUTILITY
("TAPESET DIRECTORY CREATE TAPE = DBTAPE020479")

Cataloging the Information in Database Backups

Introduction

You can catalog information regarding tape and disk database backups in a two-level

directory called the dump tape directory. The purpose of the catalog is to improve

database recovery performance by making the information required for the database

recovery operation easily located. Figure 6–1 illustrates the dump tape directory concept.

As shown in the illustration, the dump tape directory contains two types of files—the main

directory file and a series of dump directory files.

Figure 6–1. Dump Tape Directory

Backing Up a Database

8600 0759-622 6–57

Main Directory File

Each database can have one main directory file. The main directory file contains one entry

for each database backup for which you want to store information. Figure 6–1 shows that

each entry in the main directory file identifies a dump directory that contains information

about a particular database backup.

The main directory file resides on the same pack under the same usercode as the

database control file and has the name

<database name>/DMDUMPDIR

Dump Directory File

One dump directory file exists for each entry in the main directory. Each dump directory

file contains information about one database backup—the name of the dump tape or disk

file and a list of the database files backed up.

By default, dump directory files are stored on the same pack under the same usercode as

the database control file. Using the DMDUMPDIR program you can choose to locate the

dump directory files differently. Dump directory files have the following naming

convention:

<database name>/DMDUMPDIR/<dump time>/<dump name>

The dump time identifies the date and time at which the dump was created. Starting with

SSR 43.2, the dump time has the format YYYYMMDDHHMMSS. The following dump

time example indicates that the dump was created on January 21, 1997, at 15:21:16:

19970121152116

The dump name is the name given to the tape or disk file in the DMUTILITY DUMP,

COPYDUMP, or DUPLICATEDUMP command.

If you use the same dump name for the source dump tape and the destination dump tape

in the COPYDUMP or DUPLICATEDUMP command, a new dump directory is created

using the following naming convention:

<database>/DMDUMPDIR/<dump time>/<dump name>/<system time>

Tools for Developing and Maintaining Dump Tape Directories

Two tools are provided for developing and maintaining dump tape directories:

• DMDUMPDIR program

• BUILDDUMPDIRECTORY command of the DMUTILITY program

Use the DMDUMPDIR program to perform any of the following tasks for a particular

database:

Backing Up a Database

6–58 8600 0759-622

• Create a main directory file and initiate the automatic generation of dump directory

files (ENABLE command).

• Discontinue the automatic generation of dump directory files and delete all files

associated with the dump tape directory (DISABLE command).

• Insert a main directory file entry for an existing dump directory file (ADD command).

• Delete a main directory file entry and its associated dump directory file

(DELETE command).

• List or print the information stored in the main directory file or in a dump directory file,

or list or print information about particular items in the database (LIST and WRITE

commands).

Use the DMUTILITY BUILDDUMPDIRECTORY command to construct a dump directory

file for an existing database backup and generate an appropriate main directory file entry.

Process for Developing a Dump Tape Directory

To develop a dump tape directory for a database, perform one of the following procedures.

For a New Database

For a new database, run the DMDUMPDIR program and use the ENABLE command.

Once the ENABLE command is processed, all new database backups are automatically

logged in the dump tape directory.

For an Existing Database

For an existing database, perform the following steps:

1. Run the DMDUMPDIR program and use the ENABLE command.

All new database backups are automatically logged in the dump tape directory.

2. Identify all the previously generated database backups about which you want to store

information.

3. Use the BUILDDUMPDIRECTORY command to build dump directory files for all the

backups identified in step 2.

Appropriate entries are automatically made in the main directory file for each dump

directory file you build.

Updating the Dump Tape Directory

Once you have issued the DMDUMPDIR ENABLE command for a database, all of the

following three actions automatically update the dump tape directory:

• Creating a new database backup (DUMP command)

• Copying an existing database backup (COPYDUMP command)

• Duplicating an existing database backup (DUPLICATEDUMP command)

Backing Up a Database

8600 0759-622 6–59

When you use the DMUTILITY COPYDUMP or DUPLICATEDUMP command and the

database control file is present, the DMDUMPDIR program automatically generates a

dump tape directory entry for the copy or duplicate of the dump. The new dump tape

directory entry has the same timestamp as the entry for the original database dump. In a

listing of the dump directory, duplicates and copies of a database dump are appropriately

marked.

Running the DMDUMPDIR Program

The basic statement for running the DMDUMPDIR program is

RUN SYSTEM/DMDUMPDIR ("<DMDUMPDIR statement>");
FILE DASDL = DESCRIPTION/<database name>;

To ensure that the DMDUMPDIR program can locate the database description file, use the

appropriate file equation statement. The DMDUMPDIR statement provides the action you

want performed by the DMDUMPDIR program. For details of the DMDUMPDIR

statement syntax, refer to “DMDUMPDIR Program” later in this section.

DMDUMPDIR Program

Introduction

Dump directory information is retrieved and modified using the DMDUMPDIR program.

When you perform any of the following three actions and the DMDUMPDIR program is

enabled, dump directory entries are created automatically:

• Create a new database dump.

• Copy an existing database dump.

• Duplicate an existing database dump.

Note: When you use the DMDUMPDIR program with permanent directory databases,

the dump directory files are placed under the usercode of the task initiator.

Syntax

The following diagrams illustrate the syntax for the DMDUMPDIR statement. The

DMDUMPDIR statement commands are identified in functional order. Explanations of the

syntax elements follow the diagrams.

<DMDUMPDIR statement>

──┬─ ENABLE ─┬──┬──────┤
│ │ ┌◄──────────────── , ────────────────┐ │
│ └─┴─┬─/1\─ PACKNAME = <family name> ─┬─┴───────────┤
│ └─/1\─ RETAIN = <integer> ───────┘ │
├─ DISABLE ───┤
│ ┌◄───────────── , ────────────┐ │
├─ ADD ─┴─<dump directory identifier>─┴───────────────────────┤

Backing Up a Database

6–60 8600 0759-622

│ ┌◄───────────── , ────────────┐ │
├─ DELETE ─┬─┴─<dump directory identifier>─┴──────────────────┤
│ └─ OLDEST ──<integer>──────────────────────────────┤
├─ LIST ──┬─┬─<file list>─────────────────────────────────────┤
└─ WRITE ─┘ ├─ MAINDIRECTORY ─────────────────────────────────┤

│ ┌◄───────────── , ────────────┐ │
├─ DUMPDIRECTORY ─┴─<dump directory identifier>─┴─┤
└───┘

<dump directory identifier>

── <dump time> / <dump name> ──┤

<file list>

┌◄────────────── , ──────────────┐
──┴─<file name>─┬────────────────┬─┴───────────────────────────────────┤

└─<row selector>─┘

<row selector>

┌◄──────────────────┬── AND ─┬───────────────────┐
│ └◄─ & ───┘ │

── (─┴─┬──┬─┴─) ───────────┤
├─/1\─ FAMILYINDEX ── = ──<range>────────────┤
├─/1\─ ROW ── = ──<range>────────────────────┤
├─/1\─ PACKNAME ── = ──<family name>─────────┤
│ ┌◄───────── , ────────┐ │
└─/1\─ ROWLOCK ── = ─┴─┬─/1\─ LOCKEDROW ─┬─┴─┘

└─/1\─ READERROR ─┘

<range>

┌◄───────────── , ────────────────────────────────┐
──┴─<unsigned integer>─┬────────────────────────┬───┴──────────────────┤

└─ - <unsigned integer> ─┘

ENABLE Command

Use the ENABLE command to establish a main directory for the database. The ENABLE

command turns on a Boolean value in the database control file, creates a main directory

file, and sets up the global section of the main directory.

Note: The database cannot be in use when the control file program updates the control

file.

ENABLE Command Example

The following example causes a dump tape directory to be associated with the database.

All dump directory files in this example reside on pack DBPACK. In addition, the directory

retains information for a maximum of 10 dumps.

ENABLE PACKNAME = DBPACK, RETAIN = 10

Backing Up a Database

8600 0759-622 6–61

PACKNAME Option

To identify the location for the dump directories, use the PACKNAME option. By default,

dump directories are stored on the same pack as the main directory and the database

control file.

Use the PACKNAME option primarily to change the location of an already enabled dump

directory.

Note: If the control file location changes, you must copy the main directory and dump

directory to the new control file location.

RETAIN Option

Use the RETAIN option to identify the number of dumps about which information is to be

kept in the main directory. By default, information for 50 dumps is retained. When the

RETAIN limit is exceeded, the oldest dumps are automatically deleted from the main

directory.

Use the RETAIN option primarily to change the number of dumps about which information

is maintained in an existing main directory.

DISABLE Command

Use the DISABLE command to disable the dump directory for a database. All available files

associated with the dump tape directory, including the main directory and all dump

directories, are deleted.

Note: The database cannot be in use when the control file program updates the control

file.

ADD Command

Use the ADD command to manually add dump entries to the main directory if a dump

directory file exists for the dump.

If the DMDUMPDIR program is enabled, then an entry for the dump is automatically

generated in the main directory, and a dump directory file is made each time a dump is

created.

DELETE Command

Use the DELETE command to remove dump entries from the main directory. If present,

the corresponding dump directory is also removed from disk.

Backing Up a Database

6–62 8600 0759-622

Use the dump identifier construct to designate the specific entries you want to remove. If

you want to delete a number of entries because they are outofdate, use the OLDEST

option. For example, use OLDEST 3 to remove the three oldest entries in the main

directory.

You can delete entries in the dump directory automatically or manually.

Entries are deleted automatically under either of the following circumstances:

• When the number of entries being added causes the maximum limit for entries to be

exceeded

In this instance, the oldest entries are deleted to make room for the new entries.

Refer to the RETAIN option for the ENABLE command earlier in this section for more

details.

• When a database recovery process moves the database back in time

The recovery processes ROLLBACK and REBUILD, which can stop their processing

before the end of the audit trail, perform these deletions. If a dump was made after

the time at which the recovery process stops, the dump is no longer valid and is

deleted automatically from the directory.

If you perform a manual recovery (for example, a copy or reprocessing operation), you

must manually update the main directory to delete any invalidated dumps. Similarly, if

invalid dumps become valid, you must manually add the information to the main

directory.

DELETE Command Example

The following example removes from the main directory information about the tape dump

DMSDUMP created on December 25, 1996 at 17:21:25. The corresponding dump

directory file is automatically removed.

DELETE 19961225172125/DMSDUMP

LIST and WRITE Commands

Use the LIST and WRITE commands to display information on the contents of the main

directory or dump directories, or to identify the dump tape or the dump file on which the

most current copies of the specified rows reside. The LIST command directs output to a

terminal. The WRITE command directs output to a printer.

File List Construct

Use the file list construct to identify the dump tape or the dump file on which the most

current copies of the specified database rows reside.

Backing Up a Database

8600 0759-622 6–63

File Name Construct

Use the file name construct to identify an Enterprise Database Server database file. The

file name construct is an identifier or a series of identifiers that represents the Enterprise

Database Server database file. Use the slash equal (/=) sign to represent a family of files.

Use the equal (=) sign alone to designate all files in the database.

Row Selector Construct

Use the row selector construct to identify the dump tape or the dump file on which the

specific rows in the designated database files reside. If you do not include a row selector

construct, the report contains information about all rows in the designated database files.

FAMILYINDEX Option

Use the FAMILYINDEX option to limit the report to only those rows that currently reside

on the specified family indexes.

ROW Option

Use the ROW option to limit the report to information on the data in the specified rows.

PACKNAME Option

Use the PACKNAME option to limit the report to information on the data on the specified

pack. The PACKNAME option is normally used with the FAMILYINDEX option.

ROWLOCK = LOCKEDROW Option

Use the ROWLOCK = LOCKEDROW option to report on all locked rows.

ROWLOCK = READERROR Option

Use the ROWLOCK = READERROR option to report on all rows having read operation

errors. The report does not include information about locked rows.

MAINDIRECTORY Option

Use the MAINDIRECTORY option to report on the contents of the main directory file.

DUMPDIRECTORY Option

Use the DUMPDIRECTORY option to report on the contents of the specified dump

directory files.

Backing Up a Database

6–64 8600 0759-622

Dump Directory Identifier Clause

Use the dump directory identifier clause to identify the dump entries you want to process.

The following examples illustrate the use of the dump identifier clause in the ADD

command:

Example 1

This example adds information to the main directory for the tape dump DBDUMP created

on July 1, 1996 at 12:52:05.

ADD 19960701125205/DBDUMP

Example 2

This example adds information to the main directory for the disk dump DBDUMP created

on September 30, 1996 at 22:52:05.

ADD 19960930225205/DBDUMP ON BACKDUMP

DMDUMPDIR WRITE Command Examples

The following examples illustrate the use of the WRITE statement.

Example 1

This command lists information that identifies the dumps on which the most current

copies of all rows in the database reside. The output is sent to a printer.

WRITE =

Example 2

This command lists information that identifies the dumps on which the most current

copies of all rows dumped from family index 3 reside.

WRITE = (FAMILYINDEX = 3)

Example 3

This command lists information that identifies the dumps on which the most current

copies of rows 1 through 5 of file DB/A/DATA reside.

WRITE DB/A/DATA (ROW = 1-5)

Example 4

This command lists information that identifies the dumps on which the most current

copies of all rows of file DB/A/DATA and rows 1 through 8 of file DB/B/DATA reside.

WRITE DB/A/DATA, DB/B/DATA (ROW = 1-8)

Backing Up a Database

8600 0759-622 6–65

Example 5

This command finds all rows in the database that are currently locked out or have read

operation errors, and lists information that identifies the dump tapes or disk files on which

the most current copies of these rows reside.

WRITE = (ROWLOCK = LOCKEDROW, READERROR)

Example 6

This command displays the contents of the main directory.

WRITE MAINDIRECTORY

Following is a sample listing of the contents of a main directory:

*** MAINDIRECTORY FOR DATABASE TESTDB ***

DESCRIPTION TIMESTAMP = 05/25/1995 14:20:44
BUILT BY DMDUMPDIR FORMAT LEVEL 4

DUMPS TO RETAIN = 50
DUMP DIRECTORY PACKNAME = TESTPK
NUMBER OF ENTRIES = 4
INDEX TO FIRST ENTRY = 13
WORDS PER ENTRY = 8
WORDS IN MAIN DIRECTORY = 45

DUPLICATED DUMP TESTDB/DUMP/4
DUMPED ON 06/09/1995 09:45:20

DUMP TESTDB/DUMP/1
DUMPED ON 06/09/1995 09:45:20

DUMP TESTDB/DUMP/2
DUMPED ON 06/09/1995 09:47:12

COPIED DUMP TESTDB/DUMP/3
DUMPED ON 06/09/1995 09:47:126

Example 7

This command displays the dump directory for the dump called TESTDB/DUMP/1 created

on June 9, 1995 at 09:45:20.

WRITE DUMPDIRECTORY 19950609094520/TESTDB/DUMP/1

Following is the output generated with this command:

*** DUMPDIRECTORY FOR DUMP TESTDB/DUMP/1 ON TESTPK ***

DUMPED ON 06/09/1995 09:45:20
DUMP IS OF DATABASE TESTDB

DESCRIPTION TIMESTAMP = 05/25/1995 14:20:44
UPDATE TIMESTAMP = 05/25/1995 14:20:45
UPDATE LEVEL = 1

BUILT BY DMDUMPDIR FORMAT LEVEL 4
WORDS IN DUMP DIRECTORY = 83
WORDS IN STRUCTURE ENTRY = 16
INDEX TO FIRST STRUCTURE = 27
TOTAL STRUCTURES DUMPED = 3
INDEX TO TAPE INFORMATION = 81

Backing Up a Database

6–66 8600 0759-622

AUDIT FILE NUMBER = 1
DUMPBY FAMILYINDEX = FALSE
FAMILYNAME TABLE SIZE = 1

STRUCTURE # 2 ON TESTPK
FORMAT TIMESTAMP = 05/25/1995 14:20:44
CREATION TIMESTAMP = 05/25/1995 14:21:19
VERSION TIMESTAMP = 06/09/1995 09:45:22
ROWS DUMPED = 1
ROWS IN STRUCTURE = 1
INDEX TO FIRST ROW = 75
FAMILY NUMBER = 1
ROW # 0 FAMILYINDEX = 1 DMROWLOCK = 0

RESIDES ON TAPE NUMBER 0 TAPEBLOCK = 5
CYCLE = 1 VERSION = 1

STRUCTURE # 3 ON TESTPK
FORMAT TIMESTAMP = 05/25/1995 14:20:44
CREATION TIMESTAMP = 05/25/1995 14:21:20
VERSION TIMESTAMP = 05/25/1995 14:21:20
ROWS DUMPED = 1
ROWS IN STRUCTURE = 1
INDEX TO FIRST ROW = 77
FAMILY NUMBER = 1
ROW # 0 FAMILYINDEX = 1 DMROWLOCK = 0

RESIDES ON TAPE NUMBER 0 TAPEBLOCK = 6
CYCLE = 1 VERSION = 1

STRUCTURE # 4 ON TESTPK
FORMAT TIMESTAMP = 05/25/1995 14:20:44
CREATION TIMESTAMP = 05/25/1995 14:21:20
VERSION TIMESTAMP = 05/25/1995 14:21:20
ROWS DUMPED = 1
ROWS IN STRUCTURE = 1
INDEX TO FIRST ROW = 79
FAMILY NUMBER = 1
ROW # 0 FAMILYINDEX = 1 DMROWLOCK = 0

RESIDES ON TAPE NUMBER 0 TAPEBLOCK = 7
CYCLE = 1 VERSION = 1

Example 8

This command displays the dump information available for the database file

TESTDB/DS1/DATA.

WRITE TESTDB/DS1/DATA

Following is a sample listing for the database file:

TESTDB/DS1/DATA ON TESTPK

STRUCTURE # 3
ROW # 0

ON DUMP TESTDB/DUMP/3 ON TESTP
CYCLE = 1 VERSION = 1
DUMPED ON 06/09/1995 09:47:12

Backing Up a Database

8600 0759-622 6–67

BUILDDUMPDIRECTORY Command (DMUTILITY)

Introduction

Use the BUILDDUMPDIRECTORY command for both of the following purposes:

• To build a dump directory file and insert a dump directory entry in the main directory

file for each of the specified tape or disk dumps

• To recover dump directory files and to create dump directory files for dumps that were

created prior to the DMDUMPDIR program being enabled

Syntax

The following diagrams illustrate the syntax for the BUILDDUMPDIRECTORY command.

Explanations of these syntax elements follow the diagrams. The syntax elements are

explained in the order in which they appear in the syntax diagrams.

BUILDDUMPDIRECTORY Command

┌◄────────── , ─────────┐
── BUILDDUMPDIRECTORY ─┴─┬─<dump tape>───────┬─┴────────────────────┤

├─<dump disk>───────┤
└─<multidump tape>──┘

<dump tape>

──<tape name>─┬──┬─┤
│ ┌◄──────────────────── , ────────────────────┐ │
└─ (─┴─┬─/1\─ VERSION ── = ──<integer>──────────┬─┴─) ─┘

├─/1\─ CYCLE ── = ──<integer>────────────┤
├─/1\─ SERIALNO ── = ─┬─<integer>────────┤
│ └─<string6>────────┤
└─/1\─ DENSITY ── = ──<density mnemonic>─┘

<dump disk>

──<disk file name>── ON ──<family name>────────────────────────────────┤

<multidump tape>

──<dump name>── TAPE ── = ──<tape name>──────────────────────────────►
►─┬──┬───────────┤
│ ┌◄──────────────────── , ────────────────────┐ │
└─ (─┴─┬─/1\─ VERSION ── = 1 ───────────────────┬─┴─) ─┘

├─/1\─ CYCLE ── = 1 ─────────────────────┤
├─/1\─ SERIALNO ── = ─┬─<integer>────────┤
│ └─<string6>────────┤
└─/1\─ DENSITY ── = ──<density mnemonic>─┘

Explanation

For tape dumps, provide the version, cycle, and serial numbers for the reel in the dump

that was completed last. Remember the following information when you are dumping to

tape

Backing Up a Database

6–68 8600 0759-622

For Multidump Tapes

• CYCLE and VERSION must be 1.

• Each DUMP or APPEND statement creates a uniquely named dump file. Thus, only

one version of any given dump can exist.

For Single Dump Tapes

• More reels of the dump tape than necessary might be processed in order to load the

desired rows.

• The list of the tapes needed to load the desired rows might not contain every required

cycle and version of the tape.

For explanations of the syntax elements, refer to “DMUTILITY DUMP Command” earlier

in this section.

Recovering Database Backup Catalog Information

Introduction

The information in the dump directory is a duplication, in a more convenient form, of

information contained in database dumps. Consequently, the information is easily

recovered if it is lost.

Recovering the Main Directory File

If the main directory file is lost, recover the information by using the DMDUMPDIR

ENABLE command, followed by a series of DMDUMPDIR ADD commands. The ENABLE

command creates an empty main directory file. And then the ADD commands populate

the main directory file with information about the designated dumps.

Recovering a Dump Directory File

If a dump directory file is lost, recover the information using the DMUTILITY

BUILDDUMPDIRECTORY command.

Quick-Reference Information

Introduction

The information presented here is for quick-reference purposes only. For an explanation of

any element of a syntax diagram, refer to the appropriate information presented earlier in

this section.

Backing Up a Database

8600 0759-622 6–69

DUMP and Append Command

──┬───────────────┬─┬───────────┬─┬───────────────────┬─┬─ DUMP ───┬───►
└─<dump option>─┘ └─ OFFLINE ─┘ ├─/1\─ INCREMENTAL ─┤ └─ APPEND ─┘

├─/1\─ INCR ────────┤
├─/1\─ ACCUMULATED ─┤
└─/1\─ ACCUM ───────┘

┌◄────── ; ─────┐
►─┴─<dump clause>─┴──┤

<dump option>

┌◄────────────────── , ─────────────────┐
── OPTIONS ── (─┴─┬─/1\─ WORKERS ── = ──<integer>─────┬─┴─) ─────────┤

├─/1\─┬─ FORWARD COMPARE ───────────┤
│ └─ NOCOMPARE ─────────────────┤
├─/1\─ AXREADERROR ─────────────────┤
├─/1\─ NOENCRYPT ───────────────────┤
└─/1\─ ENCRYPTTYPE ── = ─┬─ TDES ───┤

├─ AES256 ─┤
└─ AESGCM ─┘

<dump clause>

──┬─<dump list>──────┬─┬──────────────────┬─ TO ───────────────────────►
└─<multidump tape>─┘ └─ BY FAMILYINDEX ─┘

►─┬─<dump tape specification>──────┬───────────────────────────────────┤
├─<multidump tape specification>─┤
└─<dump disk specification>──────┘

<dump list>

┌◄──────────────────────────────── , ───────────────────────────────┐
──┴─┬─<database file name>─┬──────┬─<dump selector>─────────────────┬─┴──┤

│ └─ /= ─┘ │
└─ = ─┬─<dump selector>───┤

└─ (── EXCLUDE ──<exclude list>──) ──<portion selector>─┘

<dump selector>

──┬─<portion selector>───┬─┤
└─/1\─ (── DUMPENCRYPT ── = ─┬─ FALSE ─┬────────────────────┬─) ─┘

│ └─<portion selector>─┤
└─ TRUE ───────────────────────┘

<exclude list>

┌◄──────────────── , ────────────────┐
──┴─ <database name>/<data set name/= ─┴───────────────────────────────┤

<portion selector>

┌◄──────────────┬── AND ─┬───────────────┐
│ └◄─ & ───┘ │

── (─┴─┬────────────────────────────────────┬─┴─) ───────────────────┤
├─/1\─ FAMILYINDEX ── = ──<range>────┤
├─/1\─ ROW ── = ──<range>────────────┤
├─/1\─ PACKNAME ── = ──<family name>─┤
└─/1\─ SECTION ── = ──<range>────────┘

Backing Up a Database

6–70 8600 0759-622

<range>

┌◄───────────── , ─────────────┐
──┴─<integer>─┬────────────────┬─┴─────────────────────────────────────┤

└─ - <integer> ─┘

<dump tape specification>

──<tape name>──►
►─┬───┬────┤
│ ┌◄──────────────────────── , ───────────────────────┐ │
└─ (─┴─┬─/1\─ TAPES ── = ──<integer>───────────────────┬─┴─) ─┘

├─/1\─┬─<serial number specification>───────────┤
│ └─ SCRATCHPOOL ── = ──<scratch pool name>─┤
├─/1\─┬─ COMPRESSED ────────────────────────────┤
│ └─ NONCOMPRESSED ─────────────────────────┤
├─/1\─ DENSITY ── = ──<density mnemonic>────────┤
└─/1\─ BLOCKSIZE ── = ──<integer>───────────────┘

<serial number specification>

┌◄───────────────────────── , ─────────────────────────┐
│ ┌◄────── , ─────┐ │

──┴─ SERIALNO ─┬─────────────────┬─ = ─┴─┬─<integer>─┬─┴─┴─────────────┤
└─ (<integer>) ─┘ └─<string6>─┘

<dump disk specification>

──<file title>─┬───┬───────┤
│ │
│ ┌◄───────────── , ─────────────────┐ │
└─ (─┴┬─ /1\─ FILES = <integer> ───────┬┴─) ──┘

└─ /1\─ BLOCKSIZE = <integer> ───┘

<multidump tape specification

──<dump name>── TAPE ── = ──<tape name>──────────────────────────────►
►─┬──┬───────────┤
│ ┌◄──────────────────── , ────────────────────┐ │
└─ (─┴─┬─/1\─ VERSION ── = 1 ───────────────────┬─┴─) ─┘

├─/1\─ CYCLE ── = 1 ─────────────────────┤
├─/1\─ SERIALNO ── = ─┬─<integer>────────┤
│ └─<string6>────────┤
└─/1\─ DENSITY ── = ──<density mnemonic>─┘

VERIFYDUMP Command

──┬──────────────────────┬─ VERIFYDUMP ────────────────────────────────►
└─<verify dump option>─┘

►─┬─<dump tape specification>──────┬───────────────────────────────────┤
├─<dump disk specification>──────┤
└─<multidump tape specification>─┘

<verify dump option>

── OPTIONS ── (── WORKERS = <integer> ──) ───────────────────────────┤

Backing Up a Database

8600 0759-622 6–71

<dump tape specification>

──<tape name>──►
►─┬──┬───────────┤
│ ┌◄──────────────────── , ────────────────────┐ │
└─ (─┴─┬─/1\─ VERSION ── = ──<integer>──────────┬─┴─) ─┘

├─/1\─ CYCLE ── = ──<integer>────────────┤
├─/1\─ SERIALNO ── = ─┬─<integer>────────┤
│ └─<string6>────────┤
└─/1\─ DENSITY ── = ──<density mnemonic>─┘

<dump disk specification>

──<disk file name>── ON ──<family name>────────────────────────────────┤

<multidump tape specification>

──<dump name>── TAPE ── = ──<tape name>──────────────────────────────►
►─┬──┬───────────┤
│ ┌◄──────────────────── , ────────────────────┐ │
└─ (─┴─┬─/1\─ VERSION ── = 1 ───────────────────┬─┴─) ─┘

├─/1\─ CYCLE ── = 1 ─────────────────────┤
├─/1\─ SERIALNO ── = ─┬─<integer>────────┤
│ └─<string6>────────┤
└─/1\─ DENSITY ── = ──<density mnemonic>─┘

COPYDUMP Command

──┬──────────────────┬─ COPYDUMP FROM ─┬─<source dump tape>─┬─ TO ─────►
└─<options clause>─┘ └─<source dump disk>─┘

►─┬─<destination dump tape>─┬──┤
└─<destination dump disk>─┘

<options clause>

┌◄────────────── , ─────────────┐
── OPTIONS ── (─┴─┬─/1\─ WORKERS = <integer> ─┬─┴─) ─────────────────┤

└─/1\─┬─ FORWARD COMPARE ───┤
└─ NOCOMPARE ─────────┘

<source dump tape>

──<tape name>──►
►─┬──┬───────────┤
│ ┌◄──────────────────── , ────────────────────┐ │
└─ (─┴─┬─/1\─ VERSION ── = ──<integer>──────────┬─┴─) ─┘

├─/1\─ CYCLE ── = ──<integer>────────────┤
├─/1\─ SERIALNO ── = ─┬─<integer>────────┤
│ └─<string6>────────┤
└─/1\─ DENSITY ── = ──<density mnemonic>─┘

<source dump disk>

──<disk file name>── ON ──<pack>───────────────────────────────────────┤

<destination dump disk>

──<disk file name>── ON ──<pack>────┬───────────────────────────┬──────┤
└─ (BLOCKSIZE = <integer>) ─┘

Backing Up a Database

6–72 8600 0759-622

<destination dump tape>

──<tape name>──►
►─┬───┬────────┤
│ ┌◄────────────────────── , ─────────────────────┐ │
└─ (─┴─┬─/1\─┬─<serial number specification>───────┬─┴─) ─┘

│ └─ SCRATCHPOOL = <scratch pool name> ─┤
├─/1\─┬─ COMPRESSED ────────────────────────┤
│ └─ NONCOMPRESSED ─────────────────────┤
├─/1\─── DENSITY ── = ── <density mnemonic> ┤
└─/1\─── BLOCKSIZE ── = ── <integer> ───────┘

DUPLICATEDUMP Command

──┬──────────────────┬─ DUPLICATEDUMP FROM ────────────────────────────►
└─<options clause>─┘

►─┬─/1\─ <source dump tape> TO <destination dump tape> ─┬──────────────┤
└─/1\─ <source dump disk> TO <destination dump disk> ─┘

<options clause>

┌◄──────────────── , ───────────────┐
── OPTIONS ── (─┴─┬─/1\─ WORKERS ── = ──<integer>─┬─┴─) ─────────────┤

└─/1\─┬─ FORWARD COMPARE ───────┤
└─ NOCOMPARE ─────────────┘

<source dump tape>

──<tape name>──►
►─┬──┬───────────┤
│ ┌◄──────────────────── , ────────────────────┐ │
└─ (─┴─┬─/1\─ VERSION ── = ──<integer>──────────┬─┴─) ─┘

├─/1\─ CYCLE ── = ──<integer>────────────┤
├─/1\─ SERIALNO ── = ─┬─<integer>────────┤
│ └─<string6>────────┤
└─/1\─ DENSITY ── = ──<density mnemonic>─┘

<source dump disk>

<destination dump disk>

──<disk file name>── ON ──<pack>───────────────────────────────────────┤

<destination dump tape>

──<tape name>──►
►─┬───┬────────┤
│ ┌◄────────────────────── , ─────────────────────┐ │
└─ (─┴─┬─/1\─┬─<serial number specification>───────┬─┴─) ─┘

│ └─ SCRATCHPOOL = <scratch pool name> ─┤
└─/1\─┬─ COMPRESSED ────────────────────────┤

└─ NONCOMPRESSED ─────────────────────┘

TAPEDIRECTORY Command

┌◄────────────────── ; ─────────────────┐
── TAPEDIRECTORY ─┴─┬─<tape directory source>───────────┬─┴────────────┤

├─<disk file directory source>──────┤
└─<multidump tape directory source>─┘

Backing Up a Database

8600 0759-622 6–73

<tape directory source>

──<tape name>──►
►─┬──┬───────────┤
│ ┌◄──────────────────── , ────────────────────┐ │
└─ (─┴─┬─/1\─ VERSION ── = ──<integer>──────────┬─┴─) ─┘

├─/1\─ CYCLE ── = ──<integer>────────────┤
├─/1\─ SERIALNO ── = ─┬─<integer>────────┤
│ └─<string6>────────┤
└─/1\─ DENSITY ── = ──<density mnemonic>─┘

<disk file directory source>

──<disk file name>── ON ──<family name>────────────────────────────────┤

<multidump tape directory source>

──<dump name>── TAPE ── = ──<tape name>──────────────────────────────►
►─┬──┬───────────┤
│ ┌◄──────────────────── , ────────────────────┐ │
└─ (─┴─┬─/1\─ VERSION ── = 1 ───────────────────┬─┴─) ─┘

├─/1\─ CYCLE ── = 1 ─────────────────────┤
├─/1\─ SERIALNO ── = ─┬─<integer>────────┤
│ └─<string6>────────┤
└─/1\─ DENSITY ── = ──<density mnemonic>─┘

DMDUMPDIR Statement

──┬─ ENABLE ─┬──┬──────┤
│ │ ┌◄──────────────── , ────────────────┐ │
│ └─┴─┬─/1\─ PACKNAME = <family name> ─┬─┴───────────┘
│ └─/1\─ RETAIN = <integer> ───────┘
├─ DISABLE ───┐
│ ┌◄───────────── , ────────────┐ │
├─ ADD ─┴─<dump directory identifier>─┴───────────────────────┘
│ ┌◄───────────── , ────────────┐
├─ DELETE ─┬─┴─<dump directory identifier>─┴──────────────────┐
│ └─ OLDEST ──<integer>──────────────────────────────┤
├─ LIST ──┬─┬─<file list>─────────────────────────────────────┤
└─ WRITE ─┘ ├─ MAINDIRECTORY ─────────────────────────────────┤

│ ┌◄───────────── , ────────────┐ │
├─ DUMPDIRECTORY ─┴─<dump directory identifier>─┴─┤
└───┘

<dump directory identifier>

── <dump time> / <dump name> ──┤

<file list>

┌◄────────────── , ──────────────┐
──┴─<file name>─┬────────────────┬─┴───────────────────────────────────┤

└─<row selector>─┘

Backing Up a Database

6–74 8600 0759-622

<row selector>

┌◄──────────────────┬── AND ─┬───────────────────┐
│ └◄─ & ───┘ │

── (─┴─┬──┬─┴─) ───────────┤
├─/1\─ FAMILYINDEX ── = ──<range>────────────┤
├─/1\─ ROW ── = ──<range>────────────────────┤
├─/1\─ PACKNAME ── = ──<family name>─────────┤
│ ┌◄───────── , ────────┐ │
└─/1\─ ROWLOCK ── = ─┴─┬─/1\─ LOCKEDROW ─┬─┴─┘

└─/1\─ READERROR ─┘

<range>

┌◄───────────── , ─────────────┐
──┴─<integer>─┬────────────────┬─┴─────────────────────────────────────┤

└─ - <integer> ─┘

BUILDDUMPDIRECTORY Command

┌◄───────── , ─────────┐
── BUILDDUMPDIRECTORY ─┴─┬─<dump tape>──────┬─┴─────────────────────┤

├─<dump disk>──────┤
└─<multidump tape>─┘

<dump tape>

──<tape name>─┬──┬─┤
│ ┌◄──────────────────── , ────────────────────┐ │
└─ (─┴─┬─/1\─ VERSION ── = ──<integer>──────────┬─┴─) ─┘

├─/1\─ CYCLE ── = ──<integer>────────────┤
├─/1\─ SERIALNO ── = ─┬─<integer>────────┤
│ └─<string6>────────┤
└─/1\─ DENSITY ── = ──<density mnemonic>─┘

<dump disk>

──<disk file name>── ON ──<family name>────────────────────────────────┤

<multidump tape>

──<dump name>── TAPE ── = ──<tape name>──────────────────────────────►
►─┬──┬───────────┤
│ ┌◄──────────────────── , ────────────────────┐ │
└─ (─┴─┬─/1\─ VERSION ── = 1 ───────────────────┬─┴─) ─┘

├─/1\─ CYCLE ── = 1 ─────────────────────┤
├─/1\─ SERIALNO ── = ─┬─<integer>────────┤
│ └─<string6>────────┤
└─/1\─ DENSITY ── = ──<density mnemonic>─┘

Backing Up a Database

8600 0759-622 6–75

Backing Up a Database

6–76 8600 0759-622

Section 7
Reorganizing the Database

During the life of the database, you can use the database reorganization process to make

physical changes to database files and records.

You can reorganize the database by using the ONLINE, OFFLINE, or REORGDB option.

The audited, restartable ONLINE or REORGDB option enables you to access the database

during reorganization, while the unaudited, restartable OFFLINE option restricts your

access to the database until the entire reorganization process is complete.

Reorganization involves

• The BUILDREORG utility. This utility designates the options used for reorganization

and creates the REORGANIZATION program.

• The REORGANIZATION program. This program initiates the database reorganization

and provides reorganization support functions.

• The Accessroutines. The Accessroutines does the actual changing of database files

and records.

The Accessroutines reorganization tasks provide the following capabilities:

• Reordering data sets according to a specific index set (prime set), if sequential

accessing through that set involves the greatest number of applications for the data

set

• Consolidating deleted or unused space in data sets, sets, and subsets and returning

this space to the system

• Generating sets or automatic subsets if a new method of access is desired for the

data set

• Balancing index tables and achieving a uniform coarse/fine table distribution to

optimize accesses through sets

• Changing the physical attributes of a structure, such as area size, population,

modulus, and load factor

• Changing the record description of a data set or global data record by adding new

items, or changing or deleting existing items, within the record

• Changing the KEY, KEY DATA, ASCENDING, DESCENDING, and DUPLICATES clauses

for a set or automatic subset; changing the WHERE clause for an automatic subset

• Changing at most, 300 structures in one reorganization at a time

8600 0759-622 7–1

Note: The tasks identified in this section can be initiated through Database Operations

Center.

Understanding Types of Reorganization

The reorganization tasks allow changes to the format of an existing database. These tasks

can be used to reorder and consolidate data sets, sets, and subsets; to generate new sets

or automatic subsets in order to allow more rapid access to data sets; and to change the

record formats by adding, deleting, or changing fields. Multiple data sets and their

spanning sets and subsets can be reorganized at one time. The exact number of

structures allowed in a single reorganization is limited by the size of the code file that is

generated. This number varies depending on the specific DASDL changes and the

BUILDREORG options used, but generally is in the hundreds. Global data is treated like a

data set.

The three types of reorganization available are as follows:

• Garbage collection

• File format conversion

• Record format conversion

You can also perform an online garbage collection of disjoint index sequential sets by

using the Visible DBS GARBAGE COLLECT command while the database is running.

Initiating this command results in a garbage collection of the specified sets while they

are in use. You do not run the REORGANIZATION program. For the syntax for the

Visible DBS GARBAGE COLLECT command, refer to Section 12, Communicating with

the Database,

Garbage Collection

Garbage collection is an important form of reorganization and should be performed

regularly. Garbage collection consolidates deleted or unused space in data sets, sets, and

subsets and returns this space to the system. In addition, records in a data set can be

physically reordered and index structures can be rebalanced to achieve a uniform

coarse/fine table distribution to minimize access time.

Garbage collection does not involve any changes to the database description; therefore, it

does not require you to recompile the Data and Structure Definition Language (DASDL),

the DMSUPPORT library, or your programs. To determine when to perform a garbage

collection, use the dbaTOOLS product as described in the Software Product Catalog.

Note: During the migration phase of the garbage collection for databases that are not

permanent directory databases, the title of the DMSUPPORT library temporarily changes

to DMSUPPORT/<database name>/<update level>. If the garbage collection terminates

while the DMSUPPORT library has its temporary name and you do not restart the garbage

collection, you must manually rename the DMSUPPORT library to

Reorganizing the Database

7–2 8600 0759-622

DMSUPPORT/<database name>. When reorganizing permanent directory databases, the

title is not temporarily changed and always includes the <update level> construct as the

last node.

After a reorganization that includes file or record format conversions, the database

description file contains both the new and the old reorganization information. In most

cases, as long as you do not include the UPDATE option in the BUILDREORG specification

the new description file can be used for most garbage collection reorganizations.

However, under either of the following circumstances, you must recompile the DASDL

source file to produce a new database description file prior to running a garbage collection

reorganization:

The ORDER BY option of a GENERATE statement contains a new set or data set that was

added during the last DASDL UPDATE compilation.

or

The GENERATE statement contains a previously existing data set that contains a set

that was added during the last DASDL UPDATE compile with the USEREORGDB

option.

To avoid any confusing errors when you perform a garbage collection reorganization,

perform the following steps after a file or record format conversion reorganization. These

steps remove the old reorganization information and change the status of newly added

structures from new to existing.

1. Remove any reorganization clauses from the DASDL source file.

2. Perform a DASDL UPDATE compilation to create a new database description file.

File Format Conversion

File format conversion allows changes to database files and does not affect record

formats. For example, file format conversion can be used to change the AREASIZE or

BLOCKSIZE of a data set, the modulus of an access, or the TABLESIZE of a set or subset.

Refer to the Data and Structure Definition Language (DASDL) Programming Reference

Manual for DASDL requirements and allowable changes to the database during file format

conversion.

File format conversion requires a DASDL update run. This update creates a new

description file that defines the changes to be made during the reorganization run.

After error-free DASDL compilation, the DMSUPPORT library and other database software

must be recompiled using the new description file. The DMSUPPORT compilation must

be completed before the reorganization run is started.

Reorganizing the Database

8600 0759-622 7–3

For a permanent directory database, the DMSUPPORT library is in the same datapath as

the database and the title always includes the <update level> construct as the last node.

The description file for a permanent directory database is under the same usercode on the

same family from which the BUILDREORG utility and the reorganization program are run.

During the reorganization run, the REORGANIZATION program and the description file are

copied with the following titles for possible future use during a rebuild through the

reorganization region of the audit:

REORGANIZATION/<database name>/<YYYYMMDD>/<HHMM>
DESCRIPTION/<database name>/<YYYYMMDD>/<HHMM>

The <YYYYMMDD> construct is the date part of the update timestamp, and the

<HHMM> construct is the time part of the update timestamp. To ensure that the correct

files are saved, the file titles also include the usercode and the pack name of the actual

files being used. Archive these files for possible later use in rebuild operations.

Because file format conversion does not affect record formats, user programs need not be

recompiled. Existing user programs can continue to run without the need for

reprogramming or recompilation.

When you use XE features, you must recompile applications if you change the value

of the SECTIONS option from a nonsectioned data set to a sectioned data set, or from

a sectioned data set to a nonsectioned data set.

Record Format Conversion

Record format conversion allows changes to the format of an existing data set, global

data, set, or automatic subset record. Using record format conversion, items in the record

can be changed, new items can be added, and items can be deleted. Refer to the Data and

Structure Definition Language (DASDL) Programming Reference Manual for more

information.

Record format conversion requires a DASDL update run. This update creates a new

description file that defines the changes to be made during the reorganization run.

After an error-free DASDL compilation, the DMSUPPORT library and other database

software must be recompiled using the new description file. The DMSUPPORT

compilation must be completed before the reorganization run is started.

For a permanent directory database, the DMSUPPORT library is in the same datapath as

the database and the title always includes the <update level> construct as the last node.

The description file for a permanent directory database is under the same usercode on the

same family from which SYSTEM/BUILDREORG and the reorganization program are run.

During the reorganization run, the description and reorganization files are copied with the

following titles for possible future use during a rebuild through the reorganization region of

the audit:

Reorganizing the Database

7–4 8600 0759-622

REORGANIZATION/<database name>/<YYYYMMDD>/<HHMM>
DESCRIPTION/<database name>/<YYYYMMDD>/<HHMM>

The <YYYYMMDD> construct is the date part of the update timestamp, and the

<HHMM> construct is the time part of the update timestamp. To ensure that the correct

files are saved, the file titles also include the usercode and the pack name of the actual

files being used. Archive these files for possible later use in rebuild operations.

Because record format conversion affects record formats, user programs that invoke the

reorganized structure must be recompiled. User programs that do not invoke the

reorganized structure continue to run without requiring reprogramming or recompilation.

In some cases, the need for recompilation can be circumvented through the use of

remaps.

When you use XE features, setting or resetting the EXTENDED attribute for a data set

constitutes a record format conversion.

Understanding the Database Reorganization Process

A reorganization run can be performed when physical modifications to database files or

records are necessary. The database administrator must decide which database

structures require reorganization. You can perform as many reorganization runs as you

need to achieve the desired database.

All structures can be reorganized at once in most cases. See “Understanding Types of

Reorganization” earlier in this section for further information.

A reorganization run consists of the following steps:

1. For safety purposes, make backup copies of the following:

• Control file and all of the database files through DMUTILITY DUMP

• Audit trail

• DASDL source

• Database description file

• DMSUPPORT library

• RMSUPPORT library (if you are using the Open Distributed Transaction

Processing product)

Reorganizing the Database

8600 0759-622 7–5

Depending on the open option specified in the BUILDREORG utility run, the database

is available for inquiry only, update, or exclusively opened by the REORGANIZATION

program. By default, the database is available for update, and all ONLINE

reorganization operations are audited to the Enterprise Database Server audit trail.

Rebuild recovery is allowed through a reorganization. Rollback recovery is not allowed

into a reorganization region of the audit. For this reason, a DMUTILITY dump of the

database as close as possible to the start of a reorganization is desirable.

In a reorganization using either the OFFLINE or REORGDB options, the reorganization

operations are not audited to the Enterprise Database Server audit trail. Following a

reorganization using either the OFFLINE or REORGDB options, the ability to rebuild

• Reorganized structures depends on a post-reorganization dump of those

structures

• Structures that were not reorganized depends on the dump taken prior to the

reorganization that used either the OFFLINE or REORGDB options

For steps for performing a rebuild recovery through a reorganization, refer to

“Rebuild Recoveries and Reorganizations” later in this section.

Note: Step 2 is not required if only garbage collection is to be performed.

2. If a file format or record format conversion is desired, you must perform a DASDL

update run. This step must be performed when physical attributes such as

AREASIZE, BLOCKSIZE, and TABLESIZE are changed or when record fields are

added, deleted, or changed. When the modified DASDL source is compiled, a new

description file is produced. This new file is specially marked for reorganization and

contains both the old and new formats and an incremented update level. Figure 7–1

illustrates this process.

Figure 7–1. Creation of a New Database Description File

Reorganizing the Database

7–6 8600 0759-622

By default, the compiler control options ZIP and DMCONTROL are set. The ZIP

compiler control option ensures that, when necessary, the DMSUPPORT library and

the other tailored software are recompiled automatically. The DMCONTROL compiler

control option ensures that, when necessary, the control file is updated

automatically.

If a DMSUPPORT library migration is not needed, the DASDL compiler initiates the

SYSTEM/DMCONTROL run. If a DMSUPPORT library migration is needed, the

REORGANIZATION program initiates the SYSTEM/DMCONTROL run.

If the DASDL source is compiled for syntax only, DASDL does not compile the

tailored software or run SYSTEM/DMCONTROL, even if the ZIP and DMCONTROL

options are set.

When file format or record format conversion is desired, the update level of the

database is incremented by the DASDL compiler. For permanent directory

databases, the DMSUPPORT library has the same datapath as the database and the

title always has the <update level> construct as the last node. As a result, the

DMSUPPORT titles are not migrated during reorganization. For traditional databases,

a new update level is appended to the DMSUPPORT title in preparation for the

migration of the database from one update level to the next. For example, if the

current DASDL update level is 3 and a DASDL update requiring reorganization has

just been performed, the DMSUPPORT titles are as follows:

DMSUPPORT/<database name>/1
DMSUPPORT/<database name>/2
DMSUPPORT/<database name>
DMSUPPORT/<database name>/4

Next, the reorganization run changes the current DMSUPPORT title to an old title,

and the next DMSUPPORT title to the current title. After the reorganization has been

initiated, the DMSUPPORT titles are as follows:

DMSUPPORT/<database name>/1
DMSUPPORT/<database name>/2
DMSUPPORT/<database name>/3
DMSUPPORT/<database name>

Notes:

• If a reorganization is terminated for any reason and is not restarted, you must

- Manually restore the DMSUPPORT titles to their original titles.

- Remove any DMSUPPORT libraries that cannot be used.

In the scenario shown, you would perform the following steps:

a. Remove DMSUPPORT/<database name>.

b. Change DMSUPPORT/<database name>/3 to

DMSUPPORT/<database name>.

• If the DMSUPPORT title is not changed properly for some reason, such as a

security violation, the reorganization waits for an AX (Accept) command and

displays a message that the title must be changed manually.

• The DMSUPPORT code files for a permanent directory database reside in the

permanent directory and their titles include the update level. As a result, the

DMSUPPORT titles are not migrated during a reorganization.

Reorganizing the Database

8600 0759-622 7–7

It is the responsibility of the database administrator to save old copies of the

DMSUPPORT library and other tailored software in the event of rebuild recoveries

through a reorganization region. Also, if the compiler control option ZIP is reset in the

DASDL update, it is the responsibility of the database administrator to compile the

new DMSUPPORT library with the appropriate title. Whenever a reorganization is

required, the DASDL compiler displays the following information:

REORGANIZATION REQUIRED
NEW UPDATE LEVEL: <update level>

The database administrator must compile the DMSUPPORT library with the

following title for traditional databases:

DMSUPPORT/<database name>/<update level>

For permanent directory databases, the DMSUPPORT library must be

<datapath>/DMSUPPORT/<database name>/<update level>

Alternately, if the DASDL compiler is initiated from a Work Flow Language (WFL) job,

the TASKVALUE of the WFL job is set to the update level whenever a reorganization

is required. The update level can be incremented even though a reorganization is not

required, for example, when only a data set is added during a DASDL update. In this

case, the TASKVALUE of the WFL job is zero. If the DASDL update does not require

a reorganization, the TASKVALUE is zero and should not be appended to the

DMSUPPORT title. For example:

COMPILE <database name> WITH DASDL;
IF MYJOB (VALUE) = 0 THEN

COMPILE DMSUPPORT/<database name> WITH DMALGOL
ELSE
BEGIN

S:= STRING (MYJOB (VALUE), *);
COMPILE DMSUPPORT/<database name>/#S WITH DMALGOL;

END;

It should be noted that if the compiler control option ZIP is set in DASDL, all of these

DMSUPPORT title assignments are handled automatically. The database

administrator only need worry about backing up old DMSUPPORT code files and

making them available in the event of future rebuild recoveries.

The DMSUPPORT title specification in the DASDL source is always without update

level appended. That is, when a DASDL update is performed, the title should not be

changed in the DASDL source to reflect the new update level.

Since the current DMSUPPORT title is always the default title (without update level

appended), callers are unaffected by the migration; they should always call the

DMSUPPORT library using the default title.

Both user programs and database software can be compiled against the new

description file. However, user programs cannot run until the reorganization of the

database has started. Old user programs can run with the old DMSUPPORT library

until execution of the REORGANIZATION program. If the database is open at the

time the REORGANIZATION program is executed, all current users must close the

database before the reorganization can start. Once the reorganization has started,

user programs can reopen the database. Those user programs unaffected by the

new DASDL description can be rerun. A version of the program compiled with the

new description file must be run if the program is affected by the DASDL update.

Reorganizing the Database

7–8 8600 0759-622

With the USEREORGDB option, there is no need to close the database before

starting the reorganization. User programs compiled against the new description file

should not be run until the entire reorganization process is completed.

You cannot use the BUILDREORG utility with the USEREORGB option when you are

performing any form of reorganization or garbage collection for a modeled database.

When you use the MODEL option in the DASDL specifications to create a modeled

database, the DMSUPPORT library is shared between the production and the

modeled databases. As a result, the control file for both the production and the

modeled databases contains the same DMSUPPORT library title.

For the REORGDB reorganization process to function correctly, the DMSUPPORT

library that belongs to the database being reorganized must be unique. However,

this requirement is contrary to the modeling process.

Because there is no way to determine whether the DMSUPPORT library titles are

unique to each database, BUILDREORG produces a syntax error whenever you use

the USEREORGDB option for a modeled database.

However, you can perform a USEREORGDB reorganization on a modeled database

by reusing the reorganization program compiled for the parent database in

combination with the database equation.

In this instance, the internal database DB of the reorganization program is equated to

the modeled database. In addition, if the USEREORGDB reorganization is an

UPDATE reorganization, the file DESCRIPTION/<model db name>/<previous level>

must be present. This requirement for an UPDATE reorganization ensures that the

reorganization program cannot be run for the model unless the DASDL UPDATE

compilation of the model has occurred. An example of the database equation

statement is

RUN REORGANIZATION/<parent db>;
DATABASE DB (TITLE = <model database name>);

3. Run the BUILDREORG utility using the new description file and user-supplied

reorganization specifications. Figure 7–2 illustrates this process.

Reorganizing the Database

8600 0759-622 7–9

Figure 7–2. Creation of a Reorganization Description File (Scenario 1)

If file or record format conversion is required, then include the UPDATE option in the

BUILDREORG specifications. If format changes are not required (garbage collection),

the UPDATE option is not required in the BUILDREORG specifications. In addition, if

format changes are not required and a DASDL update run was not performed, the

original description file is used as input to the BUILDREORG utility. Figure 7–3

illustrates this process.

Reorganizing the Database

7–10 8600 0759-622

Figure 7–3. Creation of a Reorganization Description File (Scenario 2)

The specifications to the BUILDREORG utility identify structures requiring

reorganization, describe how certain reorganizations are to be performed, and

specify available system resources.

If no errors are produced, the BUILDREORG utility does the following:

• Creates the reorganization description file titled

DESCRIPTION/REORGANIZATION/<database name> which contains the

database description and the specifications for reorganization. The reorganization

description file is created only for the purpose of compiling the

REORGANIZATION program.

• Generates a report that shows both the user and default reorganization

specifications. All structures affected by reorganization are noted on this report.

• Automatically initiates compilation of the REORGANIZATION program unless

explicitly overridden.

The REORGANIZATION program, titled REORGANIZATION/<database name> unless

a different name is supplied in the DASDL source file, is compiled with DMALGOL

using DATABASE/REORGSYMBOLIC and the reorganization description file created

by the BUILDREORG utility. Figure 7–4 illustrates this process. Because the

REORGANIZATION program invokes the database, the description file must be

present for the compilation.

Reorganizing the Database

8600 0759-622 7–11

Figure 7–4. Creation of a REORGANIZATION Program

4. If file or record conversions were done, the DMSUPPORT library and other database

software must be recompiled to run on the reorganized database. In addition, user

programs that directly invoke converted structures must be recompiled.

If only file format conversion was done, user programs need not be recompiled. In

addition, programs using other structures not affected by reorganization of the

database need not be recompiled. The DMSUPPORT library and the RMSUPPORT

library (if the Open Distributed Transaction Processing product is in use) must be

recompiled before the REORGANIZATION program is run.

5. The REORGANIZATION program is run to perform the actual reorganization of the

database. For detailed information on these phases, refer to “Understanding the

Phases of Reorganization” later in this section.

Once the REORGANIZATION program, the new DMSUPPORT library, and the

RMSUPPORT library (if the Open Distributed Transaction Processing product is in

use) have been recompiled, the reorganization can be initiated. It is initiated by

running the REORGANIZATION program. If the database is not open at the time, the

REORGANIZATION program opens the database. If the database is open at the time,

the database stack immediately marks itself as in a reorganization migration state.

User programs are not allowed to open the database and the migration cannot

proceed until current users of the database have closed the database. Also, all

database files that are unaffected by the reorganization are kept open to minimize

the migration time. Once the current users have closed the database, the migration

continues. The migration should take a very short period of time.

The steps in the migration are as follows:

Reorganizing the Database

7–12 8600 0759-622

a. The description file and the reorganization code file are copied using titles that

include the date and time:

REORGANIZATION/<database name>/<YYYYMMDD>/<HHMM>
DESCRIPTION/<database name>/<YYYYMMDD>/<HHMM>

These files should be saved along with the current DMSUPPORT library, which

is discussed later in this section, in case they are needed in the future for rebuild

recoveries.

b. The database stack delinks from the DMSUPPORT library. For traditional

databases, the stack migrates the current DMSUPPORT title to an old title and

the next DMSUPPORT title to the current title.

This step is not required for the successful completion of the reorganization.

However, if this step is not performed, problems can arise later. Therefore, if an

error occurs that prevents the files from being properly handled by the

reorganization, the reorganization waits and a message appears. When the

waiting entry appears in the mix, you must respond with an AX (Accept)

command. The reorganization then continues even if the problem with the files

is not corrected. The titles must be manually corrected.

c. The database stack links to the new DMSUPPORT library, and depending on the

open option specified in the BUILDREORG specification, the user programs are

allowed to reopen the database. The database becomes available to users on a

structure-by-structure basis as described in “Running the REORGANIZATION

Program” later in this section.

You can specify several open options in the BUILDREORG utility run. By default, all

ONLINE reorganization operations are audited to the Enterprise Database Server

audit trail and user programs are allowed to update the database while the

reorganization is in progress. Using the OFFLINE option restricts your access to the

database until the entire reorganization is complete. The REORGANIZATION program

can be restarted if the system fails. The REORGANIZATION program is automatically

reinitiated after a halt/load recovery.

The open options are described in detail under “Running the BUILDREORG Utility”

later in this section. However, they are discussed briefly as follows:

• INQUIRYONLY

User programs are allowed to open the database during the reorganization, but

only those that open the database INQUIRY.

• EXCLUSIVE

No user programs are allowed to open the database during the reorganization.

• PREVERIFY

All data sets to be generated have had their structures locked by a LOCK

STRUCTURE operation, and the DASDL verify condition is applied to all records. If

any records fail the verify condition, an error report is produced and the

reorganization does not proceed.

• OFFLINE

If the OFFLINE option is used during a reorganization, you cannot access the

structures being reorganized until the entire reorganization is complete. However,

Reorganizing the Database

8600 0759-622 7–13

structures that are not being reorganized can be accessed by user programs

unless additional open options restricting access (for example, INQUIRYONLY or

EXCLUSIVE) were included in the BUILDREORG specifications.

The audit overhead during a reorganization that uses the OFFLINE option is

minimal. The audit includes control records showing state changes, but there is no

record-level auditing during a reorganization using the OFFLINE option. In most

cases, an unaudited reorganization using the OFFLINE option runs faster than an

ONLINE, audited reorganization, and a reorganization using the OFFLINE option

can be restarted at the structure level after a halt/load.

While a reorganization, in general, is faster using the OFFLINE option, the

REORGSUPPORT library uses more SAVE memory, and the SAVE memory

increases with each generate or fixup task. If you are reorganizing a large number

of structures using the OFFLINE option, and your system is low on available

memory, then your system might run out of memory or issue the SORT ERROR

#24 error message or both. If the reorganization is abnormally terminated, the

accumulated SAVE memory is freed. You can restart the reorganization and it

should complete normally. For additional information, refer to “SORT Errors

During Reorganization” later in this section.

Unless the USEREORGDB option is used in conjunction with the COPY TO option, the

REORGANIZATION program always creates generated files on their final medium,

that is, the pack specified in the latest DASDL update. The old file is either found on

the same pack or the pack specified in the prior DASDL update, if the pack

specification was changed.

In situations where two copies of the file are required by the reorganization and there

is not enough space on the final pack for both copies of the file, you can use the

BUILDREORG COPY option to copy the old file to a temporary pack location. For a

permanent directory database, the appropriate datapath must exist at the temporary

pack location so that the file can be copied. If you use the BUILDREORG COPY option,

the REORGANIZATION program performs the following steps:

a. Copies the old file to the specified pack

b. Creates the new file on the final pack

c. Proceeds with the required structure generation

d. Once the structure generation is complete, removes the old file from the pack

specified in the COPY option statement

The following three files must be saved after the reorganization run for future use in

the event a rebuild recovery through the reorganization is needed:

DMSUPPORT/<database name>/<prior update level>
DESCRIPTION/<database name>/<run date>/<run time>
REORGANIZATION/<database name>/<run date>/<run time>

Use a DMUTILITY dump taken before the reorganization for rebuild recovery

purposes. The rebuild recovery process repeats the reorganization. During the

rebuild, the DMCONTROL utility is run again, which requires the description file

used by the reorganization. In addition, the DMSUPPORT libraries and the

REORGANIZATION program itself are required. To preserve unique versions of these

files, they are copied by the REORGANIZATION program with the titles shown. The

run date has the format YYYYMMDD, and the run time has the format HHMM.

Reorganizing the Database

7–14 8600 0759-622

6. Once the reorganization completes, make a backup copy of the database. The

backup copy should include

• A DMUTILITY dump of the database

• Copies of the DMSUPPORT library and the description file from before and after

the reorganization

• A copy of the reorganization program

• Copies of any tailored software

Creating this backup copy of the database avoids unnecessary overhead if a rebuild

recovery is required at a later date.

Rebuild recoveries are allowed from a DMUTILITY dump created prior to the

reorganization. If you use a dump from before a reorganization, the reorganization is

essentially rerun as part of the rebuild recovery process. Refer to “Rebuild Recoveries

and Reorganizations” later in this section for more information.

If you specify the UPDATE option when you use the BUILDREORG utility, the

reorganization can only be rerun in the event a rebuild recovery is needed. Rebuild

recovery uses the copy of the REORGANIZATION program with the reorganization

timestamp incorporated in the program title. You should therefore remove the copy of

the REORGANIZATION program titled REORGANIZATION/<database name>.

If you do not specify the UPDATE option when you use the BUILDREORG utility, you

can save and rerun the REORGANIZATION program to perform the same

reorganization. The REORGANIZATION program can be reused until the next DASDL

update occurs. At that time, the REORGANIZATION program must be respecified and

recompiled.

If the reorganization process fails and cannot be restarted successfully, the database

files, control file, description file, and all tailored software, must be reloaded from

backup dumps. Rebuild recovery through a reorganization is allowed, which might

resolve pack problems, but if the problem is a reorganization logic problem, the

restarted reorganization might also fail.

Note: If the initiated reorganization task cannot open the database because another

task has locked the control file, the initiated reorganization task aborts. This action is

not a failure of the reorganization process since the REORGANIZATION program never

actually starts. Wait until the task in progress completes and frees the control file

before initiating the REORGANIZATION program.

Understanding the Reorganization Algorithm

ONLINE Reorganization

The ONLINE reorganization algorithm employs a touch mechanism. That is, when a record

that requires reorganization is touched by either an online user or by one of the

background tasks, it is reorganized at that point and presented to the requester in the new

format. The reorganization of an entire structure, therefore, appears to be instantaneous.

All records, as far as user programs are concerned, are read in the new format whether

they have been physically reformatted or not.

Reorganizing the Database

8600 0759-622 7–15

As records are physically reformatted, they are moved from the old file to the new file, and

the fixup file is updated to reflect this move. This prevents a record from being

reformatted twice. After all records have been reformatted, the fixup file is used to update

index sets and records containing links to the reformatted records.

The background reorganization tasks touch records in sequential order while online users

can touch records in random order. The sequential order of access by the background

reorganization tasks might be the physical order in the old file, or it might be in the key

order of a set, depending on whether or not an ORDER BY specification was included in

the BUILDREORG specifications or a prime set was indicated in DASDL.

The BUILDREORG utility determines which reorganization tasks are required and the

order in which they are processed. Each task is assigned a single structure to either

generate or fixup. When the task is activated, it builds a database declaration including

only the affected structure and opens the database. It then proceeds to access the

structure in the BUILDREORG designated order. In the case of an ORDER BY generation

of a structure, this can be as simple as doing a FIND NEXT as any user program would.

When the structure being reorganized is a standard fixed-format data set with REBLOCK

set, deleted records might exist in the structure after the structure is reorganized. These

deleted records are unused space in the last big block of the structure and cause the

creation of a DKTABLE. Under certain circumstances, these deleted records can result in

the data set being larger after a reorganization.

OFFLINE Reorganization

Database structures reorganized through the OFFLINE option cannot be accessed by the

user programs until the entire reorganization is complete.

The phases and operational procedures for the OFFLINE option are similar to those of the

ONLINE reorganization. Although the reorganization does not generate audit images for

every record that is reorganized through the OFFLINE option, it does generate certain

audit control records indicating state changes.

A reorganization that uses the OFFLINE option can be restarted. If the reorganization is

restarted, it restarts at the structure level.

While the reorganization, in general, is faster using the OFFLINE option, the

REORGSUPPORT library uses more SAVE memory, and the SAVE memory increases

with each generate or fixup task. If you are reorganizing a large number of structures using

the OFFLINE option, and your system is low on available memory, then your system

might run out of memory or issue the SORT ERROR #24 error message or both. If the

reorganization is abnormally terminated, the accumulated SAVE memory is freed. You can

restart the reorganization and it should complete normally. For additional information, refer

to “SORT Errors During Reorganization” later in this section.

Reorganizing the Database

7–16 8600 0759-622

REORGDB Reorganization

The REORGDB mode of reorganization provides essentially uninterrupted user

access to production database structures while a background reorganization is in

progress. This process is initiated through the USEREORGDB option, which is only

available for XE structures or those structures that are migrating to the XE features.

The background reorganization takes place on a copy of the database. For a permanent

directory database, the copy of the database resides in the same permanent directory as

the production database. Updates to the production database are captured, and after a

successful reorganization, the captured updates are applied to the reorganized database

copy. When the reorganization and synchronization completes, the database administrator

can swap the reorganized database copy with the production database. The AUTOSWAP

option setting determines whether the swap occurs automatically or under manual

control.

Caution

Reorganizing a whole database with the USEREORGDB option might require a

significant amount of system resources and could adversely affect overall

system performance.

Unless otherwise specified, the system automatically balances the

performance ratio between application programs and update tasks by starting

with a minimum of five update tasks plus one driver task for each structure

that is either explicitly or implicitly reorganized. If the number of update users is

greater than five, the number of update tasks is higher—up to a maximum of

50. For cases involving embedding and links, the number of update tasks is

one rather than five or more.

To manually control the number of update tasks, use the MAXUPDATERS

phrase of the <reorgdb control> specification.

An overview of the REORGDB process follows:

1. Affected data structures are copied to the database copy. At the end of the copy

process, the QUIESCE procedure is used to briefly pause the production database

while all of the copied files are synchronized. This operation is transparent to the user

programs.

Note: The database copy is allowed to reside on a different set of disk packs than the

production database. This is accomplished with a COPY TO option.

Reorganizing the Database

8600 0759-622 7–17

You can specify whether the reorganized data structures remain at the new location or

are copied back to the original packs during a swap. If a corresponding COPY BACK

option does not accompany a COPY TO option, the result is similar to performing a

DMCONTROL family change.

2. The database copy is reorganized using the OFFLINE option.

Updates to the production database are captured to a flat file known as the capture

file. These updates are then applied to the database copy.

3. When all updates have been applied, the production database structures involved in

the reorganization are available to be swapped with the corresponding database copy

structures.

The swap availability point occurs when the update application process reaches the

first EOF point on the capture files.

4. Either automatically or on command, the reorganized structures in the database copy

are swapped to the production database.

Updates to the production database continue to be captured and are applied to the

database copy until the swap occurs. When the swap starts, Accessroutines first

suspends all user programs in their code, using the production database stack, and

there is a brief pause while synchronization takes place.

After the swap completes, the user programs are allowed to reenter the

Accessroutines code and all paths are restored. No program coding changes are

necessary to use the REORGDB feature.

Unless previously recompiled against the new description file, programs will receive

version errors when accessing a structure whose format timestamp has changed due to

reorganization. If the reorganization specifying the USEREORGDB option is a garbage

collection, programs do not receive version errors. User programs cannot access the

database copy.

Programs using any new structures can be initiated as soon as the swap process

completes. Programs initiated during the swap receive a DMOPENERROR 72 error. The

database administrator initiates the swap through either a graphical or command-line

interface.

The Database Operations Center provides the graphical user interface for a REORGDB

reorganization so that the database administrator can begin the USEREORGDB process

and swap in the newly reorganized database copy when it is ready and synchronized.

Notes:

• After a REORGDB reorganization of a database running the Remote Database Backup

feature, you must perform a structure clone operation on the affected data structures.

• When the USEREORGDB option is specified for a reorganization, both the updated

and previous description files must be available. Both the newly updated description

file, DESCRIPTION/<database name>, and the backup copy created by DASDL,

DESCRIPTION/<database name>/<previous level>, must be present at the beginning

of the reorganization process.

Reorganizing the Database

7–18 8600 0759-622

REORGDB Memory Usage

In addition to the ALLOWEDCORE and REORGALLOWEDCORE settings for the two

databases, the following numbers can be used as a rough guide for estimating memory

requirements for each data set.

The actual values for your reorganization will be different.

Catch-up buffers for apply updates (CAUDIT)

CAUDIT buffers (two for read operations and

two for write operations) are owned by the

production database stack and are not counted

toward the database ALLOWEDCORE limit.

Additional REORGDB items that use memory

on the database stack are also not counted

toward the ALLOWEDCORE total.

36K * number of data sets

REORGANIZATION program x * number of data sets

REORGSUPPORT library x * number of data sets

Apply updates control program (UPDATEP) 8K * number of data sets

Apply updates worker program (UPDATER) (7K * number of data sets) * maximum

number of user programs or 5

Note: In the preceding table, the variable x is the memory used by the REORGSUPPORT

library and the REORGANIZATION programs, depending upon the BUILDREORG

ALLOWEDCORE setting and the populations of the structures being reorganized. For

additional information, refer to “Using the Central Data Set Control Options,” “Using the

ALLOWEDCORE Phrase,” and “Using the REORGDBALLOWEDCORE Option” later in

this section.

For standard OFFLINE option reorganizations, task limits determine how many central

data set sequence tasks can run at once and how many tasks, such as fixups, can run at

one time within a central data set sequence. A standard offline reorganization is serial, that

is, it sequentially runs central data set sequence operations based on TASKLIMIT values

(each getting its own share of the ALLOWEDCORE total). Within a central data set

sequence, the TASKLIMIT values control the number of fixup tasks that can run together.

Each sequential phase deallocates its memory when each central data set task

completes.

For the REORGDB reorganization, the task limits only apply to the OFFLINE reorganization

phase of the REORGDB process. As a result, during the apply updates phase of the

REOGDB reorganization, the ALLOWEDCORE value applies to each data set and is a

minimum of 2 million words each. Unlike standard OFFLINE reorganizations, memory

cannot be released until the swap even though the offline reorganization phase has

completed. In particular, the fixup information used to map the record addresses as

updates are applied to the newly reorganized, or garbage collected, data structures from

the transactions in the CAUDIT files. Therefore, whatever memory is brought into the

reorganization is accumulated.

Reorganizing the Database

8600 0759-622 7–19

The fixup file buffers comprise most of the ALLOWEDCORE memory and none of the

memory can be deallocated at the end of the offline reorganization phase. The memory

remains allocated until the swap, even after all data set offline reorganization phases have

completed. This is because all apply updates are still active until that point. Standard offline

reorganizations can start deallocating fixup file buffers and ALLOWEDCORE memory as

soon as each data set and set fixup operation finishes. The REORGDB reorganization

cannot deallocate anything until all of the apply updates tasks have completely finished

and the swap starts.

The REORGDB reorganizations can be memory intensive. The alternatives are to either

reduce very large ALLOWEDCORE values or specify a smaller quantity of structures to be

garbage collected or reorganized. Garbage collection is well suited for subdivision because

there is no concurrent requirement to recompile applications. It is likely that a number of

garbage collections run successively might run faster than one large garbage collection of

many structures because each garbage collection could specify more ALLOWEDCORE

memory without concern for memory buildup.

This is a reorganization example that cannot be restarted due to the NORESTART

specification:

GLOBAL
TASKLIMIT = 3;
INTERNAL FILES (FAMILYNAME=MYWORKPACK);
ALLOWEDCORE; = 1500000
USEREORGDB;

REORGDBTITLE = REORGPACEDB;
AUTOSWAP = FALSE;
NORESTART;
TOTALCOPYCORE = 2000000;
REORGDBALLOWEDCORE = 1000000;

Running the BUILDREORG Utility

The purpose of the BUILDREORG utility is to specify and control the reorganization

process. This specification is used to designate the databases to be reorganized, the

intermediate media to use, and various other options.

The BUILDREORG utility uses the database description file and user card input to create

the reorganization description file titled

DESCRIPTION/REORGANIZATION/<databasename>

The reorganization description file is used by the DMALGOL compiler and

DATABASE/REORGSYMBOLIC to generate a tailored REORGANIZATION program. In

addition, the files DATABASE/PROPERTIES and DATABASE/DMCONTROL must be

present on disk during the BUILDREORG run. This compilation produces the

REORGANIZATION program, which is tailored to the new database description. If file or

record format conversion is performed, reorganization is suitable for only one run and

should be removed after a successful run. However, in case a rebuild recovery is required

through the reorganization period, keep the copy of the REORGANIZATION program that

has the reorganization timestamp incorporated in the program title.

Reorganizing the Database

7–20 8600 0759-622

The actual reorganization is accomplished through procedures in the Accessroutines in

conjunction with the tailored REORGANIZATION program. For this reason, it is important

that the REORGANIZATION program is generated and run on the same level of Enterprise

Database Server software.

The BUILDREORG utility reads your input in free format, using the first 72 columns of

each card image.

If the BUILDREORG utility detects an error, the utility assigns the value TERMINATED to

the STATUS task attribute and the value 1 to the TASKVALUE task attribute. If there are no

errors, the STATUS task attribute has the default value of COMPLETEDOK, and the

TASKVALUE task attribute has the default value of 0 (zero).

If the BUILDREORG utility input is error free and the ZIP option was not reset, the

REORGANIZATION program is compiled automatically. The BUILDREORG utility has a

structure limit of 300 structures which includes generated structures and structures

requiring fix-ups. A warning message appears when BUILDREORG detects a

reorganization of 200 structures. A syntax error occurs when BUILDREORG detects a

reorganization of 300 or more structures. When a very large number of structures are

being reorganized at the same time, it is possible for the program to get compilation errors

because of its size.

The following errors can sometimes be circumvented:

TOO MANY STACK CELLS AT THIS LEVEL
USE THE SEGDESCABOVE OPTION TO AVOID THIS PROBLEM

THE CODE FILE HAS BECOME TOO LARGE

To circumvent the first error, compile the program with the SEGDESCABOVE option set to

a value between 4 and 4095. It is recommended you have the SEGDESCABOVE value

greater than 3000. The second error can be avoided by setting the NOBINDINFO option. If

you have set both options, the resulting reorganization program might cause a stack

overflow when it is run.

If you have set both options and an error still occurs, or a stack overflow occurs at run

time, then you must reduce the number of structures being reorganized. This process

might require two separate reorganizations to make all the desired changes. Refer to

Running Through a Batch Job for information on compiling the REORGANIZATION

program.

For a permanent directory database, the description file, reorganization description file,

and the reorganization program must be under the usercode of the initiator and not in the

datapath of the database being modified.

Running Through a Batch Job

You can run the BUILDREORG utility through a WFL batch job. The job must file-equate

the database description file. In addition, the files DATABASE/PROPERTIES and

DATABASE/DMCONTROL must be on disk.

Reorganizing the Database

8600 0759-622 7–21

The following compiler control options are initially assigned the value SET in the

BUILDREORG utility:

• LIST option

When the LIST option is set, the BUILDREORG utility produces a report on the user

and default specifications in the REORGANIZATION program. The report also lists all

structures to be affected by the REORGANIZATION program.

• ZIP option

When the ZIP option is set, compilation of the REORGANIZATION

program—REORGANIZATION/<database name>—begins automatically.

When the ZIP option is reset, you must manually compile the REORGANIZATION

program.

• RESTARTSORT option

When using the SORT specification during the generation of sets or data sets, you can

encounter SORT ERROR #24. This error occurs when the number of words specified

for memory exceeds the memory available on the system. When this error occurs,

you need to manually adjust the ALLOWEDCORE value. To do this, rerun the

BUILDREORG task with the compiler control option RESTARTSORT. When this option

is set, you can then enter a new ALLOWEDCORE value and the SORT is restarted

with the new ALLOWEDCORE value. This option only applies to generate tasks, and

has no effect on fixup tasks. For additional information, refer to “SORT Errors During

Reorganization,” later in this section.

You can use the following WFL job statements to run the BUILDREORG utility.

The syntax for the reorganization specification is provided under “Syntax for the

BUILDREORG Utility” later in this section.

?BEGIN JOB COMPILEBUILDREORG;
?TASK T;
?RUN SYSTEM/BUILDREORG[T];
?FILE DASDL =DESCRIPTION/<database name>
?DATA CARD
$LIST ZIP RESTARTSORT
.
.<reorganization specification>
.
?IF T ISNT COMPILEDOK THEN

BEGIN
DISPLAY ("BUILDREORG detected syntax errors");
END;

?IF T ISNT COMPLETEDOK THEN
BEGIN
DISPLAY ("BUILDREORG aborted");
END;

?END

If the ZIP option is set, the following WFL job is automatically initiated:

Reorganizing the Database

7–22 8600 0759-622

? BEGIN JOB COMPILEREORG;
COMPILE REORGANIZATION/<database name>
WITH DMALGOL LIBRARY
COMPILER FILE TAPE = DATABASE/REORGSYMBOLIC;
COMPILER FILE DASDL =
DESCRIPTION/REORGANIZATION/<database name>
COMPILER FILE PROPERTIES = DATABASE/PROPERTIES;
COMPILER DATA CARD

$ MERGE
? END JOB

When a large number of structures are reorganized at the same time, the compilation of

the reorganization might fail with the following error:

TOO MANY STACK CELLS AT THIS LEVEL
USE THE SEGDESCABOVE OPTION TO AVOID THIS PROBLEM

To correct this error, compile the REORGANIZATION program by adding the ALGOL

compiler control option $SET SEGDESCABOVE to a value between 4 and 4095 after the

$MERGE command in the previously listed WFL job. The WFL job with this added option

appears as follows:

? BEGIN JOB COMPILEREORG;
COMPILE REORGANIZATION/<database name>
WITH DMALGOL LIBRARY
COMPILER FILE TAPE = DATABASE/REORGSYMBOLIC;
COMPILER FILE DASDL =
DESCRIPTION/REORGANIZATION/<database name>
COMPILER FILE PROPERTIES = DATABASE/PROPERTIES;
COMPILER DATA CARD

$ MERGE
$ SET SEGDESCABOVE 4095
? END JOB

If the following error occurs, it might be possible to correct the problem by adding $SET

NOBINDINFO in place of or along with the SEGDESCABOVE option, depending on the

syntax errors that have occurred:

THE CODE FILE HAS BECOME TOO LARGE

The resulting WFL job would appear as follows:

? BEGIN JOB COMPILEREORG;
COMPILE REORGANIZATION/<database name>
WITH DMALGOL LIBRARY
COMPILER FILE TAPE = DATABASE/REORGSYMBOLIC;
COMPILER FILE DASDL =
DESCRIPTION/REORGANIZATION/<database name>
COMPILER FILE PROPERTIES = DATABASE/PROPERTIES;
COMPILER DATA CARD

$ MERGE
$ SET SEGDESCABOVE 4095
$ SET NOBINDINFO
? END JOB

Reorganizing the Database

8600 0759-622 7–23

Use the NOBINDINFO and SEGDESCABOVE compiler control options only if they are

required because of the aforementioned syntax errors. If syntax errors still occur after

setting both, or if a stack overflow occurs when the reorganization program is run, then

you must reduce the number of structures being reorganized.

For a permanent directory database, the description file, reorganization description file,

and reorganization program must be under the usercode of the initiator and not in the

datapath of the database being modified.

Syntax for the BUILDREORG Utility

You can use the BUILDREORG utility to perform the following tasks:

• Generate database structures with the UPDATE option.

• Generate database structures implicitly.

• Generate database structures explicitly.

• Exercise global control to designate where the REORGANIZATION program maintains

its internal files and to designate the availability of database structures during a

reorganization.

• Sequence the reorganization to optimize the way in which tasks are performed.

• Optionally include SORT specifications on index set generations or data set

generations that use the ORDER BY and OFFLINE options.

For easier access of information, the explanation of the BUILDREORG utility syntax is

presented in the following discussions of these tasks.

The syntax for the BUILDREORG utility is illustrated and explained on the following pages.

<reorganization specification>

──┬─ UPDATE; ─┬──┬─────────►
│ │ ┌◄───┐ │
│ └─┴─ <central data set GENERATE statement>; ─┴─┤
│ ┌◄───┐ │
└─┴─ <central data set GENERATE statement>; ─┴─────────────┘

►─┬────────────────────────────────┬─┬───────────────────────────┬─────┤
└─ <central data set sequence>; ─┘ └─ <reorg global control>; ─┘

<central data set GENERATE statement>

──<GENERATE statement>─┬─────────────────────────────────────┬─────────►
│ ┌◄─────────────────────────────┐ │
├─┴─<structure copy option>── ; ─┴────┤
│ ┌◄────────────────────────────────┐ │
└─┴─<structure reorgdb option>── ; ─┴─┘

►─┬───────────────────────────┬─┬─────────────────────────────────┬────┤
└─<procedure sequence>── ; ─┘ └─<central data set control>── ; ─┘

Reorganizing the Database

7–24 8600 0759-622

<GENERATE statement>

── GENERATE ─┬─<data set>─┬───────────────────┬─┬─ ; ────────────┬─────┤
│ ├─ PRINT ───────────┤ ├─<ORDER BY>─────┤
│ ├─ CHECKAGGREGATE ──┤ └─<inx str list>─┤
│ ├─ CHECKPOPULATION ─┤ │
│ ├─ CHECKRECORDCOUNT─┤ │
│ ├─ KEEPRSN ─────────┤ │
│ ├─ RESETRSN ────────┤ │
│ └─ REPORTALLRECS ───┘ │
└─<inx str list>────────────────────────────────────┘

<ORDER BY option>

── ORDER BY ─┬─<data set>─┬─┬─ ; ────────────┬─┬─────────────────┬─────┤
└─<set>──────┘ └─<inx str list>─┘ └─<data set sort>─┘

<inx str list>

┌◄─────────────── , ───────────────┐
──┴─┬─<set>─┬──────────────────────┬─┴─ ; ─────────────────────────────►

│ └─ USING ──<set>───────┤
└─<subset>─┬───────────────────┤

└─ USING ──<subset>─┘
►─┬─────────────────────────────────┬──────────────────────────────────┤
│ ┌◄────────────────────────────┐ │
└─┴─<index control option>── ; ─┴─┘

<data set sort>

────<data set>────── (───<sort phrases>───) ───── ; ───────────────────┤

<index control option>

┌◄───────────── , ────────────┐
──┬─<set>────┬─ (─┴─┬─/1\─<LOADFACTOR phrase>─┬─┴─) ─────────────────┤
└─<subset>─┘ ├─/1\─<extract phrase>────┤

├─/1\─<sort phrases>──────┤
└─/1\─<CHECKRECORDCOUNT>──┘

<LOADFACTOR phrase>

─── LOADFACTOR = ──<integer>───┤

<extract phrase>

── EXTRACT KEYS TO ──<medium>──┤

<sort phrases>

┌◄────────────────── , ─────────────────┐
── SORT USING ─┴─┬─/1\─<integer>── TAPES ────────────┬─┴───────────────┤

├─/1\─<integer>── SEGMENTS ─────────┤
└─/1\─ FAMILYNAME = ─┬─ DISK ──────┤

├─ PACK ──────┤
└─<pack name>─┘

Reorganizing the Database

8600 0759-622 7–25

<structure COPY option>

┌◄──────── , ────────┐
──┴─┬─/1\─<data set>─┬─┴─ (── COPY TO ─┬─ DISK ────────┬─) ──────────┤

├─<set>──────────┤ ├─ PACK ────────┤
└─<subset>───────┘ └─ <pack name> ─┘

<structure reorgdb option>

┌◄──────── , ────────┐
──┴─┬─/1\─<data set>─┬─┴─ (──<reorgdb control>──) ───────────────────┤

├─<set>──────────┤
└─<subset>───────┘

<reorgdb control>

┌◄───────────────────────────── ; ────────────────────────────┐
──┴─┬─/1\─ COPY TO ──<pack name>─┬────────────────────────────┬─┴──────┤

│ └─ COPY BACK ── = ─┬─ TRUE ──┤
│ └─ FALSE ─┤
├─/1\─ CAPTUREUPDATETRAN ── = ──<integer>─────────────────┤
├─/1\─ MAXUPDATERS ── = ──<integer>───────────────────────┤
└─/1\─ STRCOPYCORE ── = ──<integer>───────────────────────┘

<procedure sequence>

┌◄──────── , ────────┐
│ ┌◄───── AND ─────┐ │

── SEQUENCE ─┴─┴─┬─<data set>─┬─┴─┴────────────────────────────────────┤
├─<set>──────┤
└─<subset>───┘

<central data set control>

┌◄────────────────────────────────── ; ──────────────────────────────────┐
──┴─┬─/1\─ INTERNAL FILES ── (── FAMILYNAME ── = ─┬─ DISK ────────┬─) ─┬─┴─┤

│ ├─ PACK ────────┤ │
│ └─ <pack name> ─┘ │
├─/1\─ ALLOWEDCORE ── = ── <integer> ────────────────────────────────┤
├─/1\─ ORDERBYCORE ── = ── <integer> ────────────────────────────────┤
├─/1\─ TASKLIMIT ── = ── <integer> ──────────────────────────────────┤
└─/1\─<reorgdb control>──┘

Note: ORDERBYCORE is the memory limit that can be used by the SORT routine when

generating the dataset record using a set.

<central data set sequence>

┌◄─────── , ───────┐
│ ┌◄──── AND ────┐ │

── CENTRAL ─┬────────────┬─ SEQUENCE ─┴─┴─ <data set> ─┴─┴─────────────┤
├─ DATASET ──┤
└─ DATA SET ─┘

<reorg global control>

┌◄───────────────── ; ────────────────┐
── GLOBAL ─┴─┬─<central data set control>──────┬─┴─────────────────────┤

├─/1\─<open options>──────────────┤
├─/1\─<high availability options>─┤
└─/1\─<integrity check option>────┘

Reorganizing the Database

7–26 8600 0759-622

<open options>

┌◄────────────────── ; ─────────────────┐
──┴─┬─/1\─ INQUIRYONLY ─────────────────┬─┴────────────────────────────┤

├─/1\─ EXCLUSIVE ───────────────────┤
├─/1\─ PREVERIFY ───────────────────┤
└─/1\─ OFFLINE ─┬───────────────────┤

└─ ; ── NOPOSTDUMP ─┘

<high availability options>

── USEREORGDB ; ──►
┌◄─────────────────────────────── ; ──────────────────────────────┐

►─┴─┬─/1*\─ REORGDBTITLE ── = ─<reorgdb name>─┬───────────────────┬─┴──┤
│ └─ ON ──<pack name>─┤
├─/1\─ AUTOSWAP ─┬─ = ── FALSE ───────────────────────────────┤
│ └─ = ── TRUE ────────────────────────────────┤
├─/1\─ TOTALCOPYCORE ── = ──<integer>─────────────────────────┤
└─/1\─ REORGDBALLOWEDCORE ── = ──<integer>────────────────────┘

<integrity check option>

── CHECKFILESIZE ──┤

<reorgdb name>

──<database name>──┤

Using the BUILDREORG UPDATE Option

The UPDATE option must be used when the DASDL UPDATE compilation specifies that a

reorganization is required. The UPDATE option cannot be used otherwise. When the

DASDL UPDATE compilation specifies that a reorganization is required, the description file

is marked as requiring reorganization and contains information on both old and new

formats.

If the DASDL UPDATE compilation specifies that a generation by the REORGANIZATION

program is required for a structure, then a garbage collection reorganization must be run

using an explicit GENERATE statement for the structure. This reorganization must be

performed when new sets or subsets are added to existing data sets. Adding new disjoint

structures does not require an UPDATE reorganization. However, if the UPDATE

reorganization is done in conjunction with other changes, the UPDATE option performs

the necessary implicit generations for the new structures.

When the UPDATE option is used, it must precede all other reorganization specifications.

The UPDATE option causes the REORGANIZATION program that is generated to make all

the changes that were specified in the previous DASDL update. Additional specifications

used with the UPDATE option override the defaults supplied by the UPDATE option to

allow more control over the reorganization processes.

You should review the BUILDREORG report to verify the changes that are to be done by

the REORGANIZATION program.

Reorganizing the Database

8600 0759-622 7–27

When the REORGANIZATION program runs, it first calls a version of the DMSUPPORT

library, which should match the current database (an update level that is 1 less than the

description file used to compile the REORGANIZATION program). If the update level of the

DMSUPPORT library is greater than the update level of the database, the run is aborted

with a DMS OPEN ERROR number 29.

The DMCONTROL utility is run to migrate the control file to the next update level. This

utility checks that the update level of the control file is one less than the update level on

the description file. If the levels are incorrect and you run the REORGANIZATION program,

the following error message terminates the run:

CONTROL FILE UPDATE LEVEL SHOULD BE 1 LESS THAN DESCRIPTION

If the DMCONTROL utility code file and the description file cannot be found, they can be

file-equated using a statement with the following syntax:

RUN REORGANIZATION/<database name>;
FILE DMCONTROL (TITLE = SYSTEM/DMCONTROL ON SYS39);

FILE DASDL (TITLE = DESCRIPTION/<database name> ON PACK);

If you accidentally reorganize the database with the UPDATE option a second time, the

reorganization is aborted with the following error message:

DATA BASE ALREADY AT REORG PROGRAM UPDATE LEVEL

If you do not designate the UPDATE option, the REORGANIZATION program checks that

the update level of the REORGANIZATION program matches the current update level of

the database. If the update levels do not match, the following error message terminates

the run:

DATA BASE DOES NOT MATCH REORG PROGRAM UPDATE LEVEL

Using an Alias Name

You can use an alias name to refer to a data set or set name using 16-bit (double-byte)

character structure names. You can use an alias name in the following statement or

options:

• GENERATE statement

• Index control option

• Structure COPY option

• Procedure sequence option

• Central data set sequence statement

For additional information about alias names, refer to the Data and Structure Definition

Language (DASDL) Programming Reference Manual.

Reorganizing the Database

7–28 8600 0759-622

Using the Central Data Set GENERATE Statement

The central data set GENERATE statement provides the specifications for a reorganized

data set. The GENERATE statement specifies the data set, sets, and subsets that are to be

reorganized.

<central data set GENERATE statement>

──<GENERATE statement>─┬─────────────────────────────────────┬─────────►
│ ┌◄─────────────────────────────┐ │
├─┴─<structure copy option>── ; ─┴────┤
│ ┌◄────────────────────────────────┐ │
└─┴─<structure reorgdb option>── ; ─┴─┘

►─┬───────────────────────────┬─┬─────────────────────────────────┬────┤
└─<procedure sequence>── ; ─┘ └─<central data set control>── ; ─┘

Using the GENERATE Statement

If you are using the UPDATE option, designating the GENERATE statement is optional. If

the data set was reorganized in the previous DASDL compilation, then the BUILDREORG

utility uses the following statement by default:

GENERATE <data set>

If the GENERATE statement designates a data set, the system reads the original data set,

writes a new data set, and performs a complete garbage collection.

If a new set or subset is added, it is implicitly generated from the data set.

If you want to generate a structure and specify particular options explicitly, use the

following statement.

<GENERATE statement>

── GENERATE ─┬─<data set>─┬───────────────────┬─┬─ ; ────────────┬─────┤
│ ├─ PRINT ───────────┤ ├─<ORDER BY>─────┤
│ ├─ CHECKAGGREGATE ──┤ └─<inx str list>─┤
│ ├─ CHECKPOPULATION ─┤ │
│ ├─ CHECKRECORDCOUNT─┤ │
│ ├─ KEEPRSN ─────────┤ │
│ └─ RESETRSN ────────┘ │
└─<inx str list>────────────────────────────────────┘

<ORDER BY option>

── ORDER BY ─┬─<data set>─┬───┬───────────────────┬─┬─────────────────┬─ ; ──┤
└─<set>──────┘ └─ , <inx str list>─┘ └─<data set sort>─┘

<inx str list>

┌◄─────────────── , ───────────────┐
──┴─┬─<set>─┬──────────────────────┬─┴─ ; ─────────────────────────────►

│ └─ USING ──<set>───────┤
└─<subset>─┬───────────────────┤

└─ USING ──<subset>─┘
►─┬─────────────────────────────────┬──────────────────────────────────┤

Reorganizing the Database

8600 0759-622 7–29

│ ┌◄────────────────────────────┐ │
└─┴─<index control option>── ; ─┴─┘

If you generate both a data set and its set, and the set is generated before the data set, the

BUILDREORG utility only creates and shows the generate tasks. This action improves

availability of the data set and causes the REORGANIZATION program to run a separate

fixup task to fix the set after data set generation is complete. This separate fixup task is

created while the reorganization is running and is not shown on the BUILDREORG report.

Generating a Data Set

Only one data set can be specified for each GENERATE statement. All sets and subsets in

the GENERATE statement must refer to a common data set. All sets, subsets, and data

sets belonging to the same data set family must be generated in the same GENERATE

statement.

Global data is treated like a data set. No other data set can be included in the GENERATE

statement along with global data.

Structures can be generated only once for each reorganization run.

Whenever a data set and its embedded data set are both generated, the master data set is

generated before the embedded data set. Any subsequent rebuild through a

reorganization fails when both the master data set and its embedded data set are

generated. Therefore, a full database dump should be taken after a reorganization when

both the master data set and its embedded data set were generated during the

reorganization.

Using the PRINT Option

You can add the PRINT option to the GENERATE statement to print a “beforeimage” and

an “afterimage” of the records in a reorganized data set when running the

REORGANIZATION program. Images are printed in the DMUTILITY record format. This

format uses hexadecimal notation, record by record, with the segment address and record

offset.

The following statement prints the records of the EMPLOYEES data set:

GENERATE EMPLOYEES PRINT;

Using the CHECKAGGREGATE and CHECKPOPULATION
Options

You can calculate the value of an aggregate item or a population item during reorganization

by using the following options:

Reorganizing the Database

7–30 8600 0759-622

1. CHECKAGGREGATE. The CHECKAGGREGATE option calculates the value of an

aggregate item. If the value has changed, the system updates the aggregate item

with the new value. Use this option only during initialization, when adding a new

aggregate item, or when an existing aggregate item is corrupted. This option is

processor intensive because it makes these calculations for every structure.

The following example calculates the aggregate item for the EMPLOYEESk data set:

GENERATE EMPLOYEES CHECKAGGREGATE;

2. CHECKPOPULATION. The CHECKPOPULATION option calculates the value of a

population item. If the value has changed, the system displays the following prompt:

Skip to ignore or override to correct

3. Use this option only during initialization or when a population item is corrupted. This

option is processor intensive because it makes these calculations for every

structure. The following example calculates the population item for the EMPLOYEES

data set:

GENERATE EMPLOYEES CHECKPOPULATION;

Using the CHECKRECORDCOUNT Option

Use the CHECKRECORDCOUNT option to recalculate the number of records in a structure

when the structure record count is corrupted. This requires that the RECORDCOUNT

option be set through the DASDL syntax. The first example generates the EMPLOYEES

data set and uses the CHECKRECORDCOUNT option to recount the number of records in

the EMPLOYEES data set. The second example generates the set S1 using itself and

using the CHECKRECORDCOUNT option to recount the number of records in the S1 set.

GENERATE EMPLOYEES CHECKRECORDCOUNT;
GENERATE S1; S1(CHECKRECORDCOUNT);

Using the KEEPRSN Option

Use the KEEPRSN option to preserve the RSN value of new records created during a

USERORGDB reorganization. This option is reset by default.

Using the RESETRSN Option

Use the RESETRSN option to request the reorganization to reassign the RSN values

starting from 1. This can be used to correct any RSN corruption problem caused by a

hardware or software error.

You can only use this option in conjunction with the OFFLINE option. When using the

RESETRSN option, all sets must be generated from the data set.

If all of the following conditions occur, you cannot use the RESETRSN option in the

GENERATE statement:

• The database structures are generated with the UPDATE option.

• The generated structure contains a DATAMASK item.

Reorganizing the Database

8600 0759-622 7–31

• The OBFUSCATELEVEL is equal to 3.

Using the REPORTALLRECS Option

Use the REPORTALLRECS option to request the reorganization task to print all records

which cause DUPLICATE ERROR or DATA ERROR (VERIFY STORE ERROR) in a

DATASET/SET generation. One printer file is generated per structure. The failed records

are printed in the DMUTILITY data set record format. Note that when SORT is involved

during SET generation, the failed records are reported in the SET format.

Using the ORDER BY Option

Use the ORDER BY option to specify the order in which records are inserted into a

reorganized data set.

If you are reorganizing an XE sectioned data set, you must use the OFFLINE option in

order to use the ORDER BY option. You cannot perform an ONLINE reorganization and

use the ORDER BY option. The reorganization process does not use the round-robin

method to store records in sectioned data sets. The reorganization process

accomplishes the ORDER BY task by dividing the total number of records by the

number of sections and storing the appropriate number of records in the first section

before starting the second section, and so forth. However, any new records created

after the reorganization are added to the sections using the standard round-robin

method.

You can perform an ONLINE reorganization using the ORDER BY option on a

nonsectioned XE structure.

If you designated a prime set in DASDL, (and did not designate the ORDER BY option in

the GENERATE statement) the generated data set is ordered in the key order of the prime

set. An index that orders a data set is always generated after the data set is generated.

The ORDER BY option in the GENERATE statement supersedes any prime set designated

in DASDL.

If the OFFLINE option is used for the data set being generated with the ORDER BY option,

then the SORT intrinsic can be used. By default, the data set is generated using the same

mechanism as online reorganization without auditing, which might be slower than using

the SORT intrinsic. You can override this behavior by explicitly specifying the SORT option

for the data set in the syntax. This forces the use of the SORT intrinsic for the data set

generation and can improve performance. An exception to this behavior is the generation

of an XE data set. Since it can only be generated using the OFFLINE option, it uses the

SORT intrinsic by default.

If the SORT intrinsic is used for a compact data set and a SORT phrase is not used to

specify the number of segments, the number is calculated based on an estimated

population. If the average record size is specified in the DASDL source, it is used to

estimate the population. Otherwise, the average of the minimum and the maximum

record size for the structure is used.

Reorganizing the Database

7–32 8600 0759-622

By default, the memory used for this ORDER BY sort is 2,000,000 words. Use the

ORDERBYCORE phrase to specify the amount of memory to be used if you want to

override the default.

The ORDER BY option can designate one of the following structures for ordering the data

set:

• Set. The ORDER BY option can only use index sequential, unordered list, or ordered

list sets that span the generated data set. The set must already exist in the database.

Thus, you cannot use a set recently declared in the DASDL source. To use such a set,

compile the DASDL source twice with the UPDATE option. The first compilation

marks the set as a new structure and allows it to be generated. The second

compilation marks the set as an old structure that can be used in the ORDER BY

option.

For example, the following GENERATE statement orders the EMPLOYEES data set

using the BYLASTNAME set:

GENERATE EMPLOYEES ORDER BY BYLASTNAME;

• Data set. This data set must be the generated data set. The generated data set

maintains the same physical order. The following GENERATE statement orders the

EMPLOYEES data set using the physical order of the EMPLOYEES data set:

GENERATE EMPLOYEES ORDER BY EMPLOYEES;

Note: Using the ORDER BY option for an extremely large compact or variable format

structure that involves fixup of its sets might use large amounts of memory for the fixup

file. This could result in the run-time error “RESIZE ABORTED – INSUFFICIENT

MEMORY.” If this error occurs or if memory usage becomes a problem, do not use the

ORDER BY option.

Using the Index Structure List Option

The <inx str list> option (sets and subsets) can be generated from the data set, from

another index structure, or from itself. The method of generation is determined by the

presence of a USING clause. If a USING clause is not specified, the index structure is

generated from the data set.

Generating from a Data Set

The system uses the data set as input and generates the index structure, performing

complete table balancing. Only sets and automatic subsets spanning a common data set

can be generated in this manner.

When generating an index structure from a data set, the system cannot determine the

order in which duplicates were originally entered. Therefore, if DUPLICATES,

DUPLICATES FIRST, or DUPLICATES LAST is specified in DASDL, the duplicate entries are

entered in the new structure in a random sequence. Also, if there is a NO DUPLICATES

condition on the key of the index structure and duplicates are encountered, the

reorganization task terminates with an error. Other reorganization tasks continue.

Reorganizing the Database

8600 0759-622 7–33

When generating an XE set, the order of the duplicate entries is preserved by the

presence of the record serial numbers (RSNs).

You also have a choice affecting the availability of sets and data sets. If you include SORT

specifications in the ONLINE BUILDREORG run, a sort operation occurs that restricts the

availability of sets and data sets as follows:

• A set is unavailable until its generation is complete.

• A data set is available if it has other sets that are available, and no changes are made

that would affect the set that is being generated.

By default, no sorting occurs, which maximizes the availability of sets and data sets.

When data sets and sets are generated using the OFFLINE option, and a set is generated

from the data set, the SORT intrinsic is used by default.

Generating from Index Structures

Generating an index structure from an index structure has two advantages over generating

from a data set:

• The order of duplicates is preserved.

• Keys need not be extracted or sorted.

If the index structure being generated is a manual subset and the data set is generated, all

key entries referring to deleted records in the data set are deleted. This prevents these

keys from pointing past the end of file or to valid data.

If your intent is to perform a garbage collection only on disjoint index sequential sets,

you can use the Visible DBS GARBAGE COLLECT command while the database is

running. Initiating this command results in a garbage collection of the specified sets

while they are in use. You do not run the REORGANIZATION program. For the syntax

for the Visible DBS GARBAGE COLLECT command, refer to

Section 12, Communicating with the Database.

You can generate index structures from two types of index structures:

Reorganizing the Database

7–34 8600 0759-622

• Another index structure. Both index structures must have the same key, DUPLICATES

condition, WHERE condition, and data in key against the data set. The system reads

the index structure specified in the USING clause and generates the new index

structure, balancing the tables completely. This method can generate sets as well as

automatic and manual subsets.

The index structure used as the source of generation is designated after the USING

clause. The following example generates the set BYNUMBER from the set

OLDNUMS, and the subset TEMPS from the set OLDEMPS:

GENERATE BYNUMBER USING OLDNUMS, TEMPS USING OLDEMPS;

Do not use circular USING clauses because they do not generate index structures.

The following are examples of circular USING clauses:

GENERATE S1 USING S2, S2 USING S1;
GENERATE S1 USING S2, S2 USING S3, S3 USING S1;

• Same index structure. This is the most common structure used with the USING

clause. Such generations follow the same rules as generating from another index

structure. You must use the same index structure when generating embedded index

structures.

The following example generates the set OLDNUMS from itself and the subset

OLDEMPS from itself:

GENERATE OLDNUMS USING OLDNUMS, OLDEMPS USING OLDEMPS;

Sorts do not occur when generating from index structures.

Implicitly Generating Structures

Implicit generations for certain structures are provided by BUILDREORG. When the

UPDATE option is specified for BUILDREORG, all operations are automatically provided to

implement the changes specified in the previous DASDL update run; as a result, no

GENERATE statement is required.

Whenever a data set and its embedded data set are both generated, the master data set is

generated before the embedded data set. Any subsequent rebuild through a

reorganization fails when both the master data set and its embedded data set are

generated. Therefore, a full database dump should be taken after a reorganization when

both the master data set and its embedded data set were generated during the

reorganization.

Certain implicit generations can be modified by explicit specification. However, those

modifications must adhere to current GENERATE statement restrictions.

• When the UPDATE option is specified to the BUILDREORG utility, the following

implicit generations are provided for those structures that have been redescribed in

the new DASDL source:

- The data set having no prime set specified in DASDL has the following implicit

generation:

GENERATE <data set>

Reorganizing the Database

8600 0759-622 7–35

- The data set having a prime set specified in DASDL has the following implicit

generation:

GENERATE <data set> ORDER BY <index str>

The <index str> parameter references the prime set.

- All indexing structures, where DASDL indicates REORGANIZE <index str>, have

the following implicit generation:

GENERATE <index str>

This implicit generation cannot be modified.

- All indexing structures specified in DASDL whose key is not changed have the

following implicit generation:

GENERATE <index str> USING <index str>

• If the data set is generated, the following implicit generations are provided for

spanning index structures that are not generated as described previously:

- All bit vectors and manual subsets have the following implicit generation:

GENERATE <index str> USING <index str>

- Except for sectioned structures with XE features, all automatic sets or subsets

that are unordered lists—or that are indexsequential structures with

DUPLICATES allowed, but FIRST or LAST unspecified—have the following

implicit generation:

GENERATE <index str> USING <index str>

No partitioned structure or structure with a partitioned master can be reorganized. In

addition, a data set being linked to by a partitioned structure cannot be reorganized.

Optimizing Set Generation Performance When Migrating to
XE Features

Sets are implicitly generated from a data set when one of the following situations

occurs:

• An Enterprise Database Server data set is converted to XE data set with sections.

• Sections are added to an existing XE data set that was not previously sectioned.

• A set that contains duplicate entries without DUPLICATES FIRST or DUPLICATES

LAST specified in DASDL is converted to an XE set.

During the conversion to an XE set with sections, all the sets are generated. The reason

for this is that section numbers must be added to the set keys when a data set is

converted to an XE data set with sections. Sets with DUPLICATES specified, but FIRST or

Reorganizing the Database

7–36 8600 0759-622

LAST unspecified, must have record serial numbers (RSNs) extracted from the data set.

RSNs are used to resolve duplicates. This extraction from the data set causes DASDL to

specify REORGANIZE <index str>, which defaults to GENERATE <set> USING <data

set>.

To speed up performance for the three types of conversions previously described, it is

recommended that you include SORT specifications for the sets in the BUILDREORG

specifications, as described earlier in this section under “Generating from a Data Set.”

Once the conversion is complete, the SORT specification does not affect the order of

duplicates for future set generations. It is also recommended that you use the SORT

specification in the BUILDREORG specifications for the XE to the XE set generation.

Another option for improving performance is to include the USING clause in the

BUILDREORG specification to force the set to be generated from itself. Refer to

“Generating from Index Structures” earlier in this section for additional information. There

are cases, such as when a key item has been changed, in which generating a set from

itself is not allowed.

Either of the two alternatives enables speedy generation of sets during the conversion

process from data sets to XE sectioned data sets or from the XE data sets to XE sectioned

data sets.

Explicitly Generating Structures

Although the UPDATE option can implicitly generate the reorganized database structures,

this option cannot generate all structures. In such a case, and during garbage collection,

you must explicitly generate structures with the GENERATE statement as follows:

GENERATE <structure>; <options>;

The designated structure is either one data set, global data, or a list of index structures

such as sets and subsets. These sets and subsets must refer to a common data set and

must be processed in the same GENERATE statement. Structures can be generated only

once for each REORGANIZATION program run.

The designated options, which can be left out, control how the structure is generated.

Whenever a data set and its embedded data set are both generated, the master data set is

generated before the embedded data set. Any subsequent rebuild through a

reorganization fails when both the master data set and its embedded data set are

generated. Therefore, a full database dump should be taken after a reorganization when

both the master data set and its embedded data set were generated during the

reorganization.

Using the Index Control Option

The index control option controls the resources used when generating index structures.

An index control option can be specified for index structures that are generated implicitly,

as well as those generated explicitly. You can control these resources with the following

options:

Reorganizing the Database

8600 0759-622 7–37

• LOADFACTOR phrase

• EXTRACT phrase

• SORT phrases

• CHECKRECORDCOUNT

<index control option>

┌◄───────────── , ────────────┐
──┬─<set>────┬─ (─┴─┬─/1\─<loadfactor phrase>─┬─┴─) ─────────────────┤
└─<subset>─┘ ├─/1\─<extract phrase>────┤

├─/1\─<sort phrases>──────┤
└─/1\─<CHECKRECORDCOUNT>──┘

<loadfactor phrase>

─── LOADFACTOR = ──<integer>───┤

<extract phrase>

── EXTRACT KEYS TO ──<medium>──┤

<sort phrases>

┌◄────────────────── , ─────────────────┐
── SORT USING ─┴─┬─/1\─<integer>── TAPES ────────────┬─┴───────────────┤

├─/1\─<integer>── SEGMENTS ─────────┤
└─/1\─ FAMILYNAME = ─┬─ DISK ──────┤

├─ PACK ──────┤
└─<pack name>─┘

Using the LOADFACTOR Phrase

The LOADFACTOR phrase overrides, for reorganization only, the load factor specified in

the DASDL source. The LOADFACTOR phrase can be specified only for generated index

structures of type index random, index sequential, and ordered list. The LOADFACTOR

phrase represents the percentage of each table that contains entries following

reorganization. Depending on the degree of table compaction desired, the integer can be

any integer value from 1 to 99.

The following example designates a load factor of 58 percent for the BYNAME set:

GENERATE EMPLOYEES, BYNAME; BYNAME(LOADFACTOR = 58);

By default, the LOADFACTOR phrase is the value of LOADFACTOR specified in the

DASDL source. If no load factor is specified in DASDL, the default value for INDEX

SEQUENTIAL and ORDERED LIST is 66 percent, and for INDEX RANDOM the default

value is 50 percent.

Following reorganization, the load factor specified in the DASDL source is then used.

Reorganizing the Database

7–38 8600 0759-622

Using the EXTRACT Phrase

If an index structure is generated from a data set or an INDEX RANDOM structure,

REORGANIZATION unconditionally creates a file consisting of the keys for the index

structure. This key file is an unordered version of the index structure and can be quite

large. The EXTRACT phrase controls where the key file is written.

By default, the key file is written to the medium on which the index structure is to reside.

When the database is a permanent directory database, the key file is created under the

same permanent directory as the data files. If the EXTRACT phrase is used for a

permanent directory database, ensure that the necessary permanent directories exist for

the key file to be created.

Using SORT Phrases

The REORGANIZATION program uses the SORT intrinsic to order the extract key file. The

SORT phrases enables you to specify the resources to be used by the SORT intrinsic. Disk

(or pack), tape, or a combination of disk (or pack) and tape sorting is permitted. Refer to the

System Software Utilities Operations Reference Manual for a complete description of the

SORT intrinsic.

Choosing SORT phrases enables you to specify to the SORT intrinsic the number of tapes,

the number of segments, and the pack family where the internal files are to be

maintained.

Note: A SORT phrase is used only when a sort operation is to be performed. A SORT

phrase must not be used to control the sequence of set and data set generation.

If SORT phrases are specified, default values are assigned for those options not explicitly

stated by the user. Default values for the SORT phrases declarations not explicitly

specified are as follows:

• If <integer> TAPES is not specified, SORT USING 0 TAPES is assumed by default.

• If <integer> SEGMENTS is not specified, SORT USING 2 TIMES PHYSICAL FILE SIZE

SEGMENTS is assumed by default.

If the ORDER BY option causes the sort operation, the default value is POPULATION

TIMES (NEW RECORD SIZE +1) TIMES 2 AND A HALF.

• If FAMILYNAME is not specified, the internal files family name declared in the

reorganization global control specifications is assumed by default. If an internal files

specification is not declared, DISK is assumed by default.

The maximum value that can be specified for SORT SEGMENTS is 268,435,454.

There are two cases when the SORT intrinsic is not done for generating a set even though

the SORT option was specified for that set in the BUILDREORG specifications:

• The first case is when a set is generated using itself.

• The second case is when the set is generated from the data set and is also used in the

ORDER BY clause to order the data set. In both of these cases, the set is actually

Reorganizing the Database

8600 0759-622 7–39

generated from itself and the SORT intrinsic specifications are ignored because they

are meant to be used when generating a set from the data set.

When a set is generated from itself, and the data set was also generated and contains

more than 2 million records, it is possible that the fixup of the set can use the SORT

intrinsic and then it can use the given specifications.

Using the Data Set SORT Option

The data set SORT option forces the use of the SORT intrinsic when a data set is

generated using the ORDER BY and OFFLINE options. The resources used for the sorting

of the data set can be controlled using the SORT phrases.

The syntax is as follows:

────<data set>────── (───<sort phrases>───) ───── ; ───────────────────┤

Using the Structure COPY TO Option

The structure COPY TO option enables you to copy structures to a temporary pack

location before the reorganization begins.

If the COPY TO option is used with a permanent directory database, ensure that the

necessary permanent directories exist for the file to be successfully copied.

The syntax is as follows:

┌◄──────── , ────────┐
──┴─┬─/1\─<data set>─┬─┴─ (── COPY TO ─┬─ DISK ──────┬─) ────────────┤

├─<set>──────────┤ ├─ PACK ──────┤
└─<subset>───────┘ └─<pack name>─┘

The REORGANIZATION program always creates generated structures on their final

medium, that is, the pack specified in the latest DASDL update. For data sets and garbage

collect on index sets, the REORGANIZATION program first renames the old file, creates an

empty new file and then moves records from the old file to the new file. For data sets,

rows of the old file are purged as the new file grows.

In general, enough disk space is required for the new file, plus one row of the old file, plus

the fixup file. Some situations that require more disk space are as follows:

• If COPY TO is specified for multiple structures of a data set family, all copies of the

structures for that family are performed prior to the start of the generation of the data

set. Enough space must be made available for copies of all of the structures being

copied.

• If an ORDER BY clause is specified in BUILDREORG for a data set, no rows of the old

file are purged until the generate process is complete. Therefore, disk requirements

are the size of the entire old file, plus the entire new file, plus the fixup file.

• No rows of COMPACT, ORDERED or UNORDERED data sets are purged until the

generate process is complete.

• When the new file of a RANDOM data set is initialized, the primary scramble area is

Reorganizing the Database

7–40 8600 0759-622

always allocated. Therefore, at the start of the generation, the entire old file exists,

along with the primary scramble area of the new file and the fixup file.

• If user programs are allowed during the ONLINE reorganization (either inquiry or

update users), any access to a DIRECT data set record causes all records prior to that

record to be allocated in the new file. Therefore, if a user program accesses the last

record in a DIRECT data set, the entire new file is immediately allocated.

• If a set is generated from a set, there must be enough disk space for both the old file

and the new file.

The size of fixup files depends on the file type. COMPACT and variable format data sets

require two words per record in the old file, and all other data sets require one word per

record in the old file.

In situations where two copies of the file are required and there is not enough space on

the final pack for both copies, the old file can be copied first to a temporary pack using the

structure COPY option. The REORGANIZATION program first copies the old file to the

specified pack. It then creates a new file on the final pack and proceeds with the

generation. When the generation is complete, the old file is removed from the pack

specified in the structure COPY option.

Using the Structure REORGDB Option

<structure reorgdb option>

┌◄──────── , ────────┐
──┴─┬─/1\─<data set>─┬─┴─ (──<reorgdb control>──) ───────────────────┤

├─<set>──────────┤
└─<subset>───────┘

<reorgdb control>

┌◄───────────────────────────── ; ────────────────────────────┐
──┴─┬─/1\─ COPY TO ──<pack name>─┬────────────────────────────┬─┴──────┤

│ └─ COPY BACK ── = ─┬─ TRUE ──┤
│ └─ FALSE ─┤
├─/1\─ CAPTUREUPDATETRAN ── = ──<integer>─────────────────┤
├─/1\─ MAXUPDATERS ── = ──<integer>───────────────────────┤
├─/1\─ STRCOPYCORE ── = ──<integer>───────────────────────┤
└─/1\─ TEMPDBNORESTART ───────────────────────────────────┘

Using the REORGDB Control COPY TO Option

The REORGDB control COPY TO option specifies the database copy location where the

production database structures are captured and applied during a REORGDB

reorganization. This option is similar to the structure COPY TO option, with the exception

that it can be specified as a global, central data set, or structure control, and with the

COPY BACK option. If the COPY TO option is used with a permanent directory database,

ensure that the necessary permanent directories exist for the file to be successfully

copied. The default pack name for the REORGDB control COPY TO option is the same as

the existing database structure.

Reorganizing the Database

8600 0759-622 7–41

While database structures are being copied from the production database to the copy

database, if a halt/load occurs while the production database is quiesced, or suspended,

and waiting to be resumed, you must restart the reorganization. This applies to all copy

process activities because destination files are not in a state that would permit recovery.

Notes:

• If the COPY BACK option is not used with the COPY TO option, rebuilding from a time

prior to the reorganization will not be possible. A full dump of the entire database

must be performed after the reorganization for future rebuild recoveries.

• When reorganizing a permanent directory database, the database administrator must

create the necessary permanent directories on the pack specified in the COPY TO

option.

The mechanism for changing data structure pack families during a reorganization is slightly

different when combined with the USEREORGDB option. When using the BUILDREORG

USEREORGDB option, include the COPY TO syntax without the COPY BACK syntax if you

want to change pack families. Using this syntax also has the effect of setting the family

change bit in the control file. The effect of this procedure is identical to having manually

made the change using DMCONTROL.

Using the REORGDB Control COPY BACK Option

The REORGDB control COPY BACK option specifies that a file be returned to the original

location when the swap occurs at the end of the REORGDB reorganization process. This

option does not specify pack locations. The COPY BACK option can only be used in

combination with the USEREORGDB and COPY TO options.

The COPY BACK option default is FALSE. If the COPY BACK option is not used with the

COPY TO option, or if the COPY BACK option is FALSE, then the final destination for the

reorganized structures is the same as the COPY TO location.

Note: Be sure that there is sufficient space on the disk pack to accommodate both the

production database structures named in the reorganization specification and the

corresponding reorganized structures from the database copy when it is copied back to

the production database. When the COPY BACK option is specified, both the production

database structures and the reorganized structures reside on the same disk pack while

waiting for the swap to occur.

COPY BACK operations begin once the reorganization of all structures is complete. The

COPY BACK operations must complete before updates can be applied to the production

database. Once the reorganized structure files are moved to their COPY BACK location,

the files are removed from the COPY TO location.

If the swap has not begun, a halt/load restarts the COPY BACK process at the beginning of

any partially copied file and the process continues until all files are copied to the COPY

BACK location.

Reorganizing the Database

7–42 8600 0759-622

Using the CAPTUREUPDATETRAN Phrase

Specialized apply-updates tasks enable you to update newly reorganized structures with

the application program updates that are captured during the REORGDB reorganization

process. These tasks use standard data management statements such as

BEGINTRANSACTION and ENDTRANSACTION to perform the work.

The CAPTUREUPDATETRAN phrase controls the number of captured data set changes for

each transaction of the apply-updates tasks as the captured updates are applied to the files

belonging to the copy database.

If the CAPTUREUPDATETRAN phrase is not specified, the default of 500 updates per

transaction is used. The minimum value for the CAPTUREUPDATETRAN phrase is 500

and the maximum is 10,000. You can achieve better performance by specifying larger

values. However, these larger values can potentially cause longer recovery times if a

recovery becomes necessary.

The CAPTUREUPDATETRAN phrase is a component of the <reorgdb control> construct,

which can be used with both the <central data set control> and <structure reorgdb

option> syntax. When the <structure reorgdb option> form is used, the

CAPTUREUPDATETRAN phrase is available only for use with the <central data set

control> option.

Using the MAXUPDATERS Phrase

Specialized apply-updates tasks enable you to update newly reorganized structures with

the application program updates that are captured during the REORGDB reorganization

process.

The MAXUPDATERS phrase controls the number of apply-updates tasks that apply the

captured updates to the file belonging to the copy database.

If the MAXUPDATERS phrase is not specified, the system uses the number of update

applications to determine the number of apply-updates tasks. A default of five

applyupdates tasks plus one driver task for each structure that is either explicitly or

implicitly reorganized is used. If the number of update applications is greater than five, the

number of tasks is higher—up to a maximum of 50.

The minimum value for the MAXUPDATERS phrase is one and the maximum is 50. For

cases involving embedding and links, the number of apply-updates tasks is one.

The MAXUPDATERS phrase is a component of the <reorgdb control> construct, and can

be used with both the <central data set control> and <structure reorgdb option> syntax.

The MAXUPDATERS phrase is available only for use with <data set> when the <structure

reorgdb option> form is used.

Reorganizing the Database

8600 0759-622 7–43

Using the TOTALCOPYCORE and STRCOPYCORE Phrases

The TOTALCOPYCORE and STRCOPYCORE phrases enable you to specify values within

the BUILDREORG process that determine the number of copy tasks that can be running at

the same time.

The overall TOTALCOPYCORE default value is 5 million words, with a maximum of

100 million words and a minimum of 1 million words. Specifying larger values within that

range might be useful for databases with structures having a large number of sections.

The default STRCOPYCORE value for each structure is 250,000 words, with a maximum

of 20 million words and a minimum of 150,000 words. This value is applied at the

structure level. For sectioned data sets, the value is divided among the sections.

The specified STRCOPYCORE value cannot exceed the value of the TOTALCOPYCORE

specification. If the STRCOPYCORE value does exceed the TOTALCOPYCORE

specification, the BUILDREORG process will increase the TOTALCOPYCORE

specification to equal the highest single STRCOPYCORE value so that the copy tasks can

run.

If the specified STRCOPYCORE value is allowed to default to 250,000, then, during the

COPY phase of a REORGDB reorganization, only one section of a structure is copied at a

time, even if TOTALCOPYCORE specification is set to a large value. This applies to

sectioned data sets and physically-sectioned sets.

If the STRCOPYCORE value is set to N x 250,000, then N sections (up to a limit of 40) is

copied in parallel as long as the TOTALCOPYCORE specification is not exceeded.

Each copy task, by structure or by data set section, is allocated two 65K buffers. These

buffers can be less than 65K if the AREASIZE value equals less than 65,000 words.

As the copy task progresses, if there is an update to the production database the update is

duplicated to the database copy file. The update duplication process maintains a pool of

10 small buffers for duplicate updates and rotates serially through the pool. If excessive

wait times result during the process, the number of buffers in the pool is increased to the

structure limit of the STRCOPYCORE values. When this occurs, the following message is

displayed:

Pool buffer in use from a previous duplicated write

Note: Copy memory for the small buffers is held only until all copy tasks finish.

Before all copy tasks are completed, all modified buffers are written. At that point, all

copied files are identical to the production database files. The capture process takes over.

No more production database updates are duplicated to the copy files, and all copy

memory is deallocated. The two 65K copy buffers are de-allocated as each file completes

its copy task (is duplicated to the corresponding file on the copy database), but the small

buffer pool continues to be used to copy the production database updates until all of the

remaining copy tasks finish.

Reorganizing the Database

7–44 8600 0759-622

This mechanism allows the parameters to be tuned for activity-based processing rather

than task-based processing. The advantage is that heavily updated structures can be given

more memory and more buffers to be used for quickly processing updates during the

copy.

USING the TEMPDBNORESTART Phrase

The TEMPDBNORESTART phrase controls the restart capability of the offline

reorganization performed on the name of the database specified in REORGDBTITLE

phrase.

If specified, the database specified in REORGDBTITLE phrase will not be restartable.

This option can be used to speed-up the REORGDB performance for datasets with a large

number of sections.

Using the Procedure Sequence Option

The <procedure sequence> option controls the order in which reorganization processes

occur within a data set family. This sequence enables you to optimize both resources and

throughput. For most applications, default sequencing along with the possible

specification of the TASKLIMIT phrase and index control options should provide ample

optimization.

It is not necessary to specify the data set, but all sets and subsets in a single

<procedure sequence> option must refer to the same data set.

You can override the default sequence by using a statement with the following syntax:

┌◄──────── , ────────┐
│ ┌◄───── AND ─────┐ │

── SEQUENCE ─┴─┴─┬─<data set>─┬─┴─┴────────────────────────────────────┤
├─<set>──────┤
└─<subset>───┘

The same criteria used to determine the default sequence of processes must be followed

when explicitly specifying a procedure sequence. Some flexibility is allowed in

determining which independent processes should be done in parallel. Depending on the

TASKLIMIT value, all structures in the procedure sequence that are joined by AND are

processed simultaneously. If the number of these structures is greater than the

TASKLIMIT, the number of processes executing simultaneously is limited by the

TASKLIMIT value. Each set of structures separated by a comma (,) in the procedure

sequence is processed only after the prior set of structures have been processed.

The <procedure sequence> option sequences processes within a data set family. For

example, the following option sequences the data set EMPLOYEES, the set BYNAME,

and the subset EXEMPT in the designated order within a data set family.

SEQUENCE EMPLOYEES, BYNAME, EXEMPT

The following default sequencing criteria are used within a data set family:

Reorganizing the Database

8600 0759-622 7–45

• The generation of an embedded index set cannot occur in parallel with the generation

of its master.

• If an index structure is generated from another index structure that is generated or

requires fixup, then the index structure in the USING clause must appear before the

generated index structure, and cannot be joined by AND.

• Structures not explicitly specified in the <procedure sequence> option are

automatically placed in sequence according to the preceding criteria. These structures

are joined by AND as much as possible.

• When a data set and its spanning set are both generated, the set is generated first and

then fixed up at a later time. This maximizes structure availability, since some updates

to data sets are not allowed when a set is being generated. However, the set is

generated after the data set if any of the following conditions are true:

- The set is a bit vector, a manual subset, or an unordered list.

- The set is an index sequential or an ordered list that allows duplicates, but

DUPLICATES FIRST or DUPLICATES LAST is not specified.

- The data set is ordered by the set.

- The set is generated from the data set using the SORT option.

- The structure is being reorganized using the OFFLINE option.

or

The EXTENDED attribute is being added to or removed from a structure.

Example

The following example processes the BYNAME set, then the BYSALARY and BYZIP sets

at the same time, and finally, the BYYEAR set:

GENERATE EMPLOYEES, BYNAME, BYYEAR, BYSALARY, BYZIP;
SEQUENCE BYNAME, BYSALARY AND BYZIP, BYYEAR;

Using the Central Data Set Control Options

The <central data set control> statement applies to the global level using the <reorg

global control> statement or applies to the data set level using the central data set

GENERATE statement. The values you assign at the global level apply to the overall

reorganization as well as to any data set family that does not have a specified value in the

central data set GENERATE statement. For example, TASKLIMIT = 2 indicates that at

most, two generate tasks could be active, and each active generate task that does not

Reorganizing the Database

7–46 8600 0759-622

have a TASKLIMIT assigned would have at most two active subtasks. When you assign a

value in the central data set GENERATE statement, it applies only to that data set family

and overrides any global values that might be specified. The default values for the <central

data set control> options are

• FAMILYNAME = DISK

• TASKLIMIT = 1

• ALLOWEDCORE = 2,000,000 words for each sort task, or

ALLOWEDCORE = 2,000,000 words for each fixup task

• ORDERBYCORE = 2,000,000 words

The following table shows the minimum and the maximum values that reorganization

uses if values outside these ranges are included in the BUILDREORG specifications:

Function Minimum Words Maximum Words

Fixup 2 million 549,755,813,887 (2**39–1)

Orderby Sort 2 million 268,435,455 (2**28–1)

All other Sorts 2 million 268,435,455 (2**28–1)

The default sort task memory size is calculated based upon the information in the System

Software Utilities Operations Reference Manual.

The following diagram illustrates the syntax for the <central data set control> statement:

<central data set control>

┌◄────────────────────────────────── ; ──────────────────────────────────┐
──┴─┬─/1\─ INTERNAL FILES ── (── FAMILYNAME ── = ─┬─ DISK ────────┬─) ─┬─┴─┤

│ ├─ PACK ────────┤ │
│ └─ <pack name> ─┘ │
├─/1\─ ALLOWEDCORE ── = ── <integer> ────────────────────────────────┤
├─/1\─ ORDERBYCORE ── = ── <integer> ────────────────────────────────┤
├─/1\─ TASKLIMIT ── = ── <integer> ──────────────────────────────────┤
└─/1\─<reorgdb control>──┘

Note: ORDERBYCORE is the memory limit that can be used by the SORT routine when

generating the dataset record using a set.

Using the INTERNAL FILES Phrase

The INTERNAL FILES phrase designates the location of the internal files generated by the

REORGANIZATION program. These files are used in such functions as restarting the

program and retrieving records. Before designating the location of the internal files, you

must understand how the REORGANIZATION program generates and names these files.

Reorganizing the Database

8600 0759-622 7–47

Notes:

• Though not required, Unisys recommends that you use the INTERNAL FILES phrase.

If you do not use the INTERNAL FILES phrase, the reorganization program could

display the REQUIRES *PK DISK error message and hang. If you do not use the

INTERNAL FILES phrase, the default family name is DISK.

• For a permanent directory database, the INTERNAL FILES phrase is ignored and the

internal files are created on the same pack family as the related structure, using the

same datapath.

• The names of some internal files are different for permanent directory databases to

conform to the file naming rules for permanent directories.

The following example designates the internal files family to be DBDATA:

GENERATE EMPLOYEES ORDER BY BYNUMBER;
INTERNAL FILES (FAMILYNAME = DBDATA);

Given the previous pack specification, DBDATA, the following files for the EMPLOYEE

data set and BYNUMBER set are stored on the DBDATA pack:

File Name Explanation Contents

TEST/EMPLOYEES/DATA/FIXUP Fix up file Cross-reference addresses

between the old and new

files

TEST/EMPLOYEES/BYNUMBER/FIXEDUP Fixed up file Blocks of the file that have

been fixed up

TEST/EMPLOYEES/BYNUMBER/RESTART

This file is specific to the OFFLINE option.

Internal file Data for restart purposes

TEST/EMPLOYEES/DATASPACE

This file is specific to the OFFLINE option.

Compact data set

file

Available space information

TEST/EMPLOYEES/BYNUMBER/COARSE1

This file is specific to the OFFLINE option.

Temporary file Data created and purged

during the creation of

available space tables

TEST/EMPLOYEES/BYNUMBER/COARSE2

This option is specific to the OFFLINE

option.

Temporary file Data created and purged

during the creation of

available space tables

When a data set is generated, or an index set is generated with a USING clause, the

REORGANIZATION program immediately changes the title of the existing file, appending

/OLD to the end of the file name. The REORGANIZATION program then initializes a new,

empty file. For example, the EMPLOYEES data set with the BYNUMBER set would be

changed as follows:

Reorganizing the Database

7–48 8600 0759-622

Original Structure File Name Renamed Structure File Name

TEST/EMPLOYEES/DATA TEST/EMPLOYEES/DATA/OLD

TEST/EMPLOYEES/BYNUMBER TEST/EMPLOYEES/BYNUMBER/OLD

The following files would then be initialized as new, empty files:

TEST/EMPLOYEES/DATA
TEST/EMPLOYEES/BYNUMBER

Note: You can copy the old files to a temporary pack using the structure COPY option.

For more information, refer to “Using the Structure COPY Option” earlier in this section.

Once the data set has been generated, the fixup process begins with a fixup file being

created. Every time a record is moved from the old file to the new file, an entry is made in

the fixup file indicating that any references to the old address (such as in index sets or in

links in other data set records) must be fixed up. The length of the fixup file depends on

the type of data set being generated.

Data Set Type Fixup File Contents

Compact data sets and variable format data

sets

Two words for each record in the old file

All other data set types One word for each record in the old file

The fixup file has FIXUP appended to the file name. For example, the EMPLOYEES data

set could have the following fixup file associate with it:

TEST/EMPLOYEES/DATA/FIXUP

For each structure that requires a fixup, a fixed up file is created. The fixed up file is used to

identify blocks of the file that have been fixed up. For all fixed up structures, the fixed up

file contains an on bit for each block in the new file.

The fixed up file has FIXEDUP appended to the file name. For example, if BYNUMBER

were an index set spanning EMPLOYEES, all disk file addresses in BYNUMBER would

need to be fixed up. The fixed up file identifies blocks in the BYNUMBER file whose

addresses have been fixed up. If the BYNUMBER file contained 100 blocks, the fixed up

file would contain 100 bits.

TEST/EMPLOYEES/BYNUMBER/FIXEDUP

Using the ALLOWEDCORE Phrase

The ALLOWEDCORE phrase controls the amount of memory that a reorganization uses

for both sort and fixup tasks. Without the ALLOWEDCORE phrase, a default

ALLOWEDCORE value of 100,000 words per task applies for sort tasks. For fixup tasks, a

default ALLOWEDCORE value of 2,000,000 words per task applies. The default

ALLOWEDCORE value for fixup tasks overrides the user-specified ALLOWEDCORE value

Reorganizing the Database

8600 0759-622 7–49

per task if less than 2,000,000 words per task is specified. The actual memory used is

dependent upon the data set population. Small data set populations do not require the full

amount, while large populations use the entire amount.

If you specify an ALLOWEDCORE value in the <central data set control> statement, that

value overrides the default value. If you are generating many data sets and some involve

sort tasks and some involve fixup tasks, specifying an ALLOWEDCORE value in the

<central data set control> statement within the central data set GENERATE statement

gives you the flexibility to assign a high value for fixup tasks and a low value for sort tasks.

Each generated data set consists of allocated ALLOWEDCORE divided by TASKLIMIT

words of memory. For each set of the data set, the allocation is data set ALLOWEDCORE

divided by TASKLIMIT. For example, a database has 3 data sets and each data set has 4

sets; TASKLIMIT = 3; ALLOWEDCORE = 30,000,000; and the <central data set

sequence> specification uses commas (DS1, DS2, DS3). The work for each dataset and

its sets is completed before the next data set and set combination can be started. The

allocation for each data set is 10,000,000 (30,000,000/3); and the allocation for each set is

10,000,000/3 = 3,333,333.

Each DS1 is generated and 10 million words are used. When it finishes, sets 1, 2, and 3

start and use 3.333 million words each for a total of 9.999 million. As soon as one of the

sets finishes, set 4 is started.

Using the same example, if the goal is to utilize 30 million words, then the

ALLOWEDCORE specification must change to 90,000,000. Thus, 30 million can be used

by the data set being generated, and when it completes, 3 set generates start and utilize

10 million words each for a total of 30 million.

Because the ALLOWEDCORE value in the <central data set control> statement is a total

value that applies to the number of tasks allowed, you must multiply the per-task value

you desire by the number of simultaneous tasks allowed to obtain a total value to assign to

the ALLOWEDCORE phrase. (In other words, the total ALLOWEDCORE value is divided

by the TASKLIMIT value to obtain a per-task value.)

The maximum value that can be specified to the BUILDREORG utility is 549,755,813,887

(2**39–1).

Using the ORDERBYCORE Phrase

Use the ORDERBYCORE phrase to control the amount of memory that the SORT routine

can use when generating a data set using the ORDER BY option.

If the ORDERBYCORE phrase is not specified, 2,000,000 words is the default. This

SORT routine occurs only when the OFFLINE option is used with the ORDER BY

option and the data set SORT option, or when the data set being ordered is an XE

sectioned data set.

Reorganizing the Database

7–50 8600 0759-622

The maximum value that can be specified to the BUILDREORG utility is 549,755,813,887

(2**39–1). The maximum value that the REORGANIZATION program uses for

ORDERBYCORE is 268,435,455 (2**28–1). If large values are used for ODERBYCORE, be

cautious when using AND within the <central data set sequence> statement because

ORDERBYCORE is the sum of all parallel data set order by memory.

Using the TASKLIMIT Phrase

Use the TASKLIMIT phrase to limit the total number of reorganization tasks that can run

simultaneously. You can specify a TASKLIMIT value at the global level, the data set level,

or both. If you do not specify a value for TASKLIMIT, a default of 1 applies. If you specify a

TASKLIMIT value greater than 1 (allowing multiple reorganization tasks to run

simultaneously), refer to “DASDL ALLOWEDCORE” under “Enhancing Reorganization

Performance” later in this section.

If you specify a TASKLIMIT value at the data set level (in the central data set GENERATE

statement), it applies to the number of simultaneous tasks for that data set family and

overrides any value specified at the global level.

If you specify a TASKLIMIT value at the global level, it applies to the number of active

generate tasks and to the number of active subtasks for any data set families that do not

have a specified local task limit.

Using the TASKLIMIT phrase places an upper limit on the number of reorganization

processes that can occur at any one time. Depending on the value of TASKLIMIT, all

structures in the procedure sequence that have been either implicitly or explicitly joined by

AND are processed simultaneously. The effective value of TASKLIMIT depends on the

machine configuration on which the REORGANIZATION program is running.

The following example designates a global task limit of 50:

GENERATE EMPLOYEES ORDER BY BYNAME;
GLOBAL TASKLIMIT = 50;

The following example designates a local task limit for the data set CUSTOMERS:

GENERATE EMPLOYEES;
GENERATE CUSTOMERS;

TASKLIMIT = 2;
GENERATE PRODUCTS;
GLOBAL TASKLIMIT = 20;

Using the Central Data Set Sequence Statement

The <central data set sequence> statement enables you to control the order in which

reorganization processes occur between data set families. This sequence enables you to

optimize both resources and throughput. Some flexibility is allowed in determining which

central data set processes should be done in parallel. Depending on the TASKLIMIT value

and the central data set sequence specification, the central data sets in the central data set

sequence joined by AND are processed simultaneously. If the number of these structures

Reorganizing the Database

8600 0759-622 7–51

is greater than the specified TASKLIMIT, the number of processes executing

simultaneously is limited by the TASKLIMIT value. Each group of structures delimited by

commas in the central data set sequence is processed serially. By default, the TASKLIMIT

value is one.

Certain rules must be followed when specifying a central data set sequence. These rules

are as follows:

• The generation of an embedded data set must occur after the generation of its

master. Any rebuild through a reorganization fails when both the master data set and

its embedded data set are generated. Therefore, a full database dump should be taken

after a reorganization when both the master data set and its embedded data set were

generated during the reorganization.

• The generation of a disjoint data set cannot occur in parallel with the generation of

another data set that has a link reference to the disjoint data set.

• When both a master and an embedded data set are being generated, the embedded

data set can be in the <central data set sequence> statement without the master, but

by default, the master is still generated first.

• The data set that owns the manual subset must be generated before the data set that

is spanned by the manual subset. Otherwise, a sequence error occurs.

The following diagram illustrates the syntax for the <central data set sequence>

statement:

<central data set sequence>

┌◄─────── , ───────┐
│ ┌◄──── AND ────┐ │

── CENTRAL ─┬────────────┬─ SEQUENCE ─┴─┴─ <data set> ─┴─┴─────────────┤
├─ DATASET ──┤
└─ DATA SET ─┘

The <central data set sequence> statement controls the order in which processes

between data sets occur. The master structure must be reorganized before its embedded

structure. The following example designates that the data set EMPLOYEES is to be

processed before the data set PRODUCTS:

CENTRAL DATA SET SEQUENCE EMPLOYEES, PRODUCTS;

The following example processes the data sets EMPLOYEES and PRODUCTS at the same

time:

CENTRAL DATA SET SEQUENCE EMPLOYEES AND PRODUCTS;

Example

The following example processes the EMPLOYEES data set, then the PRODUCTS and

ORDERS data sets, and then the CUSTOMERS data set:

Reorganizing the Database

7–52 8600 0759-622

GENERATE EMPLOYEES;
GENERATECUSTOMERS;
GENERATE PRODUCTS;
GENERATE ORDERS;
CENTRAL DATA SET SEQUENCE EMPLOYEES, PRODUCTS AND ORDERS,

CUSTOMERS;

Using the Reorg Global Control Statement

The <reorg global control> statement enables you to

• Identify how the database can be opened during the reorganization.

If you do not specify how the database can be accessed during an ONLINE

reorganization, user programs can open the database for update and inquiry purposes.

In addition, the ONLINE reorganization process is audited and is therefore restartable.

If you use the OFFLINE option for the reorganization, only state control records are put

in the audit to indicate the beginning and end of the reorganization. If you use the

EXCLUSIVE option, you cannot access the database until the entire reorganization

process is complete. The reorganization process can be restarted at the structure

level.

You can update database structures that are not being OFFLINE reorganized. To

rebuild the database, you must perform a database dump of the OFFLINE reorganized

structures when the reorganization process is complete. A successfully completed

reorganization using the OFFLINE option prompts you to perform the database dump.

Use the open options to restrict user access to a database and to request that the

structures being reorganized are online or offline during the reorganization.

• Identify the location of internal files generated by the reorganization.

• Limit the number of tasks that can be processed simultaneously.

• Control the amount of sort core and fixup core to be used during the reorganization.

You can include at most one <reorg global control> statement in your reorganization

specification. If included, the <reorg global control> statement must be the last statement

in the reorganization specifications for the BUILDREORG program. Any statements

included after the <reorg global control> statement are ignored by the BUILDREORG

program.

The syntax is as follows:

┌◄───────────────── ; ────────────────┐
── GLOBAL ─┴─┬─<central data set control>──────┬─┴─────────────────────┤

├─/1\─<open options>──────────────┤
├─/1\─<high availability options>─┤
└─/1\─<integrity check option>────┘

Reorganizing the Database

8600 0759-622 7–53

<open options>

┌◄────────────────── ; ─────────────────┐
──┴─┬─/1\─ INQUIRYONLY ─────────────────┬─┴────────────────────────────┤

├─/1\─ EXCLUSIVE ───────────────────┤
├─/1\─ PREVERIFY ───────────────────┤
└─/1\─ OFFLINE ─┬───────────────────┤

└─ ; ── NOPOSTDUMP ─┘

<high availability options>

── USEREORGDB; ───►
┌◄─────────────────────────────── ; ──────────────────────────────┐

►─┴─┬─/1*\─ REORGDBTITLE ── = ─<reorgdb name>─┬───────────────────┬─┴──┤
│ └─ ON ──<pack name>─┤
├─/1\─ AUTOSWAP ─┬─ = ── FALSE ───────────────────────────────┤
│ └─ = ── TRUE ────────────────────────────────┤
├─/1\─ NORESTART ───┤
├─/1\─ TOTALCOPYCORE ── = ──<integer>─────────────────────────┤
└─/1\─ REORGDBALLOWEDCORE ── = ──<integer>────────────────────┘

<integrity check option>

── CHECKFILESIZE ──┤

<reorgdb name>

──<database name>──┤

Refer to “Using the Central Data Set Control Options” earlier in this section for

information about the <central data set control> statement.

In a reorganization using the OFFLINE option, you can override the <reorg global control>

statement at the central data set level. For example, if you are reorganizing 200 structures

and want to reorganize all but one of them with the OFFLINE option, you can override the

GLOBAL OFFLINE setting by specifying OFFLINE = FALSE at the central data set level.

This approach is more efficient than specifying the OFFLINE option for 199 structures.

Using the INQUIRYONLY Option

The INQUIRYONLY option enables the database to be opened for inquiry only during

reorganization. Since updates are not allowed, no loss of updates can occur if the

reorganization run does not complete. This option does not affect the level of auditing that

is carried out during the reorganization. If the INQUIRYONLY option is used with the

OFFLINE option, any structure that is not being reorganized is available for inquiry only.

The following example designates the INQUIRYONLY option:

GENERATE EMPLOYEES ORDER BY BYNAME;
GLOBAL INQUIRYONLY;

Reorganizing the Database

7–54 8600 0759-622

Using the EXCLUSIVE Option

The EXCLUSIVE option prevents user programs from opening the database during

reorganization. However, because reorganization updates are still audited, the

REORGANIZATION program can be restarted.

The following example designates the EXCLUSIVE option:

GENERATE EMPLOYEES ORDER BY BYNAME; GLOBAL EXCLUSIVE;

Caution

Although the syntax enables you to specify both the INQUIRYONLY and the

EXCLUSIVE options in the same statement, it is recommended that you

specify only one of these options in a statement. If both options are specified,

the BUILDREORG program ignores the INQUIRYONLY option since this option

has fewer restrictions than the EXCLUSIVE option.

Using the PREVERIFY Option

The PREVERIFY option initiates a preverification task for each generated data set before

reorganization actually begins. This task locks the structure, preventing changes until

reorganization starts. It then reads all records in the data set to ensure the verify condition

for records (for example, that required items are not null).

If a program in transaction state attempts to lock a record in a structure while a

preverification task is occurring, a DEADLOCK number 2 exception occurs.

If the program attempting the lock is not in transaction state, then the program waits until

either of the following occurs:

• The time period designated by the MAXWAIT task attribute expires.

For more information on the MAXWAIT task attribute, refer to the Task Attributes

Programming Reference Manual.

• The preverification of the structure completes.

For more information on structure locking, refer to the Application Programming Guide.

If all data sets pass preverification, the database structures are unlocked and the

REORGANIZATION program runs. If any data set fails the preverification, reorganization

does not begin. The errors should be corrected and the reorganization program restarted.

If the database administrator decides the reorganization should not be run, it can be

purged by restoring the description file and DASDL source that existed before the DASDL

update that caused the reorganization, and removing the new DMSUPPORT file that was

created. Since no reorganization tasks actually started and no audit records were written

for the preverify task, noting else should be changed. The PREVERIFY option cannot be

used to test for duplicate conditions on spanning sets.

Reorganizing the Database

8600 0759-622 7–55

The following example designates the PREVERIFY option:

GENERATEEMPLOYEES ORDER BY BYNAME;
GLOBAL PREVERIFY;

If the reorganization is abnormally terminated during preverification, it must be restarted

by running the REORGANIZATION program. Since the database is not being updated,

DMRECOVERY does not encounter audit records that indicate a reorganization is in

progress. Consequently, if you run DMRECOVERY, the system most likely displays the

following message:

RECOVERY NOT NECESSARY

Using the OFFLINE Option

The OFFLINE option prevents user programs from accessing the database structures

being reorganized until the reorganization process is complete. No reorganization updates

are audited. However, the reorganization is restartable at the row level of the structure.

During the reorganization process using the OFFLINE option, database structures that are

not being reorganized can be accessed by user programs unless additional open options

restricting access (for example, INQUIRYONLY or EXCLUSIVE) were included in the

BUILDREORG specifications. To rebuild the database after a reorganization using the

OFFLINE option, you must perform a dump of any reorganized structures. When the

reorganization has successfully completed, you are prompted to perform a database dump

unless you have specified the NOPOSTDUMP option. Refer to “Using the

NOPOSTDUMP Option” in this section for more information.

While the reorganization, in general, is faster using the OFFLINE option, the

REORGSUPPORT library uses more SAVE memory, and the SAVE memory increases

with each generate or fixup task. If you are reorganizing a large number of structures using

the OFFLINE option, and your system is low on available memory, then your system

might run out of memory and/or issue the SORT ERROR #24 error message. If the

reorganization is abnormally terminated, the accumulated SAVE memory is freed. You can

restart the reorganization and it should complete normally. For additional information, refer

to “SORT Errors During Reorganization” later in this section.

If the dataset being reorganized is sectioned, the reorganization task can take much longer

than if it is not sectioned. The records are evenly distributed throughout the sections. At

restart points, the buffers for all the sections are flushed. The time needed to create these

restart points becomes significant as the number of sections and the number of areas

increase. To lessen the impact of the increased reorganization time, it might be desirable

to use the USEREORGDB option, which allows the database to remain available

throughout the reorganization.

Reorganizing the Database

7–56 8600 0759-622

Caution

The rebuild or reconstruct recovery operations cannot run through an OFFLINE

reorganization. To rebuild or reconstruct the database, you must dump

reorganized structures after the reorganization.

The following example designates the OFFLINE option:

GENERATEEMPLOYEES ORDER BY BYNAME; GLOBAL OFFLINE;

Combinations for the Open Options

The following tables summarize the possible combinations of the open options.

INQUIRYONLY

Reorganization

Audited?

Can Reorganization

be Restarted?

Can a Rebuild be

Done Through the

Reorganization?

Which Structures

Can be Accessed?

Yes, reorganization

updates are audited.

Yes, restartable at the

record level

depending on the

type of structure.

Yes, but cannot be

done through a

reorganization that

adds or deletes

structures or changes

the number of

sections in an

extended data set.

Cannot rebuild

through an update

level increase that did

not involve an update

reorganization.

User programs can

open the database for

inquiry only.

Reorganizing the Database

8600 0759-622 7–57

EXCLUSIVE

Reorganization

Audited?

Can Reorganization

be Restarted?

Can a Rebuild be

Done Through the

Reorganization?

Which Structures

Can be Accessed?

Yes, reorganization

updates are audited.

Yes, restartable at the

record level

depending on the

type of structure.

Yes, but cannot be

done through a

reorganization that

adds or deletes

structures or changes

the number of

sections in an

extended data set.

Cannot rebuild

through an update

level increase that did

not involve an update

reorganization.

User programs

cannot open the

database.

OFFLINE

Reorganization

Audited?

Can Reorganization

be Restarted?

Can a Rebuild be

Done Through the

Reorganization?

Which Structures

Can be Accessed?

Reorganization

updates are not

audited, but there are

audit records for

items such as

database stack

initiations and

reorganization state

changes.

Yes, restartable at the

row level depending

on the type of

structure.

Yes, but cannot be

done through a

reorganization that

adds or deletes

structures or changes

the number of

sections in an

extended data set.

Cannot rebuild

through an update

level increase that did

not involve an update

reorganization.

To rebuild through a

reorganization that

uses the offline

option, a dump is

required of the

reorganized structure

or structures after the

reorganization.

User programs can

only access

structures that are

not being

reorganized.

The reorganization

generally runs faster

but uses more save

memory.

Reorganizing the Database

7–58 8600 0759-622

INQUIRYONLY and EXCLUSIVE

Reorganization

Audited?

Can Reorganization

be Restarted?

Can a Rebuild be

Done Through the

Reorganization?

Which Structures

Can be Accessed?

Yes, reorganization

updates are audited.

Yes, restartable at the

record level

depending on the

type of structure.

Yes, but cannot be

done through a

reorganization that

adds or deletes

structures or changes

the number of

sections in an

extended data set.

Cannot rebuild

through an update

level increase that did

not involve an update

reorganization.

User programs

cannot open the

database.

INQUIRYONLY and OFFLINE

Reorganization

Audited?

Can Reorganization

be Restarted?

Can a Rebuild be

Done Through the

Reorganization?

Which Structures

Can be Accessed?

Reorganization

updates are not

audited, but there are

audit records for

items such as

database stack

initiations and

reorganization state

changes.

Yes, restartable at the

row level depending

on the type of

structure.

Yes, but cannot be

done through a

reorganization that

adds or deletes

structures or changes

the number of

sections in an

extended data set.

Cannot rebuild

through an update

level increase that did

not involve an update

reorganization.

To rebuild through a

reorganization that

uses the offline

option, a dump is

required of the

reorganized structure

or structures after the

reorganization.

User programs can

open the database for

inquiry only.

User programs can

only access

structures that are

not being

reorganized.

The reorganization

generally runs faster

but uses more save

memory.

Reorganizing the Database

8600 0759-622 7–59

EXCLUSIVE and OFFLINE or INQUIRYONLY, EXCLUSIVE and OFFLINE

Reorganization

Audited?

Can Reorganization

be Restarted?

Can a Rebuild be

Done Through the

Reorganization?

Which Structures

Can be Accessed?

Reorganization

updates are not

audited, but there are

audit records for

items such as

database stack

initiations and reorg

state changes.

Yes, restartable at the

row level depending

on the type of

structure.

Yes, but cannot be

done through a

reorganization that

adds or deletes

structures or changes

the number of

sections in an

extended data set.

Cannot rebuild

through an update

level increase that did

not involve an update

reorganization.

To rebuild through a

reorganization that

uses the offline

option, a dump is

required of the

reorganized structure

or structures after the

reorganization.

User programs

cannot open the

database.

Reorganization

generally runs faster

but uses more save

memory.

Default

Reorganization

Audited?

Can Reorganization

be Restarted?

Can a Rebuild be

Done Through the

Reorganization?

Which Structures

Can be Accessed?

Yes, reorganization

updates are audited.

Yes, restartable at the

record level

depending on the

type of structure.

Yes, but cannot be

done through a

reorganization that

adds or deletes

structures or changes

the number of

sections in an

extended data set.

Cannot rebuild

through an update

level increase that did

not involve an update

reorganization.

User programs can

open the database for

inquiry and update

during the

reorganization.

Refer to “Availability

of Structures During

Reorganization” later

in this section for

additional

information.

Reorganizing the Database

7–60 8600 0759-622

Using the NOPOSTDUMP Option

Note: The NOPOSTDUMP option can only be used with the OFFLINE option.

If you specify the OFFLINE option, the REORGANIZATION program generates a message

reminding you to perform a database dump and then waits for an AX (Accept) command at

the end of the reorganization process. The reorganized structures are not available to user

programs until you provide a response in the form of an AX OK command or an AX SKIP

command.

If you also specify the NOPOSTDUMP option, the REORGANIZATION program only

prompts you to perform a dump; it does not wait for you to perform the dump. The

reorganized structures are made available to the user programs right after the message is

displayed. You are responsible for performing the database dump as soon as possible.

The NOPOSTDUMP option is reset by default.

The NOPOSTDUMP option is set implicitly in any of the following situations:

• When using the OFFLINE option and EXCLUSIVE option

• When using the OFFLINE option and reorganizing a structure that is a member of the

RESTART data set family

Using the USEREORGDB Option

Before initializing the REORGDB reorganization through the USEREORGDB option,

the database must have the INDEPENDENTTRANS option set through a separate

DASDL UPDATE. The INDEPENDENTTRANS option cannot be added during a

REORGDB reorganization.

When the USEREORGDB option is specified for a reorganization, both the updated and

previous description files must be available. Both the newly updated description file,

DESCRIPTION/<database name>, and the backup copy created by DASDL,

DESCRIPTION/<database name>/<previous level>, must be present at the beginning of

the reorganization process.

The procedures handling the Swap process that occurs when the USEREORGDB option is

used cannot safely handle global transactions. If the USEREORGDB option is used in an

Open Distributed Transaction Processing environment, the AUTOSWAP option must be

set to FALSE and any Open Distributed Transaction Processing activity processing must

be completed before you allow the Swap process to start.

Note: If you are reorganizing a permanent directory database, the database administrator

must make space available for the work files in the permanent directory in which the

database resides.

The USEREORGDB option can be used for garbage collection or with the DASDL UPDATE

option to reorganize structures for

Reorganizing the Database

8600 0759-622 7–61

• File and record format conversions on structures that have the XE attribute set

• Conversions from a structure without the XE attribute set to a structure that does

have this attribute set

• XE structures, during garbage collection

The USEREORGDB option cannot be specified for use

• With databases that are not audited

• With databases that have been created by setting the MODEL option in DASDL

• With data structure pack family changes made using DASDL

• For embedded structures or manual subsets

• During a reorganization of the restart data set

• When specified in combination with the INQUIRYONLY, PREVERIFY, EXCLUSIVE,

OFFLINE, or NOPOSTDUMP options

• With data sets containing aggregate items

• If sets are reorganized, unless the data set is also generated

• To delete sets or data sets

• To add new sets or datasets with no other changes

• To reorganize the global data set

• With data sets that are accessed by a manual subset

• With a structure that is the object of an unprotected link, when the structure owning

the link meets one of the following conditions:

- Contains a nonqualifying link type

- Is referred to by an aggregate item

- Is an embedded data set

- Is accessed by a manual subset

The following supported structure types can be reorganized when the USEREORGDB

option is specified:

• Standard fixed-format

• Standard variable-format

• Compact

• Direct

• Index sequential

Reorganizing the Database

7–62 8600 0759-622

The preceding disjoint structure types can also include, or be the target of, unprotected

links. When using a REORGDB reorganization to generate a data set that is an object data

set of a link item, both the data set and the data set containing the link item need to be

involved in the reorganization. To accomplish this, REBUILDREORG implicitly includes a

fixup for the owning data set. This action enables both the owner and object data set sides

of the link updates to be captured.

If only the owning data set is reorganized using REORGDB, it is also necessary to capture

information for both the owner and object data sets because the actual reorganization

process takes place offline in another database. To accommodate this information, an

explicit generate statement for the object data set must be included in the BUILDREORG

specifications.

The unprotected link is the only link type supported by the REORGDB reorganization. No

other link types are allowed to be used with structures, owners, or targets that use this

form of reorganization.

Allowed disjoint data set types are permitted to contain embedded data sets. However,

the embedded structures cannot be reorganized using the USEREORGDB option. This

also means structures without the XE attribute set that contain embedded data sets

cannot migrate to XE structures using this mechanism.

Caution

The rebuild or reconstruct recovery operations cannot run through an OFFLINE

or REORGDB reorganization. To rebuild or reconstruct the database, you must

dump reorganized structures after the reorganization.

Using the REORGDBTITLE Phrase

The REORGDBTITLE phrase specifies the name of the database copy used during a

REORGDB reorganization. The specified name must not be the same as that of the

production database. However, the usercode of the REORGDBTITLE phrase must

be the same as that of the production database. This option is required in

combination with the USEREORGDB option.

Notes:

• When reorganizing multiple databases under the same usercode, be sure to specify

different values for the REORGDBTITLE phrase.

• For a permanent directory database,

Reorganizing the Database

8600 0759-622 7–63

- The specified title must not include a usercode. The title is used with the datapath

of the live database to determine the name of the database copy.

- The administrator must also create a node for the temporary database prior to

running the reorganization.

Using the AUTOSWAP Option

The AUTOSWAP option indicates how the swap phase is to be initiated during a

REORGDB reorganization. When set to TRUE, the option signifies that manual

intervention is not used and that the reorganized structures are to be put into

service as soon as possible following completion of the reorganization. Once all of

the reorganized structures have reached their first synchronization point, the swap

phase is initiated.

When database activity resumes, any active application that does not match the level of

the opened structures receives a version error.

When this option is set to the default value of FALSE, the REORGANIZATION program

issues the following message, indicating that the reorganized structures have reached a

synchronization point and that the structures are ready to be put into service:

AUTOSWAP IS RESET FOR USEREORGDB REORGANIZATION,
WAITING FOR OPERATOR SWAP REQUEST.

The REORGANIZATION program waits for you to respond with the following system

command, indicating readiness to begin the swap phase:

SWAP NOW

Once commanded, the following swap actions occur:

1. The active applications pause briefly

2. The final synchronization takes place

3. The reorganized structures are enabled for service

4. The applications are allowed to continue.

When database activity resumes, any active application that does not match the level of

the structures that it has open will receive the customary Version Error.

Using the NORESTART Option

The NORESTART option indicates that reorganization cannot be restarted. Selecting this

option enables the reorganization of the database copy designated by the REORGDBTITLE

to proceed without performing excessive I/O operations that can slow the process. The

process is especially slowed when reorganized structures are sectioned.

Reorganizing the Database

7–64 8600 0759-622

Using the TOTALCOPYCORE and STRCOPYCORE Phrases

The TOTALCOPYCORE and STRCOPYCORE phrases enable you to specify values within

the BUILDREORG process that determine the number of copy tasks that can be running at

the same time.

The overall TOTALCOPYCORE default value is 5 million words, with a maximum of

100 million words and a minimum of 1 million words. Specifying larger values within that

range might be useful for databases with structures having a large number of sections.

The default STRCOPYCORE value for each structure is 250,000 words, with a maximum

of 20 million words and a minimum of 150,000 words. This value is applied at the

structure level. For sectioned data sets, the value is divided among the sections.

The specified STRCOPYCORE value cannot exceed the value of the TOTALCOPYCORE

specification. If the STRCOPYCORE value does exceed the TOTALCOPYCORE

specification, the BUILDREORG process will increase the TOTALCOPYCORE

specification to equal the highest single STRCOPYCORE value so that the copy tasks can

run.

Each copy task, by structure or by data set section, is allocated two 65K buffers. These

buffers can be less than 65K if the AREASIZE value equals less than 65,000 words.

As the copy task progresses, if there is an update to the production database the update is

duplicated to the database copy file. The update duplication process maintains a pool of

10 small buffers for duplicate updates and rotates serially through the pool. If excessive

wait times result during the process, the number of buffers in the pool is increased to the

structure limit of the STRCOPYCORE values. When this occurs, the following message is

displayed:

Pool buffer in use from a previous duplicated write

Note: Copy memory for the small buffers is held only until all copy tasks finish.

Before all copy tasks are completed, all modified buffers are written. At that point, all

copied files are identical to the production database files. The capture process takes over.

No more production database updates are duplicated to the copy files, and all copy

memory is deallocated. The two 65K copy buffers are de-allocated as each file completes

its copy task (is duplicated to the corresponding file on the copy database), but the small

buffer pool continues to be used to copy the production database updates until all of the

remaining copy tasks finish.

This mechanism allows the parameters to be tuned for activity-based processing rather

than task-based processing. The advantage is that heavily updated structures can be given

more memory and more buffers to be used for quickly processing updates during the

copy.

Reorganizing the Database

8600 0759-622 7–65

Using the REORGDBALLOWEDCORE Option

The REORGDBALLOWEDCORE option indicates the amount of core memory that can be

used for the reorganized database copy. This option for the REORGDB mode of

reorganization serves the same purpose as the database ALLOWEDCORE parameter that

is specified in DASDL. The maximum number of words allowed for the

REORGDBALLOWEDCORE option is 2**28–1, and the minimum allowed is 1,000,000.

The default is 1,000,000 words.

The REORGDBALLOWEDCORE option serves the role of database ALLOWEDCORE

parameter only during the processing of updates. It does not have a role during the

background OFFLINE reorganization.

Using the CHECKFILESIZE Option

If you specify the CHECKFILESIZE option, the REORGANIZATION program will check the

LASTRECORD file attribute at the beginning of the reorganization process. If the file size is

larger than 2**28 -1 sectors, the REORGANIZATION program will exit gracefully and

require users to perform a DASDL update to change or add more physical sections to the

structure. This prevents the REORGANIZATION program from failing with a fatal error

when the database file exceeds the file size limit. By default, this option is reset. However,

setting this option is recommended.

The REORGANIZATION will perform normally if the number of physical sections are

increased even though the option is set and file size exceeds the limit.

Running the REORGANIZATION Program

To perform database reorganization, you run the REORGANIZATION program. The actual

reorganization is accomplished through procedures in the Accessroutines in conjunction

with the tailored REORGANIZATION program. For this reason, it is important that the

REORGANIZATION program is generated and run on the same level of Enterprise

Database Server software.

For a permanent directory database, the reorganization program must be run with a

datapath specification.

RUN REORGANIZATION/<database name>; DATAPATH=<datapath>
ON <pack name>

You can also perform an online garbage collection of disjoint index sequential sets by

using the Visible DBS GARBAGE COLLECT command while the database is running.

Initiating this command results in a garbage collection of the specified sets while

they are in use. You do not run the REORGANIZATION program. For the syntax for

the Visible DBS GARBAGE COLLECT command, refer to

Section 12, Communicating with the Database.

Reorganizing the Database

7–66 8600 0759-622

Preparing to Reorganize

If the reorganization allows multiple reorganization tasks to run simultaneously (that is,

TASKLIMIT option is greater than 1), refer to “DASDL ALLOWEDCORE” under

“Enhancing Reorganization Performance” later in this section.

Before you reorganize the database, back up the following from the original database:

• Control file and all the database files

The reorganization creates a discontinuity in these files. This discontinuity prevents

ROLLBACK recovery into the reorganization region of the audit file. The rebuild

process can recover these files from a dump performed before reorganization. The

rebuild process essentially reorganizes the database again.

Use the DMUTILITY DUMP command as described in Section 6, Backing Up a

Database. If you cannot dump the entire database, dump only the database files that

need reorganization.

• Audit trail

• DASDL source

• Description file

If the reorganization process fails and cannot be restarted successfully, the database files,

control file, description file, and all tailored software must be reloaded from backup

dumps.

You can restrict user access to a database to inquiry-only by using the BUILDREORG open

option INQUIRYONLY. Then, you can use the backup copy of the database to restore the

database after a fatal error or to essentially cancel a reorganization.

If you use the LOCKEDFILE attribute for database files, you must also use the

LOCKEDFILE option in the DASDL. If you did not set the LOCKEDFILE option in the

DASDL and the LOCKEDFILE attribute is set on any of the structures involved in the

REORGANIZATION, you must reset the LOCKEDFILE attribute for all pertinent structures

before you start the reorganization. Otherwise, problems can occur.

Understanding the Phases of Reorganization

If any of the reorganization tasks fail and leave a structure marked as dead, the

REORGANIZATION program is assigned a status of ABORTED and the TASKVALUE

attribute is assigned a task value of 2. If such a condition occurs, identify the

REORGANIZATION program task that failed and take an appropriate action.

The program REORGANIZATION/<database name> initiates the reorganization and acts

as a driver and monitor for the reorganization tasks. The actual reorganization tasks

(generates and fixups) are processes of the database stack. Each generated structure

goes through a series of phases during the reorganization. These phases are independent

of other structures. The phases are as follows:

Reorganizing the Database

8600 0759-622 7–67

1. The rename phase. The old file title has /OLD appended to the end.

2. The COPY phase. If a STRUCTURE COPY specification is included in the

BUILDREORG specifications, the old file is copied to the designated pack.

3. The FIXUP file initialize. The fixup file is preinitialized to all zeros.

4. The new file initialize. An empty new file is created and its timestamp entered into the

control file.

5. The GENERATE phase. Records are moved and reformatted from the old file to the

new file.

6. The FIXUP phase. Affected structures are fixed up.

7. The REMOVE phase. Temporary internal files are removed.

Starting the REORGANIZATION Program

To perform or to restart the REORGANIZATION program, enter the following from CANDE:

RUN $REORGANIZATION/<database name>

For permanent directory databases, the reorganization program must be run with a

datapath specified, as follows:

RUN REORGANIZATION/<database name>; DATAPATH=<datapath>
ON <packname>

Refer to Section 16, Using Permanent Directory Databases, for more information.

If the control file and the description file are located on different packs, file-equate the

description file title using the internal file name DASDL. For example, if the reorganization

program for the database MYDB resides on the ISYS pack and the description file resides

on the DMS pack, use the following statement to run the reorganization program:

RUN $REORGANIZATION/MYDB; FILE DASDL=DESCRIPTION/MYDB ON DMS

If the SYSTEM/DMCONTROL code file does not have the same usercode as the

REORGANIZATION program or is not located on the same pack family, the

SYSTEM/DMCONTROL code file can be file-equated as follows:

RUN REORGANIZATION/<database name>;
FILE DMCONTROL (TITLE=*SYSTEM/DMCONTROL ON <pack name>)

In addition to the optional equation statements, you must satisfy the following

requirements when reorganizing a modeled database with the USEREORGDB option:

1. The internal database DB must be equated.

2. The file DESCRIPTION/<model db name>/<previous level> must be present if the

reorganization is an UPDATE reorganization. This requirement ensures that the

reorganization program cannot be run for the model unless the DASDL UPDATE

compilation has occurred. An example of the database equation statement is

RUN REORGANIZATION/<parent db>;
DATABASE DB (TITLE = <model database name>);

Reorganizing the Database

7–68 8600 0759-622

Note: If a guard file is used to guard a database, the usercode under which the

REORGANIZATION program is to be run should be allowed to access the database files.

A reorganization run can also be executed as in the following Work Flow Language (WFL)

job deck:

? BEGIN JOB REORGANIZATIONRUN;
TASK REORG;

RUN REORGANIZATION/<database name> [REORG];
IF REORG ISNT COMPLETEDOK THEN ABORT
"*** BAD REORG RUN ***";

Note: If a failure occurs that requires the entire reorganization to be rerun, then the

COMPLETEDOK status is false.

However, if one of the reorganization tasks fails and leaves a structure marked as dead,

the REORGANIZATION program is assigned a status of COMPLETEDOK and the

TASKVALUE attribute is assigned the value 2. Identify the reorganization task that failed

and take appropriate action.

Reorganizing a Nonusercoded Database

To reorganize a nonusercoded database, run the REORGANIZATION program with the

asterisk (*) designation. If a guard file is used to guard the database, the

REORGANIZATION program running under the nonusercode (*) should be allowed to

access database files during the reorganization run. If the ZIP option is reset during a

BUILDREORG run, then the security type of the REORGANIZATION program should be

made public.

Using the Transaction Processing System (TPS) During
Reorganization

During a reorganization that allows updates, TPS update programs can run. The following

rules apply when the DASDL TPSDUALUPDATE option is not set:

• If a regular data management program is the first to open the database for updates

after the reorganization starts, then TPS update programs cannot access the database

during the reorganization.

• If a TPS program is the first to open the database for updates after the reorganization

starts, then regular data management update programs cannot access the database

during the reorganization.

• During the reorganization, both TPS and regular data management inquiry programs

can run.

For more information on the TPSDUALUPDATE option, refer to the Data and Structure

Definition Language (DASDL) Programming Reference Manual.

Reorganizing the Database

8600 0759-622 7–69

Availability of Structures During Reorganization

The entire reorganization is complete when the REORGANIZATION program finishes.

Depending on the open options designated in the BUILDREORG specification, structures

in the database become available on a structure-by-structure basis. Structures that are

reorganized using the OFFLINE option cannot be accessed until the entire reorganization

is complete. Given that user programs can access the database during an ONLINE

reorganization, the following rules apply to the availability of structures:

• Structures unaffected by the reorganization are available immediately.

• A deadlock occurs if the user program is in transaction state and waiting on a structure

to become available, and the REORGANIZATION program needs to take a syncpoint. If

the INDEPENDENTTRANS option is set for the database, the user program receives a

DMVERSIONERROR #3 message because the reorganized structure is unavailable,

and the REORGANIZATION program continues. If the INDEPENDENTTRANS option is

not set, the database terminates with a fatal error. If update programs are to be run

during an ONLINE reorganization, it is recommended that the INDEPENDENTTRANS

option be set for the database.

• Application programs accessing structures that are being reorganized cannot be run at

a higher priority than the reorganization tasks because records must be reorganized

before being presented to the application program. If a compact structure is being

reorganized, an application program that performs a FIND NEXT operation through the

data set and is running at a higher priority can receive an erroneous NOTFOUND

condition. This condition occurs because no records have been reorganized to the new

structure yet, and the application program tries to read an empty file.

• Structures affected by the reorganization are not available until at least the associated

reorganization task has started.

• Disjoint ordered or unordered data sets are not available until their reorganization is

complete.

• Direct and random data sets are available for inquiries that do not involve a linear

search, links, or access through the data set.

• Reorganized data sets other than direct, random and disjoint ordered or unordered are

available as soon as their associated reorganization task starts if no spanning set is

generated in the same run and if no spanning set is an ordered list that allows

DUPLICATES and must be fixed up. The generation of the spanning set might occur

automatically, or it can be explicitly requested in the BUILDREORG specifications.

If the spanning set is generated or an ordered list set allowing DUPLICATES is fixed

up, the data set is available for inquiry but not for any of the following updates that

affect the key or the key data of the set:

- CREATE/STORE

- DELETE

- MODIFY/STORE

• The operation FIND LAST <data set> waits until the generation of the data set is

complete.

• Sets that are generated are not available (even for inquiry) until their generation is

complete, as opposed to started.

Reorganizing the Database

7–70 8600 0759-622

• If a SORT specification is requested when generating a set from a data set, both the

set and the data set are available only for inquiries through a set that is not being

generated by this reorganization run.

• If the restart data set is to be reorganized and you are using the Open Distributed

Transaction Processing product, the RMSUPPORT library waits until the

reorganization of the restart data set is complete before opening the database.

If a user program attempts to access an unavailable structure, one of the following

situations occurs:

• The program might wait in or out of transaction state. If the waiting program has

locked records and another program attempts to lock those records, the program

already waiting for the structure to become available receives a VERSIONERROR

number 3 message. (VERSIONERROR number 3 is a reference to an unavailable

reorganized structure.)

• If the MAXWAIT task attribute is nonzero, the program waits MAXWAIT seconds or

until the structure becomes available, whichever is first. If MAXWAIT seconds

expires, a VERSIONERROR number 3 message is returned.

• If the MAXWAIT task attribute is zero, the program waits until the structure becomes

available, or until the program is discontinued.

• The operation FIND <data set> for RANDOM data sets or their accesses waits until

the random data set generation is complete. However, if the program is in transaction

state, it immediately receives a VERSIONERROR number 3 message.

A user program can interrogate the availability of a structure by setting the MAXWAIT task

attribute to a small value, and performing an innocuous inquiry (such as FIND FIRST). If no

error is returned, the structure is available, otherwise it is unavailable.

For more information on the MAXWAIT task attribute, refer to the Task Attributes

Programming Reference Manual.

Availability of Structures During REORGDB Reorganization

All structures, including those affected by the REORGDB reorganization, are available

during REORGDB reorganization. However, updates to LOB items in the reorganized

structures are not allowed during a REORGDB Reorganization. In this case, a READONLY

4 is returned to the application.

To provide proper recovery synchronization, the Accessroutines must wait at two points

for a real end transaction (ETR) request from all programs in transaction state; this includes

OLTP global transactions. All programs updating the production database are briefly

suspended during these two phases of the reorganization:

• After structures are copied to the database copy

• During the swap phase of the reorganization

Reorganizing the Database

8600 0759-622 7–71

Swap Phase

The frequency of control points and the number of user application updates per

transaction greatly affects the time between the swap phase and the completion of the

updates application phase. Typically, at the end of the apply-updates tasks, the amount of

time that the applications are actually suspended is not very long. However, lengthy

transactions and high transaction volumes in conjunction with infrequent control points

can extend this period.

The following steps explain the process that occurs during the swap phase of the

reorganization:

1. The apply-updates actions that place the production database updates into the copy

database start once the reorganization of the copy database completes. Many

updates, control points, and so on can occur on the production database while the

reorganization of the copy database is running, thus accumulating a large number of

changes to apply to the newly reorganized data structures.

2. Once the apply-updates period starts, the copy database is at least two control points

behind the production database. Production database (capture audit file) updates are

not released to the apply-updates tasks until they have been committed for two

control points.

3. When the apply-updates tasks have reached the first EOF on all files containing the

structure updates (the capture audit files), the first potential swap point has been

reached. Either the automatic swap mechanism starts, or the AX TO SWAP NOW

RSVP message is issued.

When the swap begins, two control points are forced in order to cut off the activity of

the current two control points on the live database. This action enables the apply-

updates tasks to work on those database updates while the production database is

starting a new two-control-point cycle. But, if the new two-control-point cycle is going

to be long too, only a comparatively small amount of progress might be made. This is

when having a very large number of updates per database transaction can be a

disadvantage. The apply-updates tasks are always two control points behind the

production database.

The biggest issues are the control point frequency and the number of production

database updates per transaction. As a general rule, long transactions are not

desirable for any database performing online transactions. Specifying the DASDL

option SYNCWAIT does help the situation, but there can still be long recovery times in

order to back out the long transactions.

Note that all applications remain fully active during this period.

4. After step 3 completes, there is another EOF check on all capture audit files, and the

actual swapping code is entered. Once the swapping code is entered, all updates to

the production database are stopped. However, inquiries continue. Two final control

points are forced on the production database to release all remaining updates. These

control points are forced so that there are fewer transactions to apply.

However, if these remaining transactions are mostly composed of lengthy

transactions and each contains a very large number of database updates, then the

apply-updates period is extended. This extension is especially noticeable if the forced

control points occur near the time when a control point would normally occur. In this

Reorganizing the Database

7–72 8600 0759-622

case, it is not so much the long transactions themselves but rather the quantity of

updates that they contain. For a different case, such as an online application with low

transaction volumes, the apply-updates actions could be much faster than the actual

time needed to create the transactions.

Once the remaining updates have been applied, the inquiries are also stopped and the

actual swap takes place.

For nearly all of this time, the production database remains available. The time

between the “application stopped” message and the end of the swap when the live

database becomes available is short. This process is designed to minimize the length

of time that application programs are unavailable during the swap activity.

Updating During Generation: The Fixup Process

Database structures that are not reorganized but have links that point to reorganized

structures must be updated during reorganization. This process is referred to as a fixup, or

address update, and is automatically performed in place by the REORGANIZATION

program. There are three cases where fixup is performed:

• If the reorganized structure is embedded, and root word links in the master are

updated.

• If the data set is generated, all index structures in the data set family not explicitly or

implicitly generated have their links to the data set updated.

• DASDL link items pointing to it have their links updated.

All structures requiring fixup must be present during reorganization. The report produced

by SYSTEM/BUILDREORG lists all structures that require fixup.

Fixup performance is generally influenced by the following factors:

• Population of the master data set structure as determined by the REORGANIZATION

program

• The specified BUILDREORG ALLOWEDCORE value

• The memory available for the fixup task

• The bias of the set with respect to the data set records

When the set structures are identified by the REORGANIZATION program as large sets or

when available memory is deficient, the fixup algorithms provide optimization for better

performance. One of these fixup algorithms involves sorting the fixup file. If the sort

operation fails, a message is displayed and the fixup task continues as if the sort operation

had not been attempted. This action allows the reorganization to complete successfully,

but the reorganization takes longer than it would have if the sort operation had been

successful.

The fixup file is used in most cases, but the REORGANIZATION program does not need,

nor does it create, a fixup file when all of the following conditions are met:

• The data set has no links.

• The data set is not embedded.

Reorganizing the Database

8600 0759-622 7–73

• All sets are being generated using the data set.

• The data set is generated first.

• The reorganization process is run using the EXCLUSIVE option or the OFFLINE option.

When a fixup file is not created, because of the conditions previously mentioned, the

REORGANIZATION program saves system resources.

Sequencing Fixups: Three Cases

A data set might require fixup for several different structures during the same

reorganization run. For example, a data set can contain multiple embedded structures and

can have multiple links referencing other structures. Any number of these embedded

structures or linked structures can be generated during the same reorganization.

Three rules control the order and the combination of generations and fixups:

• No fixups start until all of the affected structure generates are complete.

• All fixups for a given data set are combined in the same fixup run.

• A data set fixup is never combined with its generation. If a data set and one of its

index sets are both generated in the same reorganization run, the generates can be

ordered data set first or index set first. If the index set is generated first, availability is

maximized because the data set is not completely available until the index set

generation is complete. However, a second pass of the index set is required for the

index set fixup. If the data set is generated first, availability is restricted until the index

set generation is completed. In this case, the index set fixup can be combined with

the index set generation, which minimizes the time it takes to complete a

reorganization.

Examples of Reorganization Sequencing

In this example, the database administrator performs garbage collection on the following

database:

D1 DATA SET
(
A1 ALPHA (6);
A2 ALPHA (8);
A3 ALPHA (10);
G GROUP

(
G1 NUMBER (3);
G2 NUMBER (6);
G3 ALPHA (6);

);
N1 NUMBER (4);
N2 NUMBER (6);
R1 REAL;

);

DS1 SET OF D1 KEY IS A1;
DS2 SET OF D1 KEY IS A2;

Reorganizing the Database

7–74 8600 0759-622

DS3 SET OF D1 KEY IS (G1, G2);
DS4 SET OF D1 KEY IS N1;

E1 DATA SET
(
A1 ALPHA (6);
A2 ALPHA (8);
A3 ALPHA (10);
G GROUP

(
G1 NUMBER (3);
G2 NUMBER (6);
G3 ALPHA (6);

);
N1 NUMBER (4);
N2 NUMBER (6);
R1 REAL;

);

ES1 SET OF E1 KEY IS A1;
ES2 SET OF E1 KEY IS A2;
ES3 SET OF E3 KEY IS (G1, G2);

The database administrator can specify the following reorganization sequence and

resource allocation to the BUILDREORG utility:

GENERATE D1, DS1, DS2, DS3 USING DS3, DS4;

DS1(LOADFACTOR = 90);
DS3(LOADFACTOR = 80);

D1(COPY TO TEMPPACK);
DS1,DS2(COPY TO DISK);

SEQUENCE DS2, D1, DS1 AND DS4, DS3;

GENERATE E1 ORDER BY ES1, ES1, ES2, ES3 USING ES3;

ES1(LOADFACTOR = 90);
ES3(LOADFACTOR = 80);

E1(COPY TO TEMPPACK);
ES1,ES2(COPY TO DISK);

SEQUENCE ES2, E1, ES1 AND ES3;

CENTRAL DATASET SEQUENCE D1 AND E1;
GLOBAL TASKLIMIT = 2;

ALLOWEDCORE = 300000;
INTERNAL FILES(FAMILYNAME = SYSPACK);

Finishing the Reorganization Process

During the reorganization process, the REORGANIZATION program and the description

file are copied with the following titles:

Reorganizing the Database

8600 0759-622 7–75

REORGANIZATION/<database name>/<YYYYMMDD>/<HHMM>
DESCRIPTION/<database name>/<YYYYMMDD>/<HHMM>

If the reorganization was required because of a DASDL update, the title of the

DMSUPPORT library is also changed to include the old update level:

DMSUPPORT/<database name>/<update level>

Save these files in case a rebuild recovery through the reorganization region of the audit is

necessary.

During the life of a database, the database reorganization process is used to make

physical changes to database files and records. The reorganization tasks allow changes to

the format of an existing database. These tasks can be used to

• Reorder and consolidate data sets, sets, and subsets.

• Generate new sets or automatic subsets in order to allow more rapid access to data

sets.

Note: Multiple data sets and their spanning sets and subsets can be reorganized at

one time.

• Change the record formats by adding, deleting, or changing fields.

The REORGANIZATION program accepts properties described through DASDL and

BUILDREORG and uses these properties to perform file and record format conversions.

The REORGANIZATION program also increments the database update level.

During the REORGDB mode of reorganization, record and file format changes take place

on a production database copy that is then synchronized at a designated point called the

swap point. While the swap takes place, the active application programs are suspended to

preserve the synchronization. Upon completion of the swap, the applications are allowed

to resume.

Note: Once the applications resume, version errors are given to those applications that

have not been compiled to match the level of the reorganized structures that they affect.

The synchronization process between the production database and the reorganized

database copy is accomplished by initiating a Catch-up task for each structure that is being

reorganized. The task reads a capture file (unique to each task) and applies the updated

information to the reorganized data sets.

Once all of the tasks are completed, either the REORGANIZATION program emits a

message to inform the operator that the reorganized structures can be exchanged

between the production database and the reorganized database copy, or it performs the

exchange automatically. The choice of methods (operator control or automatic) is a

BUILDREORG option.

If the AUTOSWAP option is set to FALSE, either explicitly or by default, then the

REORGANIZATION program emits the following message, indicating that the reorganized

structures have reached a synchronization point:

AUTOSWAP IS RESET FOR USEREORGDB REORGANIZATION,
WAITING FOR OPERATOR SWAP REQUEST.

Reorganizing the Database

7–76 8600 0759-622

You must respond with the AX SWAP NOW system command to begin the swap phase,

which means the newly reorganized data structures can be placed into service at the next

synchronization point.

If the automatic swap mechanism is enabled by setting the AUTOSWAP option to TRUE in

the BUILDREORG syntax, the following message is emitted at the first opportunity to

begin the swap phase:

AUTOSWAP IS SET FOR USEREORGDB REORGANIZATION

As soon as the message is delivered, the automatic process begins.

Note: The reorganization synchronization points are not Enterprise Database Server

syncpoints.

Reorganization Status Report

A reorganization status report is generated and sent to the printer at the completion of the

reorganization.

If the STATISTICSLOC command is specified, the report is stored at the designated pack

with the title

<dbusercode>REORGSTATS/<dbname>/YYYYMMDD/HHMMSS on <pack name>

For a permanent directory database, the path name is assumed and the report is stored as

<path name>/REORGSTATS/<dbname>/YYYYMMDD/HHMMSS on <pack name>

The date and time when the report is generated is represented by YYYYMMDD and

HHMMSS.

The report includes the mix number, name, number of entries processed, start time, and

end time for each task processed during the reorganization.

DATABASE NAME:T5DB

MIX PROCESS STATUS START TIME END TIME
--- ------- ------ ---------- ---------
1065 GEN/T4/2 COMPLETED(650RECORDS) 6/10/2009 06/10/2009

12:43:01 12:43:02
1066 FIX/T4-S0/3 COMPLETED(8BLOCKS) 6/10/2009 06/10/2009

12:43:02 12:43:03
1067 GEN/T4-S1/7 COMPLETED(650RECORDS) 6/10/2009 06/10/2009

12:43:03 12:43:08
1073 GEN/T5/4 COMPLETED(800RECORDS) 6/10/2009 06/10/2009

12:43:08 12:43:09
1075 FIX/T5-S0/5 COMPLETED(10BLOCKS) 6/10/2009 06/10/2009

12:43:09 12:43:10
1076 GEN/T5-S1/8 COMPLETED(800BLOCKS) 6/10/2009 06/10/2009

12:43:10 12:43:15
1083 GEN/T5-S2/9 COMPLETED(800BLOCKS) 6/10/2009 06/10/2009

12:43:15 12:43:20

Reorganizing the Database

8600 0759-622 7–77

The following is an example of the additional information provided for a USEREORGDB

type of reorganization. SWAP PHASE (FILE) indicates that FILES SWAP has started, and

SWAP PHASE (FINAL) indicates that FILES SWAP is completed.

DATABASE NAME:T5DB

USERORGDB PHASES STATUS START TIME END TIME
---------------- ------ ---------- --------
COPY TO DATABASE COPY PHASE COMPLETED 6/10/2009 6/10/2009

13:08:10 13:08:12
CAPTURE UPDATES PHASE COMPLETED 6/10/2009 6/10/2009

13:08:18 13:08:42
OFFLINE REORGANIZATION PHASE** COMPLETED 6/10/2009 6/10/2009

13:08:18 13:08:42
COPYBACK PHASE NOT APPLICABLE

APPLYUPDATESPHASE COMPLETED 6/10/2009 6/10/2009
13:08:42 13:09:14

SWAP PHASE (FILE) COMPLETED 6/10/2009 6/10/2009
13:09:16 13:09:23

SWAP PHASE (FINAL) COMPLETED 6/10/2009 6/10/2009
13:09:23 13:09:30

**OFFLINE REORGANIZATION STATISTICS:
MIX PROCESS STATUS START TIME END TIME
--- ------- ------ ---------- --------
2989 GEN/T4/2 COMPLETED(650RECORDS) 6/10/2009 6/10/2009

13:08:18 13:08:19
2990 FIX/T4-S0/3 COMPLETED(8RECORDS) 6/10/2009 6/10/2009

13:08:19 13:08:20
2991 GEN/T4-S1/7 COMPLETED(650RECORDS) 6/10/2009 6/10/2009

13:08:20 13:08:25
3001 GEN/T5/4 COMPLETED(800RECORDS) 6/10/2009 6/10/2009

13:08:25 13:08:26
3002 FIX/T5-S0/5 COMPLETED(10RECORDS) 6/10/2009 6/10/2009

13:08:26 13:08:27
3003 GEN/T5-S1/8 COMPLETED(800RECORDS) 6/10/2009 6/10/2009

13:08:27 13:08:32
3008 GEN/T5-S2/9 COMPLETED(800RECORDS) 6/10/2009 6/10/2009

13:08:32 13:08:37

Terminating and Recessing the REORGDB Reorganization
Process

The REORGDB mode of reorganization can be paused or discarded without affecting the

production database. Either of these actions could prove useful for last-minute

requirement changes or if you need to make additional system resources, such as

memory or processors, available to the production environment.

You can recess the reorganization process before the reorganized data structures are

placed into production. To recess the reorganization, give the REORGANIZATION program

the RECESS directive by using the AX (Accept) system command. The REORGANIZATION

Reorganizing the Database

7–78 8600 0759-622

program removes all structure-specific reorganization tasks and proceeds to the end-of-job

state. These actions do not affect the update captures from the production database. You

can resume the reorganization process by restarting the REORGANIZATION program.

After the reorganization process is recessed, you can discard the entire reorganization by

initiating the USEREORGDB TERMINATE command using the Visible DBS interface of the

production database. After initiating this command, the database stops capturing updates

for the reorganization process, and it is no longer possible to resume the reorganization.

Caution

Updates to the database continue to be captured following a RECESS

command. If the reorganization is not terminated or restarted, the capture audit

files continue to grow in size.

Perform the following procedure if you want to terminate and discard the entire

reorganization with a single command:

1. Prior to placing the reorganized structures into service, give the REORGANIZATION

program the TERMINATE directive by using the AX (Accept) system command.

The REORGANIZATION program signals all of the reorganization tasks to leave the

mix and removes all reorganization-related files.

2. If the update level of the description file was changed during the reorganization

process and you do not intend to restart the REORGANIZATION program, restore the

original description file.

3. Proceed to the end-of-job state.

The production database will remain fully active.

Restarting a Reorganization

The REORGANIZATION program can be restarted after a halt/load. ONLINE reorganization

tasks enter and leave transaction states just like any user of the database, and audit their

changes to the Enterprise Database Server audit. After a halt/load, the DMRECOVERY

utility can run explicitly, or the first user program to open the database runs the utility

implicitly. After SYSTEM/DMRECOVERY runs, the REORGANIZATION program is

automatically restarted and each reorganization task continues from where it left off.

When SYSTEM/DMRECOVERY restarts the REORGANIZATION program, it expects the

REORGANIZATION program to have either the default title REORGANIZATION/<database

name> or the title specified in the DASDL source file. In addition, it expects to locate the

description file under the usercode and pack family of the user who initiated the recover. If

the description file cannot be located, the reorganization program pauses with a NO FILE

prompt. Use the MCP FA command to provide the usercode and pack name from where

the reorganization was originally started, for example, <mix number> FA TITLE =

(ORIGINALUC) DESCRIPTION/DBNAME/<level> ON ORIGINALPK.

Reorganizing the Database

8600 0759-622 7–79

The options are to either manually restart the reorganization program from the original

usercode and pack family, or to restart the reorganization program using file equation as

described under the subsection “Starting the REORGANIZATION Program” earlier in this

section.

Reorganization audit records are not actually complete “beforeimages” and

“afterimages” of the reorganized records. The beforeimage remains in the old file. The

afterimage can be recreated by applying the reorganization move text command to the

beforeimage. Therefore, reorganization audit records contain simply an address in the old

file where the record came from, and an address in the new file where the new record

was put.

If the PREVERIFY option is specified and the reorganization abnormally terminates during

the preverification phase, the reorganization can be restarted only by rerunning the

REORGANIZATION program. This restriction is because the database is not being updated

and there are no audit records to indicate a reorganization is in progress.

Reorganizations using the OFFLINE option, although unaudited, can be restarted after a

halt/load. In some cases, the reorganization can be restarted at the structure level.

Rebuild Recoveries and Reorganizations

Rebuild recoveries are allowed

• Completely through or into the middle of a reorganization region of the Enterprise

Database Server audit

• Through multiple reorganizations

Whenever possible, avoid performing rebuild recoveries through reorganization because

the rebuild recovery process requires all audit records associated with each ONLINE

reorganization to be reprocessed, and because all the DMSUPPORT libraries and

REORGANIZATION programs must be made available.

When rebuilding a database through one or more reorganization runs using a dump tape

prior to reorganization and one or more dump tapes after reorganization, DMUTILITY

requires that the control files on all dump tapes contain the exact same structures. That is,

the reorganization must not have added or deleted any structures. The reorganization

must also not have changed the number of sections in an extended data set.

When using the REORGDB option, if the COPY BACK option is not used with the COPY

TO option, then you cannot rebuild from a time prior to the reorganization. If the COPY

BACK option is not used with the COPY TO option, then you must perform a full dump of

the entire database after the reorganization for future rebuild recoveries.

If a reorganization adds or deletes structures, or changes the number of sections in an

extended data set, the following actions can be taken to help ensure a successful rebuild

of the database:

Reorganizing the Database

7–80 8600 0759-622

• For rebuilding through an ONLINE reorganization, use only the database dump created

prior to the reorganization.

• For OFFLINE or ONLINE reorganizations, a full database dump must be performed

after the reorganization to avoid having to rebuild through the reorganization.

When rebuilding through one or more reorganizations, the REORGANIZATION program is

responsible for migrating between DMSUPPORT libraries each time the database update

level increases. Update level increases outside of the reorganization process cannot be

processed with a rebuild recovery through a reorganization.

If possible, complete one of the following actions when performing an update level

increase:

• Create a database backup after the update level increase.

• Combine the update level increase with a reorganization.

If a rebuild recovery is to recover through a reorganization region, you must copy the

control file from the dump tape before you initiate the rebuild recovery.

When you use rebuild recovery to recover through a reorganization region, do not use the

FROM MOST CURRENT option. You must also specify a recover source in the RECOVER

statement.

The required naming convention for the DMSUPPORT and REORGANIZATION program

code files and the description file are as follows. The run date has the format YYYYMMDD,

and the run time has the format HHMM.

DMSUPPORT/<database name>/<prior update level>
REORGANIZATION/<database name>/<run date>/<run time>
DESCRIPTION/<database name>/<run date>/<run time>

For permanent directory databases, the DMSUPPORT code file should be in the

permanent directory.

<datapath>/DMSUPPORT/<database name>/<prior update level>

A reorganization using the OFFLINE or REORGDB option does not audit the reorganization

of structures at the record level. Therefore, you can perform the rebuild recovery function

only after you have performed a database dump of the reorganized structures.

For a successful rebuild, you must perform a database dump before the reorganization and

perform a dump of the reorganized structures after the reorganization has completed.

Note: If a reorganization using the OFFLINE option adds a new set, adds a new data set,

or increases the number of sections in a data set, then a full database dump must be taken

after the reorganization in order to perform a successful rebuild recovery.

If the dump is not available or is not included in the input specification to DMUTILITY, then

the recovery program displays the following message:

STR # = <n> IS OFFLINE REORGANIZED; A POST REORGANIZATION DUMP
IS REQUIRED TO RECOVER THRU OFFLINE REORGANIZED STRUCTURES

Reorganizing the Database

8600 0759-622 7–81

After this message appears, you can use one of the following three commands:

• Use the AX:CONTINUE command if you want to proceed with the rebuild recovery

that recovers user updates except for structures reorganized using the OFFLINE

option. Note the following points when using this command:

- After initiating this command, perform a complete offline database dump before

using the database. Otherwise you cannot successfully complete future rebuild

recoveries.

- If you performed an update reorganization, copy the DMSUPPORT and description

code files of the database that correspond to the level of the database before the

reorganization was performed. This action enables you to run future

reorganizations and DASDL updates.

- If the reorganization adds or deletes any structures, or if the reorganization

changes the number of sections in an extended data set, this command cannot be

used.

- The rebuild recovery terminates normally when it encounters

o A stopping point requested by the user

o The first user audit record for an offline structure

o The beginning of another reorganization in the audit

• Use the AX:TERMINATE command to terminate the rebuild recovery normally and

restore access to the database. You can run the reorganization again if needed.

• Use the AX:ABORT command to terminate the rebuild recovery abnormally. You must

perform the rebuild recovery again before you can access the database.

The workload for rebuilding through a reorganization region of the audit is significant and

can normally be avoided by taking DMUTILITY dumps immediately after every

reorganization. Because of the high workload associated with this type of rebuild

operation, use it only as a last resort. For instance, perform this type of rebuild operation if

the last usable dump was taken prior to the last reorganization.

If the reorganization involved in the rebuild recovery is a garbage collection reorganization,

no special handling of the control file is needed. Simple updates, such as adding a new set

and then generating the new set by using reorganization, are considered to be garbage

collections.

However, if a file or a record format conversion is involved in the rebuild recovery, then you

must perform the following steps before initiating the rebuild recovery:

1. Copy the control file that is to be used for the rebuild recovery from the DMUTILITY

dump(s). If multiple dumps are specified, the control file must be copied from the

oldest dump specified. If the correct control file is not specified for the rebuild

recovery, it might result in the following message:

POSSIBLE REORGANIZATION BETWEEN DUMPS; STRUCTURE INVOLVED: <n>

The variable <n> is a structure number.

Note: This message might be displayed for multiple structures, depending on the

reorganization performed.

Reorganizing the Database

7–82 8600 0759-622

2. Ensure that the correct DMSUPPORT tailored software files are available.

The recovery operation identifies the required DMSUPPORT files, even if the

DMSUPPORT file contains the update level.

Table 7–1 summarizes the handling of the control file for a rebuild recovery.

Table 7–1. Control File Handling for Rebuild Recoveries

Type of Reorganization Copy Control File?

Garbage collection No

File format conversion Yes

Record format conversion Yes

Rollback Recoveries and Reorganizations

You cannot perform a rollback recovery into or through a reorganization region of the audit.

This limitation exists because new images written in the audit cannot be transformed into

the old-style images. The data files for the two types of images are not compatible. This

limitation is one reason that you should perform a full database dump prior to performing a

reorganization.

Row Recoveries and Reorganizations

You cannot perform a row recovery through a reorganization region of the audit. This

limitation exists because the beforeimages and afterimages of the records being

reorganized do not exist in the audit file. You can perform only a rebuild recovery through a

reorganization region.

Reorganization I/O Errors

During the reorganization of a data set, an I/O error can occur because insufficient space

was allocated to store all the records currently in the data set.

Examples of when this problem can occur include the following:

• When the value of the MAXRECORDS option is specified and the number of records

in the data set exceeds this value. A DASDL UPDATE compilation causes the

AREASIZE and AREAS values to be recalculated based on the value given for the

MAXRECORDS option. As a result, during the reorganization the allocated areas can

be used up before all the existing records have been reorganized.

• When a population is assigned to a variable-format data set, the number of areas the

Enterprise Database Server assigns to the data set is calculated by multiplying the

average record length by the population. If the data set contains many long records,

the areas can be filled before the population is exceeded.

Reorganizing the Database

8600 0759-622 7–83

If the OFFLINE option is being used and the current population cannot be contained in

1000 areas, the following message is displayed and the reorganization is terminated with

a FAULT IN ACR:

<data set> EXCEEDED 1000 AREAS. INCREASE AREASIZE

As a result of this error, the following steps must be taken:

1. Restore the database to a point before the reorganization.

2. Correct DASDL to handle the population.

3. Run the REORGANIZATION program created using the corrected description file.

If the OFFLINE option is not used and the current population cannot be contained in 1000

areas, a reorganization I/O error message category 10 (limit error), subcategory 1 (an

attempt to store too many records in a structure), is displayed for the structure being

generated. A message appears stating that the reorganization can be restarted and the file

is to be expanded during recovery. Recovery expands the AREASIZE value of the file by 10

percent and then initiates reorganization.

If the 10 percent expansion is not sufficient to handle the current population, the

reorganization continues to fail. If this type of error occurs and the restarted reorganization

continues to fail, the database must be restored to a point before the reorganization. Then

DASDL must be corrected to handle the population, and the corrected REORGANIZATION

program run. If this type of error occurs, and the reorganization is restarted and completes

satisfactorily, DASDL must still be updated. This DASDL update requires another

reorganization to be run.

When doing a DASDL UPDATE compilation, ensure that the values assigned to the

AREAS, AREASIZE, and MAXRECORDS options take into consideration the current

population of the data set and its expected growth rate.

Reorganization Data Errors

The following types of data errors can occur during a reorganization:

• A data set verify store error

Normally, this error occurs because an item has been made required by the DASDL

UPDATE compilation, and the item is found to be null in some of the data set records.

The item might be null because the user-specified verify condition has changed or

because an item has been designated as a key for a new index set.

• A duplicate error

Duplicates are found in the data set spanned by the index set, and either of the

following is also true:

- A new index set, with duplicates not allowed, has been added.

- The key of an existing set, with duplicates not allowed, has been changed.

Data set verify store errors can be completely avoided by specifying PREVERIFY in the

BUILDREORG specifications. If any verify store errors are encountered during the

PREVERIFY run, the reorganization cannot proceed.

Reorganizing the Database

7–84 8600 0759-622

Duplicate errors cannot be detected in a PREVERIFY run.

If either type of error is encountered during a reorganization, the reorganization completes,

but the affected structure is marked as Disabled by Reorg and is unavailable. Any user

program trying to access the structure receives a VERSION error 3 (reference to a

structure that has not yet been made available by the REORGANIZATION program). To

make the structure available again, you must first initiate a reorganization that reverses the

error condition. For data set verify store errors, you must change the verify condition or

delete the index set whose keys were found to be null. For duplicate errors, correct the

records in the data set containing the offending duplicate key items by either delete the

record or modify the key items so that no duplicates exist.

You must then perform a garbage collect reorganization to generate the index structure

from the corrected data set. Alternatively, you can correct the duplicate errors by deleting

the disabled index set with a DASDL update, updating the key items or changing the index

set appropriately, and performing another DASDL update and reorganization to add the

index set back again.

Reorganization data errors are written to the printer in the DMUTILITY print record format.

In the case of a PREVERIFY error report, up to 100 records in error per structure are

written before the PREVERIFY task terminates.

SORT Errors During Reorganization

When using SORT during the generation of sets or data sets, you can encounter SORT

errors. For SORT ERROR #24 (the number of words specified for memory exceeds the

memory available on the system), if the compiler control option RESTARTSORT is set for

the BUILDREORG task, the following messages are displayed on generate tasks:

*** SORT ERROR û SPECIFIED CORESIZE <value> TOO LARGE ***.
ENTER <MIX #> AX <NEW ALLOWEDCORE> TO RESTART SORT OR

<MIX #> AX QUIT TO QUIT.

If a new ALLOWEDCORE value is entered, the sort operation is restarted using the new

ALLOWEDCORE value. If the RESTARTSORT option is reset or if other SORT errors occur,

the following applies:

Set generation results in SORT error:

When a set generation fails, the set is marked ″Disabled by Reorg,″ and the reorganization

completes. Any user program that attempts to access the disabled structure receives

DMVERSIONERROR #3. To re-enable this structure, REORGANIZATION must generate

the set successfully. To proceed with the set generation, wait for the reorganization

program to complete all other structures that did not encounter the SORT ERROR, then

compile and initiate a reorganization for the disabled set.

Data Set generation results in SORT error:

When a data set generation fails, reorganization terminates abnormally. To proceed with

the reorganization:

Reorganizing the Database

8600 0759-622 7–85

• If the failure was due to a lack of available memory (SORT ERROR #24) , re-run the

reorganization when the necessary memory is available.

• If the failure was a result of sort errors other than SORT ERROR #24, correct the

errors that caused the failure by recompiling REORGANIZATION (for example,

lowering the ALLOWEDCORE or changing the BUILDREORG SORT) and re-running

the Reorganization.

Note: Generally, you might want to set the RESTARTSORT option to aid in correcting

SORT ERROR #24, before compiling the REORGANIZATION program.

OFFLINE FIXUP EXCHANGE Errors During Reorganization

During an OFFLINE reorganization, an OFFLINE FIXUP EXCHANGE error might occur if a

file is accessed while it is being fixed up. Using the FILEDATA system software utility or a

PD command to access file header information could cause this error. A pack squash or

library maintenance copy might cause this error as well.

If an OFFLINE FIXUP EXCHANGE error occurs, an error message displays the name of the

structure and the fixed up block that could not be exchanged. The FIXUP task waits on the

ACCEPT (AX) command. Wait until the file is no longer being accessed and enter <mix #>

AX OK. Once you enter this information, the reorganization continues as normal.

If you want to terminate the reorganization, enter <mix #> AX DS. The reorganization is

terminated with FAULT IN ACR @20635600. If the reorganization is terminated at this

point, the reorganization can be restarted.

Displaying Reorganization Status

A Visible DBS command is available to display the progress of a reorganization. The

command displays a 1-line message for each reorganization task (generate or fixup task)

associated with the reorganization. In the case of a generate task, the number of records

reorganized is displayed and, where possible, the percent of the total records to be

reorganized is displayed. (The total number of records to be reorganized is not known for

variable format or compact data sets.) For a fixup task, the number of blocks fixed up and a

percent of the total blocks to be fixed up is displayed.

The status appears only for the tasks that are created by BUILDREORG and shown on the

BUILDREORG report. In some cases, separate generate and fixup tasks are created for a

set. This separate fixup task is created while the reorganization is running, and when the

Accessroutines determines a separate fixup task is necessary. An example of this

occurrence is when the set is generated before the data set. This additional fixup task

does not appear on the BUILDREORG report. The progress of fixup tasks added at run

time is reported while the tasks are running when the Visible DBS command SM STATUS

REORG is entered. The Visible DBS command SM STATUS REORG does not report the

completed generate task. However, once the added fixup task completes, the SM STATUS

REORG command shows the completed generate task, and no longer shows anything for

the fixup task.

The syntax of the Visible DBS command is as follows:

Reorganizing the Database

7–86 8600 0759-622

<mix number> SM STATUS REORG

The <mix number> is the job number of the database stack.

An example of the displayed and printed output is included here:

PROCESS STATUS

GEN/D1/3 COMPLETED
FIX/S1/4 50 BLOCKS FIXED UP (25 %)
GEN/D2/5 20000 RECORDS REORGED (10 %)
FIX/S2/6 NOT STARTED YET

Enhancing Reorganization Performance

Several parameters can be specified to enhance reorganization performance. Some of

these are DASDL specifications, and some are BUILDREORG specifications. In the case

of DASDL specifications, it might be that parameters should be changed for the

reorganization, but returned to their original value after the reorganization is done.

Although specific values for parameters cannot be given, some general guidelines are

given in the following paragraphs.

DASDL ALLOWEDCORE

Because the REORGANIZATION program uses the Accessroutines procedures to perform

reorganizations, the reorganization is affected by the database ALLOWEDCORE value. A

large ALLOWEDCORE value generally improves performance for a reorganization, as it

would for typical day-to-day database activity. This would be especially true for generating

index sets in random key order. More coarse tables could be made resident with a large

ALLOWEDCORE value.

Allowing multiple reorganization tasks to run simultaneously (that is, setting the

TASKLIMIT option to greater than 1) increases the amount of memory needed for buffers.

To avoid excessive overlays and improve performance, make sure the database

ALLOWEDCORE value is sufficient to handle that increased database usage. In extreme

cases, if the ALLOWEDCORE value is insufficient, tasks terminate with a ’SEQUENCE

ERROR’ or ’REORG IO ERROR ON <structure>, CATEGORY = 9, SUBCATEGORY = 256’

error message. If one of these error messages occurs, the database must be reloaded

with the dump that was taken before the start of the reorganization, the database

ALLOWEDCORE value must be increased, and the reorganization must be restarted.

AUDIT BLOCKSIZE

As a general rule, a large AUDIT BLOCKSIZE value is desirable when a reorganization is

running, or during typical daytoday database activity. Since audit I/O is serial, and writes

are variable length, performance is never degraded by long I/O transfer time.

Reorganizing the Database

8600 0759-622 7–87

AREASIZE for Audits and Database Files

Each time an area boundary is crossed in the audit, the audit is closed and reopened. A

larger AREASIZE value for the audit file decreases this overhead.

During a reorganization, the AREASIZE value for data sets is a consideration. For most

data set generates, areas of the old file are purged and the new file grows. To purge the

old areas, the old file must be closed and reopened. Again, a larger AREASIZE value

reduces this overhead.

The disadvantage of large area sizes is that larger requests for pack space are required and

space might be wasted for small files.

REBLOCKFACTOR

The REORGANIZATION program makes use of normal Accessroutines buffer

management routines. Therefore, for serial accessing of standard and direct data sets,

reblocking can be enabled. In the case of a data set generate, the old file is read using the

REORGANIZATION program read routines, but the new file is created using

Accessroutines procedures. Thus, reblocking can be enabled for the new file. In the case

of an index set generate using the data set, the FIND NEXT command is performed on the

data set to extract the keys. Again, reblocking can be enabled.

Because reblocking is dynamically activated and deactivated, depending on whether

access is serial, there would rarely be a case in which reblocking would be a

disadvantage. It is recommended that this feature always be enabled. If the feature is not

enabled, then consider turning on or increasing reblocking during a reorganization.

When using an OFFLINE reorganization for a sectioned direct data set, reorganization does

not automatically use larger data blocks when reading and writing to disk. It is

recommended that you use reblocking for an OFFLINE reorganization of sectioned direct

data sets.

TASKLIMIT

In general, specifying the value of TASKLIMIT as a number greater than 1 increases the

speed at which a reorganization runs. The optimum value is dependent on system

resources available at the time the reorganization is run.

CENTRAL DATASET SEQUENCE

Setting the CENTRAL DATASET SEQUENCE option enables you to

• Control the order of structures to be reorganized.

• Specify groups of structures to be processed simultaneously.

Reorganizing the Database

7–88 8600 0759-622

OFFLINE

The OFFLINE option provides the users who are interested in performance, rather than

availability, the means to perform a restartable reorganization that produces a minimal

amount of audits, while giving generally good performance. If the OFFLINE option

reorganizes structures, the structures are not available until the entire reorganization is

complete. The OFFLINE option generates sets after the data set is generated. If sets are

generated from the data set, the default used is the SORT option.

If the dataset being reorganized is sectioned, the reorganization task can take much longer

than if it is not sectioned. The records are evenly distributed throughout the sections. At

restart points, the buffers for all the sections are flushed. The time needed to create these

restart points becomes significant as the number of sections and the number of areas

increase. To lessen the impact of the increased reorganization time, it might be desirable

to use the USEREORGDB option, which allows the database to remain available

throughout the reorganization.

Set Generation

Generating a set from itself is generally faster than generating the set from the data set if

the task has a sufficient ALLOWEDCORE value. A sufficient ALLOWEDCORE value

means that at least one word for each record is in the corresponding data set. However,

when the set is new, corrupted, or its key changed, the set must be generated from the

data set. If a set is generated from the data set and a large number of records is involved,

use the SORT option to decrease the generation time.

When multiple sets from the same data set are generated and you are using the SORT

option, it is best to use the SORT option for all the sets from that data set. Using the SORT

option is best because the ALLOWEDCORE value specified for the data set is used for

both FIXUP and SORT options. Generally you need a large ALLOWEDCORE value to

ensure a fast fixup. However, a large ALLOWEDCORE value when using the SORT option

can cause SORT ERROR 24 if there is insufficient memory available on the system at run

time.

Disk Storage Requirements

The REORGANIZATION program always creates generated structures on their final

medium, which is the pack specified in the latest DASDL update.

Note: If you are reorganizing a permanent directory database, the database administrator

must make space available for the work files in the permanent directory in which the

database resides.

If you are reorganizing data sets, or performing garbage collection on index sets, the

REORGANIZATION program does the following:

• Renames the old file

• Creates an empty new file

• Moves records from the old file to the new file

Reorganizing the Database

8600 0759-622 7–89

For more detailed information on the naming conventions used by the REORGANIZATION

program for old files, new files, and fixup files, refer to “Using the INTERNAL FILES

Phrase” in this section.

For data sets, rows of the old file are purged as the new file grows. Therefore, the old file

shrinks as the new file grows. However, data sets that have an ORDER BY clause, or index

sets in the process of garbage collection, cause the old file (or portions of the old file) to be

purged only after the new file is built. Because of this, data sets with ORDER BY clauses

and index sets in the process of garbage collection require at least enough pack space for

two copies of the file. If there is not enough space on the final medium for both copies, the

old file can first be copied to a temporary pack. The old file is then purged on the temporary

pack after the new file is created.

For OFFLINE option generation tasks that are restarted at the structure level, adequate

space is required to accommodate the old file, the new file, and the fixup file.

During a reorganization, be careful when using system software utilities—such as PD and

FILEDATA—that access file header information. If these utilities access a data file at the

same time as the file is being reorganized, old rows might not be purged as they are

reorganized. Instead, the old rows are purged at the end of the reorganization and the total

space requirement of the reorganization process is greater than it need be.

Caution

Use of the SQUASH or Reserve Disk (RES) utility during a reorganization is not

recommended. This utility could cause the reorganization to experience either

or both of the following:

• Require operator intervention.

• Terminate abnormally.

If the reorganization is abnormally terminated, it can be restarted after the files

are no longer in use.

Use the structure COPY option to make a copy of the old file on a temporary pack.

For ONLINE reorganizations, enough disk space is needed for the new file, one row of the

old file, and the fixup file.

Sometimes, however, you need more disk space. Some of these situations are as follows:

• If you specified data sets with an ORDER BY clause in BUILDREORG.

No rows of the old file are purged until the generate process has completed. In this

case, disk requirements are the size of the combination of the following:

- The entire old file

- The entire new file

Reorganizing the Database

7–90 8600 0759-622

- The fixup file

• If you specified compact, ordered, or unordered data sets.

No rows of compact, ordered, or unordered data sets are purged until the generate

process is complete. You need additional disk space for two copies (old and new) of

the rows in these data sets.

• If you specified random data sets.

When the new file of a random data set is initialized, the primary scramble area is

always allocated. In this case, disk requirements have to accommodate all the files

that exist at the start of the generation. Therefore, disk requirements are the size of

the combination of the following:

- The entire old file

- The primary scramble area of the new file

- The fixup file

• If inquiry or update user programs access direct data sets during reorganization.

When a user program accesses a direct data set record during reorganization, all

records prior to that record are allocated in the new file. Therefore, if a user program

accesses the last record in a direct data set, the entire new file is immediately

allocated.

The size of fixup files depend on the file type. Compact and variable format data sets

require two words per record in the old file. All other data set types require one word per

record in the old file.

If you do not have enough disk space on the final medium to handle the previous

situations, you should use the structure COPY option.

Limitations of Database Reorganization

Certain types of database reorganizations are not permitted. When the BUILDREORG

utility detects these types of reorganization, it terminates with the fatal error

REORGANIZATION LIMITATION after printing its report.

The limitations of database reorganization are described in the following list. Where

possible, a description is given of how the limitation might be overcome by changing the

specification given to SYSTEM/BUILDREORG.

• Generation of an index sequential structure from an index random or ordered list

structure where the index sequential had DUPLICATES allowed, FIRST or LAST not

specified, is not permitted. Generation of the index sequential structure from itself is a

possible alternative that can be taken to avoid this limitation. If the index sequential

structure is a disjoint set or automatic subset, generation of the index structure from

the data set is another alternative that can be taken.

• When the data set is generated, generation of an unordered list from another index

structure is not permitted. In addition, fixup of an unordered list does not occur if the

data set is ordered by a set or prime set that is not the generated unordered list, or if

Reorganizing the Database

8600 0759-622 7–91

the data set is of type random or unordered. If the unordered list is a disjoint set or

automatic subset, you can try either of the following to avoid this limitation:

- Generate the unordered list from the generated data set.

- Use the unordered list to order the data set.

• When the data set is generated, generation of an ordered list from another index

structure where the ordered list had DUPLICATES allowed, but FIRST or LAST not

specified, is not permitted if the data set is ordered by a set or prime set that is not the

generated ordered list, or if the data set is of type RANDOM or UNORDERED. You can

try either of the following to avoid this limitation:

- Generate the ordered list from the generated data set.

- Use the ordered list to order the data set.

• When the data set is generated, generation of an embedded index sequential

structure where the index sequential structure has DUPLICATES allowed, but FIRST

or LAST not specified, is not permitted if the index sequential structure is not used to

order the data set. Using the index sequential structure to order the generated data

set is a possible alternative that can be taken to avoid this limitation.

• When the data set is generated so that the physical order of records change, then

generation of an embedded index structure is not permitted in the following two

situations:

- The index is an unordered list or an index sequential or ordered list structure

allowing DUPLICATES with FIRST and LAST not specified.

- The index is not used to order the data set. (The physical order of records change

in a generated data set when it is a random or unordered data set or when it is

ordered by an index.)

• When using an OFFLINE reorganization for a sectioned direct data set, reorganization

does not automatically use larger data blocks when reading and writing to disk.

Specifying the REBLOCKFACTOR option can enhance reorganization performance.

• When using a REORGDB reorganization to generate a data set—which is an object

data set of a link item—both the data set and the data set containing the link item

need to be generated.

• When using a REORGDB reorganization to generate a data set—which is the owner of

a link item—both the owning data set and the data set that is the objective of the link

item need to be explicitly generated.

• When the compression of LOB items is changed between schemas, the following

restrictions apply:

- Only the OFFLINE option of the Reorganization is allowed.

- A database dump, containing at a minimum all tank structures, is performed prior

to running the Reorganization. If you need to restart the Reorganization, reload the

database dump, and then restart the Reorganization.

Reorganizing the Database

7–92 8600 0759-622

Section 8
Recovering the Database

Enterprise Database Server software generally recovers itself automatically after a system

crash. However, there are times when the database requires manual recovery. The

DMUTILITY program, along with the DMRECOVERY, DMDATARECOVERY, and

RECONSTRUCT programs, provides the following capabilities:

• Partial database recovery, to

- Recover one or more damaged rows of database files.

- Recover one or more damaged structures.

- Recover write errors using the Quickfix process. This process recovers locked-out

rows using only the audit trail; the rows need not be loaded from a backup dump.

• Whole database recovery, to

- Rebuild the entire database, including recovery from data corruption.

- Roll back the database to a point in time.

- Recover unaudited databases using the COPY statement.

Visible Recovery commands enable you to tune and monitor whole database recovery

operations, display recovery status information, and print recovery statistics. For more

information on the Visible Recovery commands, refer to “Visible Recovery Commands”

later in this section.

It is important that you are thoroughly familiar with all of the information contained in this

guide, particularly “Database Recovery” in Section 2, Control File.

Note: The tasks identified in this section can be initiated through Database Operations

Center.

RECOVER Statement (DMUTILITY)

The RECOVER statement is used to initiate all manual forms of recovery for audited

databases; that is, all forms of recovery with the exception of halt/load and recovery from

abnormal termination, which are initiated automatically. Manual forms of recovery fall into

two classes:

• Partial database recovery

• Whole database recovery

8600 0759-622 8–1

DMSII does not support recovering a database using audit files and a dump created under

a previous DMSII release version.

The syntax for this statement is illustrated and explained on the following pages.

The explanation is divided into two parts. The first part describes partial database

recovery—that is, RECOVER ROWS and its related constructs. The second part describes

whole database recovery together with its constructs.

Syntax

──┬──────────────────┬─ RECOVER ── (─┬─<recover rows>─────┬─) ───────►
└─<recover option>─┘ └─<recover whole db>─┘

┌◄────────────────────── ; ──────────────────────┐
►─┴─┬────────────────┬─┬─────────────────────────┬─┴───────────────────┤

└─<recover spec>─┘ └─ FROM <recover source> ─┘

<recover option>

┌◄────────────────── , ─────────────────┐
── OPTIONS ── (─┴─┬─/1\─ NOZIP ───────────────────────┬─┴─) ─────────┤

├─/1\─ FLUSHDB = <integer> ─┬───────┤
│ └─ MIN ─┤
├─/1\─ WORKERS = <integer> ─────────┤
├─/1\─ VERIFY ──────────────────────┤
├─/1\─ VERIFYTASKS = <integer> ─────┤
├─/1\─ QDCVERIFY ───────────────────┤
└─/1\─ QDCWORKERS = <integer> ──────┘

<recover rows>

── ROWS ─┬────────────┬─┬─ USING AUDIT ONLY, ──<limits>────┬───────────┤
└─ IN PLACE ─┘ └─ USING BACKUP ─┬─────────────────┤

└─<filter option>─┘

<limits>

── LIMIT ── = ─┬─<integer>─┬─ CONTROL ─┬─ POINTS ──┬───────────────────┤
│ └─ SYNC ────┘ │
├─ THRU AUDIT <integer> ────────────┤
├─<time>────────────────────────────┤
└─ * - ─┬─ <integer> : <min> ─────┤

└─ <integer> AUDIT FILES ─┘

<filter option>

── WITH FILTERING ─┬───────────────────────────────────────┬───────────┤
│ ┌◄──────────── , ───────────┐ │
└─ (─┴─┬─ WORKERS = <integer> ─┬─┴─) ─┘

└─ EXTRACT TO <medium> ─┘

<medium>

──┬─ TAPE ──────────────────┬──┤
├─ DISK ──────────────────┤
├─ PACK ──────────────────┤
└─ FAMILYNAME = <family> ─┘

Recovering the Database

8–2 8600 0759-622

<recover whole db>

──┬────────┬─ ROLLBACK ─┬─┬─ THRU AUDIT <integer> ───┬─────────────────┤
├─ SHOW ─┘ │ └─ TO ─┬─ <boj/eoj point> ─┤
├─ REBUILD ───────────┤ └─ <time point> ────┘
└─ REPLICATE ─────────┘

<boj/eoj point>

──┬─ BOJ ─┬─ OF <job no> / <task no> ─┬─────────────┬──────────────────┤
└─ EOJ ─┘ └─ ON <time> ─┘

<time point>

──┬─ GEQ ─┬─<time>───┤
└─ LEQ ─┘

<time>

──<month>──<day>─┬────────────┬─ AT <hrs> : <min> ─────────────────────►
└─ , <year> ─┘

►─┬──────────────────────────────────┬─────────────────────────────────┤
└─ : <sec> ─┬──────────────────────┤

└─ . <fractional sec> ─┘

<month>

──┬─ JANUARY ───┬──┤
├─ FEBRUARY ──┤
├─ MARCH ─────┤
├─ APRIL ─────┤
├─ MAY ───────┤
├─ JUNE ──────┤
├─ JULY ──────┤
├─ AUGUST ────┤
├─ SEPTEMBER ─┤
├─ OCTOBER ───┤
├─ NOVEMBER ──┤
└─ DECEMBER ──┘

<recover spec>

┌◄───────────── , ─────────────┐
──┴─┬─<recover list>───────────┬─┴─────────────────────────────────────┤

└─<file name>── (RESTORE) ─┘

<recover list>

┌◄───────────────────────────────── , ────────────────────────────────┐
──┴─┬─<file name>────────┬─┬────────────────┬─┬───────────────────────┬─┴──┤

└─ (<recover list>) ─┘ └─<row selector>─┘ └─<recover destination>─┘

<row selector>

┌◄──────────────────┬── AND ─┬───────────────────┐
│ └◄─ & ───┘ │

── (─┴─┬──┬─┴─) ───────────┤
├─/1\─ FAMILYINDEX ── = ──<range>────────────┤
├─/1\─ ROW ── = ──<range>────────────────────┤
├─/1\─ PACKNAME ── = ──<family name>─────────┤
├─/1\─ SECTION ── = ──<range>────────────────┤

Recovering the Database

8600 0759-622 8–3

│ ┌◄───────── , ────────┐ │
└─/1\─ ROWLOCK ── = ─┴─┬─/1\─ LOCKEDROW ─┬─┴─┘

└─/1\─ READERROR ─┘

<recover destination>

──┬─<recover as>─┬──────────────┬──────────────────────────────────────┤
│ └─<recover to>─┤
├─<recover onto>──────────────┤
└─<recover to>────────────────┘

<recover as>

── AS <file name> ───┤

<recover onto>

── ONTO <file name> ───┤

<recover to>

── TO ── (── FAMILYINDEX = ─┬─<integer>─┬─) ─────────────────────────┤
└─ RETAIN ──┘

<recover source>

──┬─ MOST CURRENT ─────────────────────────┬───────────────────────────┤
├─ MOST CURRENT FULL ────────────────────┤
├─ MOST CURRENT ACCUM ───────────────────┤
│ ┌◄──────────────── , ────────────────┐ │
├─┴─┬─<tape specification>───────────┬─┴─┤
│ ├─<disk specification>───────────┤ │
│ └─<multidump tape specification>─┘ │
├─ QUIESCE DB ───────────────────────────┤
└─ QDC ── (──<QDC title clause>──) ────┘

<tape specification>

──<tape name>─┬───┬──┤
│ ┌◄─────────────────── , ──────────────────┐ │
└─ (─┴─┬─/1\─ VERSION = <integer> ───────────┬─┴─) ─┘

├─/1\─ CYCLE = <integer> ─────────────┤
├─/1\─ SERIALNO = ─┬─<integer>────────┤
│ └─<string6>────────┤
└─/1\─ DENSITY = ──<density mnemonic>─┘

<disk specification>

──<disk dump file name>── ON ──<family name>───────────────────────────┤

<multidump tape specification>

──<dump name>── TAPE ── = ──<tape name>──────────────────────────────►
►─┬──┬───────────┤
│ ┌◄──────────────────── , ────────────────────┐ │
└─ (─┴─┬─/1\─ VERSION ── = 1 ───────────────────┬─┴─) ─┘

├─/1\─ CYCLE ── = 1 ─────────────────────┤
├─/1\─ SERIALNO ── = ─┬─<integer>────────┤
│ └─<string6>────────┤
└─/1\─ DENSITY ── = ──<density mnemonic>─┘

Recovering the Database

8–4 8600 0759-622

<QDC title clause>

── TITLE ─┬─ * ──────────┬─<database name>─ ON <familyname>─────────┤
└─ <usercode>──┘

<range>

┌◄───────────── , ────────────────────────────────┐
──┴─<unsigned integer>─┬─────────────────────────┬──┴──────────────────┤

└─ - -<unsigned integer> ─┘

Explanation

The explanation for the syntax diagrams is divided into three parts, as follows:

• The first part contains a table describing the simpler elements of the syntax diagrams.

• The second part describes partial database recovery, RECOVER ROWS, and its related

constructs.

• The third part describes whole database recovery and its constructs.

The following information explains the simpler elements of the syntax diagrams.

Option Explanation

<job no> Mix number for the job. Unsigned integer between 100 and 65535. If the

MCP is enabled to use the 5-digit mix and job numbers, a compatible

version of DMUTILITY should be run that can handle the larger numbers.

<task no> Mix number for the task. Unsigned integer between 100 and 65535. If

the MCP is enabled to use the 5-digit mix and job numbers, a compatible

version of DMUTILITY should be run that can handle the larger numbers.

<day> Day of the month. Unsigned integer of not more than two digits.

<year> Year. Unsigned integer of either two or four digits that identify the year.

When specified in four digits, the year must be between 1970 and 2035.

When specified in two digits with a value of 00 to 35, the year is treated

as 20xx. When specified in two digits with a value of 70 to 99, the year is

treated as 19xx. Two-digit years between 35 and 70 are invalid.

<hrs> Hours. Unsigned integer of not more than two digits.

<min> Minutes. Unsigned integer of not more than two digits.

<sec> Seconds. Unsigned integer of not more than two digits. The default is 0.

<fractional sec> Fractional seconds. Unsigned integer of not more than three digits. The

default is 0.

Recovering the Database

8600 0759-622 8–5

Partial Database Recovery

RECOVER(<recover rows>) is used to recover damaged rows of database files. The

database can be in use during row recovery, except when a fatal error has occurred. In this

case, the database must be brought down first; otherwise, the recovery fails when the

database is opened. DMUTILITY initiates row recovery; RECONSTRUCT completes the

process. RECONSTRUCT processes an external coroutine called DMDATARECOVERY,

which reads the audit trail and applies the audit images. RECONSTRUCT is automatically

initiated by DMUTILITY unless NOZIP is specified in the RECOVER option or if DMUTILITY

cannot find all the specified rows from the dump tapes. If NOZIP is specified, the entire

row recovery can be controlled by a single Work Flow Language (WFL) job.

The following terms are all used to refer to partial database recovery and can be treated as

synonyms: RECOVER ROWS, row recovery, row reconstruction, reconstruct,

reconstruction.

For all forms of row recovery, except RESTORE, database files must be resident before

DMUTILITY can load database files from backup dumps. The rows to be recovered are

selected from the files as they exist at the time DMUTILITY is run for the row recovery. It

is recommended that, in the case of multiple pack family structures, duplicate directories

exist on one of the continuation packs. You must use the RESTORE option to recover any

structures that have been initialized since the dump was performed.

If the row recovery is from a dump ordered by family index (that is, if BY FAMILYINDEX

was specified at dump time), some extra tape processing might occur.

For tape dumps, the extra processing appears as numerous tape rewinds or reel switches.

Extra processing occurs only when the dump tape specified in the <recover source>

construct does not reflect the current physical placement of the rows on the pack family

indexes. The situation can arise if, sometime after the family index dump is taken, a COPY

or RECOVER ROWS is performed without retaining the family index. (Refer to the

<recover to> explanation in this section for more information).

You can recover all, some, or parts of the database files. To recover all of the files, use an

equal sign (=) in the recover list syntax. You cannot perform a row recovery through a

reorganization region. You must use REBUILD recovery to recover through a

reorganization region.

Because rewinding a tape increases the chance of a bad tape or a tape drive causing parity

errors, follow one of these steps to avoid these situations:

• Copy or reconstruct using a FAMILYINDEX = RETAIN statement.

• Dump each family index to a different tape or tapes as shown in the following

examples:

- Single dump tape example:

DUMP = (FAMILYINDEX = 1) TO T1;
= (FAMILYINDEX = 2) TO T2;
= (FAMILYINDEX = 3) TO T3

- Multidump tape example:

Recovering the Database

8–6 8600 0759-622

RUN SYSTEM/DMUTILITY("DB = ANOTHERDB DUMP = (FAMILYINDEX = 1)
TO ANOTHERDB063094X1 TAPE = T1")

RUN SYSTEM/DMUTILITY("DB = ANOTHERDB APPEND = (FAMILYINDEX = 2)
TO ANOTHERDB063094X2 TAPE = T1")

RUN SYSTEM/DMUTILITY("DB = ANOTHERDB APPEND = (FAMILYINDEX = 3)
TO ANOTHERDB063094X3 TAPE = T1")

Note: If any of these dumps were the first written to that particular multidump tape,

the command would have been DUMP rather than APPEND.

• If FAMILYINDEX = RETAIN is not used, take a dump immediately after the COPY or

reconstruction is performed. Use only the newest dump.

• Rebuild the entire database.

If recovery fails to reconstruct some rows, a report is generated to indicate the rows that

failed. To reconstruct these rows, you must initiate a new task to process the partial data

recovery.

In most cases, the following statements are valid:

• Partial database recovery can be run while the database is online.

• Halt/load recovery runs before partial database recovery if the recovery is started after

a halt/load.

However, if the halt/load recovery might reapply transactions or back out long

transactions, the partial database recovery is run before the halt/load recovery. The

database is locked until both recovery processes are complete. This situation occurs if

either or both of the following DASDL options are set:

- REAPPLYCOMPLETED

- SYNCWAIT

In a Remote Database Backup system, if your RECOVER statement includes the NOZIP

option, use the following syntax for the reconstruct operation. The local pack name is the

location of the control file for the database that you want to reconstruct.

RUN RECONSTRUCT/<database name>; DATABASE DB(TITLE = <database name>
ON <local pack name>)

For example, when the NOZIP recovery option is specified, use the following statement

to recover the database PAYDB located on the MYPACK pack on the secondary host:

RUN RECONSTRUCT/PAYDB;DATABASE DB(TITLE = PAYDB ON MYPACK)

In contrast, if the NOZIP recovery option is not specified, running recovery through

DMUTILITY automatically initiates the RECONSTRUCT program. And the reconstruct

operation automatically uses the structures available on the local host.

For easier access of information, the explanation of syntax for database recovery is divided

into the following three subjects:

• Designating how to recover

• Designating what to recover and where

• Designating a backup dump

Recovering the Database

8600 0759-622 8–7

Information on recovering partition files is also included in the table that follows.

Designating How to Recover

The following options are available for recovering a database.

<recover option>

This option permits control of various aspects of the recovery process. By default,

DMUTILITY automatically initiates DMRECOVERY or RECONSTRUCT to perform the

actual recovery of the files. The only role played by DMUTILITY in the process is to load

any necessary rows or files, pass the parameters to the recovery program, and, if desired,

initiate that program.

To control the entire recovery process, specify OPTIONS(NOZIP) and add either one of the

following statements to the job deck that runs DMUTILITY:

RUN SYSTEM/DMRECOVERY("<db statement>")
RUN SYSTEM/DMRECOVERY("<db statement>");
DATAPATH = *DIR/TEST ON TESTPACK;

RUN RECONSTRUCT/<database name>
RUN <path name>/RECONSTRUCT/<database name>;
DATAPATH = *DIR/TEST ON TESTPACK;

The first set of run statements are for REBUILD or ROLLBACK. The second set are for

RECOVER ROWS.

The recovery code file name is either the name specified in the Data and Structure

Definition Language (DASDL) or the default SYSTEM/DMRECOVERY. Thus, the recovery

programs do not run unseen, and all of the printer output for a single recovery operation is

collected automatically with a single job summary.

You can specify the following options for recovery:

• WORKERS

This option controls the number of tapes that are processed in parallel for those forms

of recovery requiring tape input. If the WORKERS option is not specified, each tape is

processed serially.

Do not use the WORKERS option with either disk dumps or multidump tapes. If you

do, a warning occurs.

• FLUSHDB

This option helps determine when DMRECOVERY or DMDATARECOVERY needs to

take restart points. The default value for the FLUSHDB option is 20 minutes.

The elapsed time designated by the FLUSHDB option does not in itself cause a restart

point. Instead, restart points are taken after specific tasks are completed or are

determined by a combination of the designated control records in the audit trail and

the time specified by the FLUSHDB option.

In the following scenario, restart points are taken after 2, 7, and 14 minutes:

Recovering the Database

8–8 8600 0759-622

- The FLUSHDB option is set to 5 minutes.

- Control records that could trigger a restart point appear in the audit trail after 1, 4,

6, 7, 11, and 14 minutes.

- An action that requires a restart point occurs after 2 minutes.

• BYCYCLE

When reloading the database, DMUTILITY processes one READVOLUME task for

each physical task for each physical tape required. The READVOLUME task is

processed in the following order if DMUTILITY has access to all the cycles and

versions from which the dump is created: (CYCLE 1, VERSION 1), (CYCLE 1,

VERSION 2), . . . (CYCLE 1, VERSION n), (CYCLE 2, VERSION 1), (CYCLE 2, VERSION

2), . . . (CYCLE 2, VERSION m), . . . (CYCLE x, VERSION y). Each READVOLUME task

reads its own tape and usually the beginning of the next tape, since the last row

normally splits across two tapes.

If you did not include a cycle and version specification in the syntax, DMUTILITY reads

the tape directory from the first tape. This tape has information about the number of

cycles only, not the number of versions for each cycle. In this case, DMUTILITY

processes one READVOLUME task for each cycle because the directory shows that

only one version exists for each cycle.

If you include a cycle and version number specification in the syntax, DMUTILITY

reads the tape directory from that tape, which probably has more information about all

the cycles and the actual number of versions for each cycle. In this case, one

READVOLUME task is processed for each version in the order previously described.

This process is designed to locate the desired rows as soon as possible. However, it

can appear that the same tape has unnecessarily been requested multiple times by

different READVOLUME tasks if all the rows are being reloaded.

When specified, the BYCYCLE option forces DMUTILITY to process one

READVOLUME task for each cycle instead of for each version even if DMUTILITY

detects multiple versions for some cycles. This action is most efficient when the

entire database is being reloaded, since all versions have to be read. One

READVOLUME task per cycle means an independent task for each cycle so that tapes

do not need to be requested multiple times by different READVOLUME tasks.

When DMUTILITY is reconstructing rows, the BYCYCLE option can require extra

searching time for the desired rows that do not reside on the first version of the

required cycle.

Note: Because CYCLE is always 1 for multidump tapes, tape processing becomes

single threaded when DMUTILITY is loading from a multidump tape.

• VERIFY

This option controls preverification when QUIESCE DB is designated. The verification

detects CHECKSUM and ADDRESSCHECK errors of the selected data before the

recovery starts.

• VERIFYTASKS

This option can be used only when QUIESCE DB is designated as a recovery source

and indicates the number of tasks allowed to perform a VERIFY process in parallel.

Recovering the Database

8600 0759-622 8–9

The maximum value of VERIFYTASKS is 50. If the VERIFYTASKS option is not

specified, the value 1 is assumed. The VERIFY process cannot be restarted.

• QDCVERIFY

This option controls verification during the recovery when QDC (<QDC title clause>)

is designated in the <recover source> construct. This verification detects CHECKSUM

and ADDRESSCHECK errors of the selected data.

• QDCWORKERS

This option controls the number of workers to be processed in parallel during a

recovery that had QDC (<QDC title clause>) designated in the <recover source>

construct. From 1 to 50 workers can be specified. If the QDCWORKERS option is not

specified, the value 1 is assumed.

IN PLACE

You can specify this option for all forms of row recovery. If specified, the audit images are

applied to the database files directly. This requires that the rows be locked out by

DMUTILITY if they are not already locked out.

If you do not specify IN PLACE, the audit images are applied to temporary files, and the

appropriate rows are exchanged into the database files upon completion of image

application.

If you used the RC command to reconfigure a family pack with the KEEP option, an I/O

error occurs after any attempt to read or write on the rows on that pack. Therefore, the

recovery of a file with the IN PLACE option also fails with an I/O error. As a result, it is

recommended that the IN PLACE option not be used in this situation.

USING BACKUP

This option causes the rows to be reconstructed from backup dump tapes and the entire

audit since the time of the dump. DMUTILITY copies old versions of the rows to be

recovered from backup dump tapes to temporary files if IN PLACE is not specified, and

onto the actual database files if IN PLACE is specified. DMDATARECOVERY then applies

audit images to the rows. The advantage of this form of row recovery is that it always

works, unless irrecoverable I/O errors have occurred. The disadvantage is the time

consumed locating the proper dump tapes, loading the rows, and processing all the audit

images from the time of the dump to the end of the audit trail.

If USING BACKUP is specified and IN PLACE is not specified, then any recovered rows

initially having a ROWLOCK value of 0 (normal state) are changed to a value of 2

(READERROR) by DMUTILITY. This is done so that DMDATARECOVERY can determine

which rows have been exchanged and which have not in the event of a halt/load.

<filter option>

This option specifies that the DMRECONFILTER utility program is to extract the applicable

audit file information necessary for the particular reconstruction request. After analysis of

the RECOVER parameters, DMUTILITY initiates SYSTEM/DMRECONFILTER and passes

Recovering the Database

8–10 8600 0759-622

to it the needed information by way of a file called

<dbname>/RECONSTRUCTFILTERINFO. DMRECONFILTER examines all of the audit files

created since the dump used by DMUTILITY and extracts the necessary audit information.

DMRECONFILTER runs in parallel with the reloading of the database after each worker

has completed its updating of the RECONSTRUCTFILTERINFO file.

Note: If you use the filter option, the last row of the requested structure is always

reconstructed.

You can specify the following two options for filtering:

• WORKERS

This option determines the number of worker stacks used by DMRECONFILTER for

filtering audit files. Each worker is assigned one of the audits to extract and analyze.

As each worker finishes the analysis of an audit file, it locates the next audit file for

processing.

The WORKERS value should typically be set to the number of tape drives that are

available for the audit files. If the WORKERS value is larger than the number of audits

to filter, only as many workers as there are audits to filter are initiated. The maximum

number of workers that can be specified is 50.

Do not use the WORKERS option with disk dumps. If you do, a warning occurs.

• EXTRACT TO

This option determines where to place the filtered audit information. By default, this

information is placed on the same medium as the primary audit files, unless the

primary audit files are on tape. In this case, the filtered audit information is placed on

the same medium as the control file.

USING AUDIT ONLY

This option causes the rows to be reconstructed using only the audit.

<limits>

This option informs DMDATARECOVERY how far to scan the audit in the reverse direction

during the Quickfix process. LIMIT can be specified in terms of CONTROL POINTS or

SYNC POINTS, audit files, or a date and time. If the audit trail contains entries that do not

appear to be in chronological order, do not use the date, time, or * – <integer>: <min>

specification of this option.

If * – <integer>: <min> is specified, DMDATARECOVERY limits its reverse scan to audit

records created no more than <integer>: <min> before the time in the last audit record.

For example, if * –2:30 is specified, DMDATARECOVERY limits its reverse scan to audit

records created no more than two and one-half hours prior to the time in the last audit

record.

If * –<integer> AUDIT FILES is specified, DMDATARECOVERY limits its reverse scan to

the last integer audit files created. For example, if * –2 AUDIT FILES is specified,

DMDATARECOVERY limits its reverse scan to the last two audit files.

Recovering the Database

8600 0759-622 8–11

If IN PLACE is specified for the Quickfix process, rows damaged by irrecoverable errors in

the magnetic recording media cannot be recovered. This makes this form of Quickfix with

IN PLACE specified slightly less powerful than a normal Quickfix.

Reconstructing Rows Using the Quickfix Process

If rows are reconstructed using only the audit, the rows need not be loaded from a backup

dump. This process is referred to as Quickfix. Quickfix recovers only locked rows (rows

having write errors) and reduces the time required for row recovery. A fatal error occurs if

no rows are locked out, so be sure to check for locked rows before you initiate the

Quickfix process. Be aware that Quickfix might not always be able to reconstruct all

locked rows.

Quickfix begins by scanning the audit in the reverse direction starting at the current end of

the audit. The user specifies a limit to this reverse scan by using the <limits> construct. At

the end of the reverse scan, DMDATARECOVERY determines if any rows can be

reconstructed. If so, it reverses direction in the audit and performs a normal row recovery.

The backward scan of the audit stops short of the specified limit if the recoverability status

of all locked rows is determined prior to reaching the limit.

Example of Quickfix

BEGIN JOB RECOVERDB;
TASK UTILTASK;
RUN SYSTEM/DMUTILITY

("DB = MYDB OPTIONS(NOZIP) RECOVER (ROWS USING AUDIT ONLY, "
"LIMIT = * - 1:30)") [UTILTASK];

IF UTILTASK(TASKVALUE) = 0 THEN ABORT "UTILITY ERROR"
ELSE IF UTILTASK(TASKVALUE) = 2 THEN DISPLAY "UTILITY WARNING"

RUN RECONSTRUCT/MYDB;
END JOB.

This job performs a Quickfix row recovery with DMUTILITY and RECONSTRUCT running

together in the same job.

Designating What to Recover and Where

The following elements of the RECOVER statement enable you to

• Designate the information you want to recover.

• Identify the location where the information should be placed.

<recover spec>

This option designates the files and rows to be recovered, reconstructed, or restored. For

partial database recovery, if the file exists in the disk file directory on pack, the <recover

list> syntax should be used. This initiates a reconstruction of the damaged rows of the file.

Recovering the Database

8–12 8600 0759-622

If the file does not exist, use the RESTORE option to recover the entire file from the

backup dump and the audit files. You must use the RESTORE option to recover any

structures that have been initialized since the dump was performed.

If a RESTORE is specified, the file is restored through the end of the current audit.

DMUTILITY copies the file to be restored from the specified recover source and creates a

new file on disk. The title of the new file is the name of the file on the dump tape. The audit

images are applied directly to the new file. This requires that all of the rows of the file be

locked out by DMUTILITY. If the file was present on disk, it is removed.

<recover list>

This option designates the files and rows to be recovered. The slash equal sign (/=) can be

used to recover a family of files. The equal sign (=) alone designates that all files and rows

in the database are to be recovered.

<row selector>

This option specifies which rows of the file are to be recovered. If a recover list construct

is enclosed in parentheses and a row selector is specified, all database files in that recover

list are restricted by that row selector. Database files in the recover list that already have a

row selector specification have the outer selection constraints related to the inner

selection constraints through the Boolean construct OR.

If FAMILYINDEX is specified in the row selector, only those rows that currently reside on

the specified family indexes are reconstructed. If ROW is specified, only those particular

rows are reconstructed. PACKNAME allows the user to limit DMUTILITY to a particular

pack family without enumerating the files that exist on that pack family. PACKNAME is

normally used in conjunction with FAMILYINDEX. If ROWLOCK = READERROR is

specified, all rows having read errors (but not those locked out) are reconstructed. If

ROWLOCK = LOCKEDROW is specified, all locked rows are reconstructed.

If SECTION is specified in the row selector, only those rows that belong to the

specified sections are reconstructed.

<recover destination>

This option designates where the rows are to be placed prior to recovery. If a <recover

destination> is not specified, the rows are allocated on arbitrary family indexes but on the

same pack family as the file to which they correspond.

Recovering the Database

8600 0759-622 8–13

<recover as>

This option causes DMUTILITY to copy the rows of a file from the dump tape and create a

new file on disk. The title of the newly created file is the file name specified in the

<recover as> specification.

You cannot use this option if you use either the IN PLACE or the RESTORE option, or if you

are rebuilding a database.

<recover onto>

This option causes DMUTILITY to copy the rows of a file from the dump onto the file

specified in the <recover onto> specification. The title of the copied file is the file name

specified in the <recover onto> specification. If the file being copied onto is not present, a

No File condition results.

If <recover as> or <recover onto> is not specified, special files are created to which the

rows to be reconstructed are copied. If the structure is not partitioned, the form of the title

is

<database name>/RECONSTRUCT/<structure number>

If the structure is partitioned, the title is in the form

<database name>/RECONSTRUCT/
<structure number>/<partition number>

You cannot use this option if you use either the IN PLACE or the RESTORE option, or if you

are rebuilding a database.

<recover to>

This option identifies the family index where the rows are to be copied for recovery. If

RETAIN is specified, the rows are recovered on the same family index they occupied

when they were dumped.

If the FAMILYINDEX specified in the <recover to> specification does not exist,

DMUTILITY waits on a SECTORS REQUIRED condition for that FAMILYINDEX to be

present.

Designating a Backup Dump

The following information explains the element of the RECOVER statement syntax

diagrams that identifies the tape dumps or disk dumps you want to use during the

recovery process.

Recovering the Database

8–14 8600 0759-622

<recover source>

Tape Dumps

The following information explains how to use the RECOVER statement syntax if you are

using tape dumps.

When using single dump tapes, the tape directories of successive single dump tape reels

are cumulative. The tape directory of the last tape dumped contains information about all

rows of the database that were dumped. For example, assume a database was dumped

to TAPEX, cycle 1 and cycle 2, and that each has three versions. Also assume that cycle 1,

version 3, was the last tape written. Under usual processing, you would specify cycle 1,

version 3, in the recovery source.

Notes:

• Multidump tape functionality is not available for the REPLICATE function.

• Because CYCLE is always 1 for multidump tapes, tape processing becomes single

threaded when DMUTILITY is loading from a multidump tape.

• Whenever you use an existing multidump tape on a system, the fast access directory

for that tape must be present on the system. You can copy the directory from another

system or create the directory for the tape by using the TAPESET DIRECTORY

CREATE command.

• Do not append a dump to a multidump tape that was created on another system.

With the exception of incremental and accumulated dumps, if all the rows to be recovered

are on cycle 1, version 3, then specify cycle 1, version 3 as the single dump tape recovery

source. When you use incremental and accumulated dumps to recover the database, each

tape name must include “CYCLE = last cycle” and “VERSION = last version number” in

the tape specification clause.

A dump tape should be named only once in the recover source list, and the specified cycle

and version should contain the latest tape directory. DMUTILITY then processes each

physical tape in parallel, dependent on the number of workers and the number of tapes

specified. The maximum number of workers allowed is 50. If the WORKERS recover

option is not specified, the value of the TAPES option at the time the dump is created

determines the number of workers.

DMUTILITY expects all files named in a recover list to reside on the corresponding recover

source.

DMRecovery expects the current audit to be present for correct operation.

A DMUTILITY-initiated REBUILD, RECONSTRUCT, or COPY using the direct data set rows

that were in the preallocated region at the time of the dump causes DMUTILITY to

simulate the loading of these rows by preallocating them. The effects of the row

preallocation cause these rows to appear as though they had actually been written to the

dump tape. Refer to “DMUTILITY INITIALIZE Statement” in Section 5, Initializing and

Maintaining.

Recovering the Database

8600 0759-622 8–15

When more than one dump tape (or dump file in the case of multidump tapes) is used by

SYSTEM/DMUTILITY, it is possible to have the same database file on different tapes or

contained within dumps stored on multidump tapes. When the same file is encountered

more than once, the dump timestamp of the current tape or dump is compared against the

dump timestamp of the dump from which the database file on disk was loaded. If these

timestamps are different, the file with the latest dump timestamp is selected and the

older file is ignored.

Because the selection process might require removing a file that was previously loaded, it

is advantageous to first specify an input list that gives the name of the latest dump tape or

dump, except when an incremental or accumulated dump is involved. For details, refer to

“Database Recovery Using Incremental and Accumulated Dumps” later in this section. If

you provide the name of the latest dump tape or dump, DMUTILITY ignores the duplicate

file with the earlier timestamp when it encounters the file in additional locations. For more

information, refer to “DMUTILITY INITIALIZE Statement” in Section 5, Initializing and

Maintaining.

When the database has a dump tape directory, the recovery process can be automated

significantly. DMUTILITY can, under certain circumstances, use the dump tape directory to

determine which tapes are to be read to load the database files. This determination is

possible for

• All forms of reconstruction (RECOVER ROWS)

• REBUILD THRU AUDIT <integer> when the most current dumps are to be used

Note: Do not rebuild the database using an audit file number as a stopping point if the

audit file number has rolled back to 1 since you performed the last database dump. For

example, if the dump was performed at audit file number 9998, and the rebuild process

has to go through audit file number 2, then perform the rebuild recovery using a time as

the stopping point.

The automatic selection of dump tapes is invoked when the <recover source> construct is

omitted from the RECOVER statement, the dump tape directory is enabled for the

database, and the preceding restrictions on the form of recovery are met. RECOVER

FROM MOST CURRENT construct must be used when the REBUILD is THRU AUDIT and

automatic tape selection is desired.

The DMUTILITY and DMDUMPDIR programs allow recovery using the RECOVER FROM

MOST CURRENT FULL construct to automatically access the most current full backup

with the database DUMPSTAMP option enabled. This recovery occurs even when

corresponding accumulated backups, incremental backups, or both backups exist.

The DMDUMPDIR program must be enabled if you want to use the FROM MOST

CURRENT construct. The following fatal error occurs if the DMDUMPDIR program is not

enabled:

DMDUMPDIR MUST BE ENABLED TO USE - MOST CURRENT

Recovering the Database

8–16 8600 0759-622

Disk Dumps

The following information explains how to use the RECOVER statement syntax if you are

using disk dumps.

A disk dump should be named only once in the recover source list.

The DMUTILITY program expects all files named in a recover list to reside on the

corresponding recover disk dump source.

DMRECOVERY requires the current audit to be present for correct operation.

A DMUTILITY-initiated REBUILD, RECONSTRUCT, or COPY operation using the direct

data set rows that were in the preallocated region at the time of the dump causes the

DMUTILITY program to simulate the loading of these rows by preallocating them. The

effects of the row preallocation cause these rows to appear as though they had actually

been written to the dump.

When the database has a dump directory, the process of performing a RECOVER

operation can be automated significantly. The DMUTILITY program can, under certain

circumstances, use the dump directory to determine which dumps are to be read to load

the database files. This determination is possible for

• All forms of reconstruction (RECOVER ROWS)

• REBUILD THRU AUDIT <integer> when the most current dumps are to be used

Note: Do not rebuild the database using an audit file number as a stopping point if the

audit file number has rolled back to 1 since you performed the last database dump. For

example, if the dump was performed at audit file number 9998, and the rebuild process

has to go through audit file number 2, then perform the rebuild recovery using a time as

the stopping point.

The automatic selection of dumps is invoked when the <recover disk dump source>

construct is omitted from the RECOVER statement, the dump directory is enabled for the

database, and the preceding restrictions on the form of recovery are met. RECOVER

FROM MOST CURRENT construct must be used when the REBUILD is THRU AUDIT and

automatic selection is desired.

QUIESCE DB

The QUIESCE DB recovery source can be used only for REBUILD recovery.

Recovering the Database

8600 0759-622 8–17

QDC (<QDC title clause>)

Refer to “Using a Quiesce Database Copy as a Recovery or a Copy Source” in

Section 14, Using a Quiesce Database, for information.

Partial Database Recovery of Partition Files

If a database has partitioned structures, it is possible to have partition files in the database

that were created after a dump is taken. If a recover source is specified, DMUTILITY

identifies the partitions that were created after the specified dump and builds empty

reconstruct files for them. However, if no recover source is specified, no reconstruction of

the new partitions takes place. DMUTILITY reconstructs any new partition that meets the

requirements specified in the recover list and the row selection. If any row meets the row

selection criteria, all of the rows are reconstructed. The rows that are not already locked

are given a read error.

When more than one dump needs to be specified in the recover source, it is advantageous

to specify the latest dump first. This allows DMUTILITY to detect if a partition, which

could appear as new on the dump being processed, was already found on another dump.

Depending on the order in which the dumps are processed, DMUTILITY loads the

partition file from tape or creates an empty file for it. When the latest dump is processed

first, the partition file is loaded from tape and only selected rows are reconstructed. If an

earlier tape is then processed, DMUTILITY ignores the new partition and does not build an

empty file for it.

Note: You can designate only one disk dump in the recover source statement.

However, if the earlier dump is processed first, DMUTILITY identifies a new partition,

creates an empty reconstruct file, and reconstructs all of the rows. Then, when the latest

dump is processed, DMUTILITY loads the partition file from the dump, overlaying the

empty file that was created. If the second form of processing occurs, you notice additional

processing time, but neither process loses information.

Whole Database Recovery

RECOVER (<recover whole db>) is used to recover the entire database. The database

must not be in use during this form of database recovery. Recovery is initiated by

DMUTILITY and completed by DMRECOVERY. SYSTEM/DMRECOVERY is automatically

initiated by DMUTILITY, unless NOZIP is specified in the RECOVER option.

Recovery Methods

Two methods are available for recovering the entire database: REBUILD and ROLLBACK.

The current audit must be present.

Recovering the Database

8–18 8600 0759-622

REBUILD

This method moves the entire database forward in time. DMUTILITY begins the REBUILD

process by loading the entire database from one or more sets of dump tapes, by reading a

complete database copy that is in a state of QUIESCE, or by using a quiesce database

copy. DMRECOVERY then applies the audit trail afterimages to bring the database

forward.

Note: You can perform a rebuild recovery through a reorganization region of the audit. For

restrictions and capabilities, refer to “Rebuild Recoveries and Reorganizations” in

Section 7, Reorganizing the Database.

If the REBUILD process is unsuccessful, the only alternative is to reload a backup copy of

the database and reprocess all updates to the database.

The last audit file that is available to the recovery process must either contain the

specified EOJ/BOJ record or contain at least one record having a timestamp that is

subsequent to the completion of the online dump. Records having a timestamp include

control records and the following types of audit records: RDSO, RDSC, BLKIMG, RDERR,

and CDI. In the case of REBUILD THRU AUDIT <integer>, if the specified audit file does

not contain at least one record with a timestamp subsequent to the completion of the

online dump, the REBUILD process cannot be used.

If a file or a record format conversion is involved in the rebuild recovery, you must perform

the following steps before initiating the rebuild recovery:

1. Copy the control file that is to be used for the rebuild recovery from the DMUTILITY

dump(s). If multiple dumps are specified, the control file must be copied from the

oldest dump specified. If the correct control file is not specified for the rebuild

recovery, it might result in the following message:

POSSIBLE REORGANIZATION BETWEEN DUMPS; STRUCTURE INVOLVED: <n>

The variable <n> is a structure number.

Note: This message might be displayed for multiple structures, depending on the

reorganization performed.

2. Ensure that the correct DMSUPPORT tailored software files are available.

The recovery operation identifies the required DMSUPPORT files, even if the

DMSUPPORT files contain the update level. See Table 7–1 for further information.

If the REBUILD process uses a quiesce database copy as the recovery source and the

control file of the live database is missing, restore the missing control file by using the

CFRESTORE command and initiate the REBUILD process again. Refer to “CFRESTORE

Command (DMUTILITY)” in Section 14, Using a Quiesce Database, for more information.

Note: Although the automatic population increase information of a control file from a

dump or an initialized control file might not be accurate immediately after a rebuild

recovery, the information is corrected at the next population increase.

Recovering the Database

8600 0759-622 8–19

ROLLBACK

This method moves the entire database backward in time. ROLLBACK begins with the

current database files. DMRECOVERY then applies audit trail beforeimages to move the

database back to a specified point in time. ROLLBACK produces a report of all jobs that are

completely or partially backed out. Because of the possible interaction and

interdependency of programs, ROLLBACK must use the entire database.

Unlike REBUILD, ROLLBACK cannot be used to recover from data corruption. ROLLBACK

can potentially save time over REBUILD, however, to correct logical errors such as an

update program that was run with incorrect input.

You cannot perform a rollback recovery into or through a reorganization region of the audit.

This limitation exists because new images written in the audit cannot be transformed into

the old-style images. The data files for the two types of images are not compatible.

To simulate a rollback and generate a report similar to the one that would be generated for

the actual rollback, use the SHOW ROLLBACK command.

Starting Points

If a dump is taken at the time a database is quiesced, the starting point of a REBUILD

recovery using that dump will be the time when the quiesce was performed. If the

database was not quiesced at the time the dump was taken, the starting point will not be

the time of the creation of the dump.

Stopping Points

You can specify a stopping point for REBUILD and ROLLBACK in terms of

• An audit file

• A starting (BOJ) or an ending (EOJ) point of processing for a specific job

• A specific date and time

The recovery process always ensures that the database is left in a state of integrity. To

leave the database in a state of integrity, the recovery process might need to rebuild the

database to a more recent point or rollback the database to an earlier point than the one

you designate.

Do not rebuild the database using an audit file number as a stopping point if the audit file

number has rolled back to 1 since you performed the last database dump. For example, if

the dump was performed at audit file number 9998, and the rebuild process has to go

through audit file number 2, then perform the rebuild recovery using a time as the stopping

point.

When setting time as a stopping point, if the system clock of the machine has been

moved backward (for example, to switch from daylight saving time to standard time), do

not recover to a point of time during the time change. For example, if the system clock has

been set backward from 2 a.m. to 1 a.m., do not use a stopping point between 1 a.m. and

2 a.m. Instead, choose a time after 2 a.m. or before 1 a.m.

Recovering the Database

8–20 8600 0759-622

Both rollback and rebuild recoveries perform halt/load recovery wrap-up procedures

before the recoveries finish. The halt/load recovery phase begins at the most recent point

in time when no programs were in transaction state.

If the DASDL SYNCWAIT option is set to a nonzero value, transactions might prevent

natural quiet points from occurring. These long transactions are temporarily taken out of

transaction state to allow pseudo syncpoints to occur. These pseudo syncpoints are valid

stopping points for the first phase of rollback and rebuild recoveries. During this halt/load

recovery phase, long transactions that were in progress at the time of the last syncpoint

are individually backed out. The actual stopping point is determined by the

REAPPLYCOMPLETED option and either the ROLLBACK or the REBUILD option. Audit

records after the stopping point become invalid and should be discarded.

For disk file auditing, the current audit file is extended from the point where the

ROLLBACK/REBUILD finishes. Thus, the latter portion of the audit file is overwritten. Any

audit files that were created after the current audit file are invalid and should be discarded.

For tape auditing, the current audit file is closed at the ROLLBACK/REBUILD termination

point, and a new audit file is opened when processing is resumed. Discard any audit files

that were created after the current audit file.

If an audit medium switch took place during normal operations and the

ROLLBACK/REBUILD terminated at a point on a tape audit file, the tape audit file is closed,

and a new audit file is created on the primary audit medium when processing resumes.

The tape file becomes the last valid audit file. Discard all audit files that are created after

the current audit file.

For example, consider a database for which the last audit is 6000. If ROLLBACK

terminates in audit file 5888, then audit files 5889 through 6000 are invalid. If audit file

5888 is a disk audit file, then auditing begins at the end of this file when normal auditing

resumes. If audit file 5888 is a tape audit file, then it is closed and auditing begins in audit

file 5889 on the primary audit medium when normal updating resumes. As the user, it is

your responsibility to discard any invalid audit files.

Note: You must wait for the DMSUPPORT library and database stack to terminate. The

two stacks must terminate completely before any user application can access the

database.

If desired, it is possible to recover through a change in the number of audit sections. If you

perform rollback recovery through an audit section change, that change is still in effect.

If a rebuild recovery must recover through a reorganization region, you must copy the

control file from the dump tape before you run DMUTILITY. Do not use the FROM MOST

CURRENT option. You must also specify a recover source in the RECOVER statement. For

more information on rebuilding through a reorganization region, refer to “Rebuild

Recoveries and Reorganizations” in Section 7, Reorganizing the Database.

For partitioned databases, not all of the partition files have to be loaded from the dump

tape for the rebuild recovery. The partition files that have not been updated since the dump

was performed do not need to be loaded.

Recovering the Database

8600 0759-622 8–21

Note: If the DMDUMPDIR program is enabled, dump directory entries can be deleted

automatically under some conditions. If a dump was made after the time at which the

recover process stops, the dump is considered invalid and is deleted automatically from

the directory. This deletion can happen after a rebuild or rollback recovery is performed.

If you want to add this dump back to the directory, use the DMUTILITY

BUILDDUMPDIRECTORY function. For more information on using

BUILDDUMPDIRECTORY, see “DMUTILITY BUILDDUMPDIRECTORY Command” in

Section 6, Backing Up a Database, of this guide.

Both rollback and rebuild recoveries are supported in the Open Distributed Transaction

Processing environment. Because all of the databases in the Open Distributed Transaction

Processing environment must be synchronized, ensure that you

• Rebuild to the end of the current audit file. However, if some audit information is lost,

the databases might still be out of synchronization.

• Roll back all databases to the same point in time if the databases are all on the same

machine or if all of the machines are synchronized.

Because the Enterprise Database Server recovery processes affect only one database,

integrity is ensured only for the database on which the recovery is performed. In the Open

Distributed Transaction Processing environment, a transaction can affect more than one

database. When you perform a recovery on a database in an Open Distributed Transaction

Processing environment, you must ensure that you resynchronize the recovered database

with all other databases in that environment.

The following information explains the REBUILD, ROLLBACK, and REPLICATE elements

of the RECOVER statement syntax diagrams.

REBUILD THRU AUDIT <integer>

This option applies the afterimages from all audit files created since the time of the dump

or the time of the QUIESCE. This process continues until all afterimages in the audit file

specified by <integer> have been applied. REBUILD then performs a halt/load type of

recovery. Following this halt/load recovery phase, if the REAPPLYCOMPLETED option is

set, all completed transactions through the end of the specified audit file are reapplied.

Note: Do not rebuild the database using an audit file number as the stopping point if the

audit file number has rolled back to 1 since you performed the last database dump. For

example, if the dump was performed at audit file number 9998, and the rebuild recovery

has to go through audit file number 2, then perform the rebuild recovery using a time as

the stopping point.

ROLLBACK THRU AUDIT <integer>

This option begins with the current database files and applies beforeimages from the

audit. This process continues until all beforeimages in the audit file specified by <integer>

have been applied. ROLLBACK then backs up into the end of audit <integer> – 1 to begin

the halt/load recovery phase. Upon completion of the halt/load recovery, if the

REAPPLYCOMPLETED option is set, all completed transactions through the end of audit

<integer> – 1 are reapplied.

Recovering the Database

8–22 8600 0759-622

REBUILD/ROLLBACK TO <boj/eoj point>

REBUILD TO <boj/eoj point> applies all afterimages created since the dump or QUIESCE

and stops at the BOJ or EOJ point of the specified job. ROLLBACK TO <boj/eoj point>

applies all beforeimages in the audit trail until it encounters the BOJ or EOJ point of the

task. Following the halt/load recovery phase, if the REAPPLYCOMPLETED option is set, all

completed transactions up to the specified BOJ or EOJ point are reapplied. The existence

of BOJ and EOJ points implies that the task opened and closed the database. If the task

opens and closes a database several times, REBUILD TO <eoj point> stops at the first

database CLOSE statement, and ROLLBACK TO <boj point> stops at the last database

OPEN statement of the task.

The REBUILD/ROLLBACK TO <boj/eoj point> option does not enable the MOST

CURRENT option in the <recover source> construct.

Caution

When using a BOJ or EOJ point, ensure that you identify the job and task that

actually opened or closed the database. If you are unsure that the job and task

actually opened or closed the database, use the REBUILD/ROLLBACK TO

<boj/eoj point> ON <time> option.

SHOW ROLLBACK

Using this option you can verify the results of a rollback before performing the rollback.

You can designate the stopping point for the verification by using any of the following:

• Audit file number

• Starting point of a job (BOJ)

• Ending point of a job (EOJ)

• Date and time

This option simulates a database rollback and generates a report as a printer backup file.

The information in the report is similar to the report that would be generated for the actual

rollback.

The SHOW ROLLBACK report contains the following:

• A list of the jobs that would be completely or partially backed out.

• A list of the database open and close occurrences that would be backed out.

• A description of the rollback stopping point in the audit trail, including the time stamp

in the audit file at which the rollback would finish.

Recovering the Database

8600 0759-622 8–23

REBUILD TO <time point>

This option applies all afterimages created since the dump or QUIESCE, and stops at the

first control record in the audit with a timestamp greater than or equal to the specified

time. The LEQ (less than or equal to) operator is not valid for the REBUILD process.

When setting time as a stopping point, if the system clock of the machine has been

moved backward (for example, to switch from daylight saving time to standard time), do

not recover to a point of time during the time change. For example, if the system clock has

been set backward from 2 a.m. to 1 a.m., do not use a stopping point between 1 a.m. and

2 a.m. Instead, choose a time after 2 a.m. or before 1 a.m.

Note: If you want to specify a future month as a recovery time, also specify the desired

year. If you do not specify a year, DMUTILITY subtracts 1 from the current year.

The REBUILD TO <time point> option does not enable the MOST CURRENT option in the

<recover source> construct.

ROLLBACK TO <time point>

This option applies all beforeimages from the audit until it encounters a control record with

a timestamp less than or equal to the specified time. Since ENDTRANSACTION audit

images do not have timestamps, the point in time at which a given transaction completed

is not recorded in the audit. Therefore, no audit image reapplication occurs following the

halt/load recovery phase, regardless of the setting of the REAPPLYCOMPLETED option.

The GEQ (greater than or equal to) operator is not valid for ROLLBACK.

When setting time as a stopping point, if the system clock of the machine has been

moved backward (for example, to switch from daylight saving time to standard time), do

not recover to a point of time during the time change. For example, if the system clock has

been set backward from 2 a.m. to 1 a.m., do not use a stopping point between 1 a.m. and

2 a.m. Instead, choose a time after 2 a.m. or before 1 a.m.

REBUILD TO <boj/eoj point> ON <time>

This option applies all afterimages created since the dump or QUIESCE and stops at either

<boj/eoj point> or <time point>, depending on which condition is satisfied first.

The REBUILD TO <boj/eoj point> ON <time> option does not enable the MOST

CURRENT option in the <recover source> construct.

ROLLBACK TO <boj/eoj point> ON <time>

This option applies all beforeimages in the audit and stops at either <boj/eoj point> or

<time point>, depending on which condition is satisfied first.

Recovering the Database

8–24 8600 0759-622

REPLICATE

This option uses a current copy of an online dump to move a database to a new

location, and then performs a rebuild recovery to make the database operational.

This option can be particularly useful for creating test or temporary reporting

environments for production databases that must remain active on a daily basis.

When you use the REPLICATE option, note the following:

• In general, the REPLICATE option rebuilds the database using new description and

control files. The database built by using the REPLICATE option must have the same

database name as the original database, but can have a different usercode and be on

different packs than the original database. The process expects to find the necessary

audit files at the new location.

Note: This process excludes the audit file that is currently in use by the parent

database. The audit file is excluded because an active audit file of any database is

always opened exclusively so that the Accessroutines can periodically update its

attributes in the disk file header.

• Use extra caution when the replication is either to or from a nonusercoded (*)

database. Nonusercoded databases are visible to all users on the system, which can

make it easy to mix structures and audit files. In addition, it is possible to create a

confusing situation when an application program has visibility to both usercode and

nonusercoded databases.

• Avoid replicating to different disk packs on the same system while attempting to

retain the same usercode.

The anomalies just described can also be created by indiscriminate database compilations.

However, errors are more likely to occur when you move databases rather than create

them.

While a true rebuild operation is designed to function across a reorganization boundary,

there are limitations for replicating through a reorganization. These limitations exist

because the information pertaining to work files used by the reorganization, including pack

locations, is captured in the audit file.

Note: This limitation occurs because pack locations specified in DASDL can be changed

when replicating. However, reorganization pack locations cannot be changed because they

are described through BUILDREORG, which is not part of the replicate process.

The REPLICATE option does not enable the MOST CURRENT option in the <recover

source> construct. This removes a possible dependence to have a dump tape directory

present and available at the new location. The REPLICATE THRU AUDIT <integer>,

REPLICATE TO <boj/eoj point>, and REPLICATE TO <time point> options are valid.

Recovering the Database

8600 0759-622 8–25

Performing Replication with a Traditional Database

1. Create a utility dump of the source database, either online or offline.

Match the Enterprise Database Server software level at the destination with the

Enterprise Database Server software level used at the source location.

Note: The source database must not be reorganized between the time the dump is

captured and the time indicated by the stopping point in the audit files to be used for

the replicate process.

2. Transfer the dump, DASDL source, description file, and audit files from their original

location to the new location and usercode.

Note: The DASDL source and description file must match the dump.

3. Modify all of the appropriate places in the DASDL source to reflect the new pack

location, and change the usercode to match the new location. Make Enterprise

Database Server software title changes at this time.

4. Ensure that the following DASDL options are also included:

• UPDATE

• $SET ZIP

• $RESET DMCONTROL

5. Generate an updated description file and compile a new DMSUPPORT library by

compiling the modified DASDL source. For example,

COMPILE MYNEW/DASDL AS $MYDBNAME

In the preceding example, the database name must remain the same as that of the

original database name, MYDBNAME.

6. Create a compatible control file by using the DMCONTROL RECOVER INITIALIZE

option. For example,

RUN $SYSTEM/DMCONTROL("DB=MYDBNAME RECOVER INITIALIZE")

The DMCONTROL option requires the most current audit file number. The existing

rules for matching utility dumps and audit files apply to the REPLICATE feature.

Note: For online dumps, the audit must be closed after the dump is completed. The

audit file must also be available for use by the replicate process whether the dump is

online or offline.

7. Use DMUTILITY to replicate the database using the REPLICATE variant of

<recover whole db>. If you use the THRU AUDIT syntax, ensure that the audit file

number is the same as that specified in step 6. For example,

RUN $SYSTEM/DMUTILITY("DB=MYDBNAME OPTIONS (NOZIP)
RECOVER(REPLICATE THRU AUDIT x) = AS (NEWUC)=
ON NEWPACK FROM MYDBNAMEDUMP ")

8. Run the RECOVERY program. For example,

RUN$SYSTEM/DMRECOVERY("DB=MYDBNAME")

The replicated database is now ready for use.

Recovering the Database

8–26 8600 0759-622

Either compilation or database equation can be used to prepare applications for use with

the replicated copy of the database. The following example uses the WFL MODIFY

command to perform a permanent database equation:

WFL MODIFY <codefile title> DATABASE
MYDBNAME (TITLE=(NEWUC)MYDBNAME ON NEWPACK)

Performing Replication with a Permanent Directory Database

Caution

To avoid overwriting your description file, be sure to run your DASDL update

from a different usercode. In addition, the pack name of the control file must

be different from the pack name of the existing control file.

1. Create a utility dump of the source database, either online or offline.

Match the Enterprise Database Server software level at the destination with the

Enterprise Database Server software level used at the source location.

Note: The source database must not be reorganized between the time the dump is

captured and the time indicated by the stopping point in the audit files to be used for

the replicate process.

2. Transfer the dump, DASDL source, and description file from their original location to

the new pack location and usercode.

The DASDL source and description file must match the dump.

3. Transfer the audit files to the permanent directory to which the database is to be

replicated.

4. Modify all of the appropriate places in the DASDL source to reflect the new pack

location, and change the DBPATH specification of the control file to match the new

location. Make Enterprise Database Server software title changes at this time.

5. Ensure that the following DASDL options are also included:

• UPDATE

• $SET ZIP

• $RESET DMCONTROL

6. Generate an updated description file and compile a new DMSUPPORT library by

compiling the modified DASDL source. For example,

COMPILE MYNEW/DASDL AS $MYDBNAME

In the preceding example, the database name must remain the same as that of the

original database name, MYDBNAME.

7. Create a compatible control file by using the DMCONTROL RECOVER INITIALIZE

option. For example,

RUN $SYSTEM/DMCONTROL("DB=MYDBNAME RECOVER INITIALIZE");

Recovering the Database

8600 0759-622 8–27

FILE CF =
*DIR/<new nodes>/MYDBNAME/CONTROL ON <pack name>;

The DMCONTROL option requires the most current audit file number. The

existing rules for matching utility dumps and audit files apply to the replicate

process.

Note: For online dumps, the audit must be closed after the dump is completed.

The audit file must also be available for use by the replicate process whether the

dump is online or offline.

8. Use DMUTILITY to replicate the database using the REPLICATE variant of

<recover whole db>. If you use the THRU AUDIT syntax, ensure that the audit file

number is the same as that specified in step 7. For example,

RUN $SYSTEM/DMUTILITY("DB=MYDBNAME OPTIONS (NOZIP)
RECOVER(REPLICATE THRU AUDIT x) = AS = ON NEWPACK
FROM MYDBNAMEDUMP ");
DATAPATH = *DIR/<new nodes> ON <pack name>;

9. Run the RECOVERY program. For example,

RUN$SYSTEM/DMRECOVERY("DB=MYDBNAME"); DATAPATH =
*DIR/<new nodes> ON <pack name>;

The replicated database is now ready for use.

Application programs must be run using a DATAPATH specification. The following example

uses a permanent database equation:

RUN <codefile title>; DATAPATH = *DIR/<new nodes> ON <pack name>;

Restrictions

Some forms of the RECOVER statement require both a recover specification construct

and a <recover source> construct; others do not. Table 8–1 summarizes these

requirements when you are using tape dumps.

Table 8–1. Recover Specification and Source for Tape Dumps

RECOVER Statement Recover Specification

RECOVER (ROWS USING BACKUP) Required.

If ONTO <file name> or AS <file name> is specified,

the file name must not be the same as any database file

name in this or any other database.

RECOVER (ROWS IN PLACE USING

BACKUP)

Required.

The <recover destination> statement is not permitted.

RECOVER (ROWS...USING AUDIT

ONLY...)

Not required.

RECOVER (ROLLBACK...) Not permitted.

Recovering the Database

8–28 8600 0759-622

Table 8–1. Recover Specification and Source for Tape Dumps (cont.)

RECOVER Statement Recover Specification

RECOVER (REBUILD...) Not required.

The following constructs are not permitted:

• RESTORE

• ONTO <file name>

• AS <file name>

The recover list for a rebuild recovery must be specified

so that all database files are loaded from one or more

sets of dump tapes. If all database files are not

specified, the recovery is not successful.

RECOVER (ROWS USING BACKUP) Required.

The file name must not be the same as any database

file name in this or any other database.

RECOVER (REPLICATE{) Required.

Must include the AS <file name> construct.

The recover list for the REPLICATE option must be

specified so that all database files are loaded from one

or more sets of dumps. If all database files are not

specified, the recovery is not successful.

Table 8–2 summarizes the requirements when you are using disk dumps.

Table 8–2. Recover Specification and Source for Disk Dumps

RECOVER Statement Recover Specification

RECOVER (ROWS IN PLACE USING

BACKUP)

Required.

The <recover destination> statement is not permitted.

RECOVER (ROWS...USING AUDIT

ONLY...)

Not required.

RECOVER (ROLLBACK...) Not permitted.

RECOVER (REBUILD...) Not required.

The following constructs are not permitted:

• RESTORE

• ONTO <file name>

• AS <file name>

The recover list for a rebuild recovery must be specified

so that all database files are loaded from one or more

sets of dumps.

Recovering the Database

8600 0759-622 8–29

Table 8–2. Recover Specification and Source for Disk Dumps (cont.)

RECOVER Statement Recover Specification

RECOVER (REPLICATE{) Required.

Must include the AS <file name> construct.

The recover list for the REPLICATE option must be

specified so that all database files are loaded from one

or more sets of dumps. If all database files are not

specified, the recovery is not successful.

Examples of the RECOVER Statement

Example 1

RECOVER(ROWS USING BACKUP)
= (ROWLOCK = LOCKEDROW, READERROR)

FROM T1,T2,T3,T4,T5

This command recovers all rows having write operation errors

(ROWLOCK = LOCKEDROW) or read operation errors (ROWLOCK = READERROR), using

the data in the specified dump tapes plus the changes recorded in the audit since the time

of the dumps. Because the WORKERS clause is not specified, DMUTILITY processes

each dump serially.

Example 2

OPTIONS(WORKERS=3) RECOVER(ROWS USING BACKUP)
= (ROWLOCK = LOCKEDROW, READERROR)

FROM T1,T2,T3,T4,T5

This example is identical to Example 1 except for the WORKERS option. The WORKERS

option controls the number of dump tapes that can be processed in parallel. DMUTILITY

initiates a worker for each cycle in the first dump tape. If there are more cycles than

workers, DMUTILITY processes the next available cycle when one of the current workers

finishes. If there are more workers than cycles, DMUTILITY initiates a worker to begin

processing the next dump tape. When a worker finishes, it begins processing the next

available cycle.

Example 3

RECOVER(ROWS USING BACKUP)
= (ROWLOCK = LOCKEDROW, READERROR

PACKNAME = DBDATA FAMILYINDEX = 1-3,5)
FROM TAPEX

This command recovers all rows having write operation errors or read operation errors that

reside on family index 1, 2, 3, or 5 of pack family DBDATA using the data in the specified

dump tape plus the changes recorded in the audit since the time of the dump. No rows on

family index 4 are selected for row recovery.

Recovering the Database

8–30 8600 0759-622

Example 4

RECOVER(ROWSUSING BACKUP) DB/D/DATA FROM TAPEX

This command recovers only rows in the file DB/D/DATA that have copies on the tape

TAPEX. Resident rows allocated since the time of the dump are also recovered.

Example 5

RECOVER(ROWS USING BACKUP)
= (FAMILYINDEX = 3) FROM TAPEX

This command recovers all rows of the database that were present on family index 3 at

the time of the dump. In addition, any rows resident on family index 3 that were allocated

since the time of the dump are also recovered.

Example 6

RECOVER(ROWS USING BACKUP)
(DB/D/= AS DB/E/=,

DB/F/= ONTO DB/G/=)
(ROWLOCK = LOCKEDROW) FROM TAPEX

This command recovers all rows of files DB/D/= and DB/F/= that are currently locked out.

All rows copied to the tape TAPEX file and all resident rows allocated since the time of the

dump are recovered. The rows of file DB/D/= are copied as file DB/E/= before

reconstruction. Following reconstruction, the old locked-out rows resides in file DB/E/=,

which is not removed. The rows of file DB/F/= are copied as file DB/G/= before

reconstruction. Following reconstruction, all locked-out rows of file DB/F/= resides in file

DB/G/=, which is not removed.

Example 7

RECOVER(ROWS USING AUDIT ONLY, LIMIT = * - 1:30)

This command recovers all locked-out rows, using the audit only. This form of row

recovery scans the audit in the reverse direction, starting from the current end of the audit.

The example limits the reverse scan to audit records created not more than 1.5 hours

before the time in the last audit record.

Example 8

RECOVER(REBUILD THRU AUDIT 4567) = FROM TAPEX

This command loads the entire database from the specified dump tape and moves the

entire database forward by processing all the audit since the time of the dump. This

process terminates after audit file 4567 is processed.

Example 9

RECOVER (REBUILD THRU AUDIT 999)
= FROM MOST CURRENT

Recovering the Database

8600 0759-622 8–31

This command is similar to Example 9, except that it causes the database to be rebuilt

using the most current dump tapes that were created. The DMUTILITY program

automatically selects the dump tapes. In addition to the most current full dump, the dump

tapes include the most current accumulated dump if one is present that is more current

than the full dump plus any set of incremental dumps that are more current than the full or

accumulated dumps.

If the DMDUMPDIR program is disabled, the use of the FROM MOST CURRENT

construct results in the following fatal error:

DMDUMPDIR MUST BE ENABLED TO USE - MOST CURRENT

Example 10

RECOVER(ROLLBACK TO BOJ OF 1234/1235)

This command moves the entire database backward to the beginning of task 1234/1235.

Example 11

RECOVER (ROWS USING
BACKUP WITH FILTERING(WORKERS=3)) =
(ROWLOCK=READERROR) FROM TAPEX

This command recovers all rows marked as having read operation errors and invokes the

DMRECONFILTER utility to filter the audit information necessary for the reconstruction.

Three filter workers are used in parallel to filter the audits generated since the dump tape

TAPEX was produced.

Example 12

RECOVER (ROWS USING BACKUP) DB/D/DATA (RESTORE) FROM TAPEX

This command restores all rows of the file DB/D/DATA, using the data on the dump tape

TAPEX, and any changes recorded in the audit through the most current audit file.

Example 13

RECOVER (ROWS USING BACKUP) DB/A/DATA (ROWLOCK=LOCKEDROW),
DB/D/DATA (RESTORE) FROM TAPEX

This command recovers all rows of the file DB/A/DATA that have write operation errors,

using the data on the dump tape TAPEX and any changes recorded in the audit. In addition,

this command restores all rows of the file DB/D/DATA, using the data on the dump tape

TAPEX and the audit. The file DB/A/DATA must be resident.

Example 14

("DB=TESTDB00 RECOVER (ROWS USING BACKUP) = (ROWLOCK =
LOCKEDROW,READERROR)

FROM DUMPDISK4 ON UITEST")

#RUNNING 3210
#3210 DISPLAY:>>>INPUT WAS:.

Recovering the Database

8–32 8600 0759-622

#3210 DISPLAY:DB=TESTDB00 RECOVER (ROWS USING BACKUP) =
(ROWLOCK= LOCKEDROW, READERROR) FR.

#3210 DISPLAY:OM DUMPDISK4 ON UITEST.

#BOT 3213 (ALMA)TAPEWORKER01/DUMPDISK4 ON UITEST

#3213 PK17096 (ALMA)TESTDB00/CONTROLOLD/01 REMOVED
ON UITEST

#EOT 3213 (ALMA) (ALMA)TAPEWORKER01/DUMPDISK4 ON
UITEST

#3210 DISPLAY:** WARNING: DID NOT FIND ANY FILES
WHICH MATCH REQUEST.

#3210 PK17096 (ALMA)TESTDB00/HLDUMPINFO/56812 REMOVED
ON UITEST

#ET=5.7 PT=0.1 IO=0.5

Note: When no files are found to match a RECOVER (ROWS USING BACKUP) request,

DMUTILITY issues a warning message, removes the HLDUMPINFO and terminates

DMUTILITY as normal.

Example 15

DB=ORIGINALDB OPTIONS (NOZIP) RECOVER
(REPLICATE THRU AUDIT 2) = FROM TESTDUMP

#RUNNING 0499
#0499 DISPLAY:>>>INPUT WAS:

#0499 DISPLAY:DB=ORIGINALDB OPTIONS (NOZIP) RECOVER
(REPLICATE THRU AUDIT 2) = FROM TESTDUMP

#BOT 6522 (SOMEUC)TAPEWORKER01/TESTDUMP ON THISPACK
#6519 PK131 (SOMEUC)ORIGINALDB/HLDUMPINFO/38367
REPLACED ON THISPACK

#6522 PK131 (SOMEUC)ORIGINALDB/CONTROLOLD/01
REPLACED ON THISPACK

#6522 DISPLAY:** SYNTAX ERROR: ** FROM **
REPLICATE REQUIRES AN "AS" CLAUSE.

#P-DS 6522 (SOMEUC) (SOMEUC)TAPEWORKER01/TESTDUMP
ON THISPACK

#6519 DISPLAY:** FATAL ERROR: PROCESS TERMINATED: .
#P-DS 23424000, 37031000, 49617000, 99612000.

Recovering the Database

8600 0759-622 8–33

This statement attempts to copy all structures to the same pack name or pack names that

were in effect when the DMUTILITY dump (TESTDUMP) was created in preparation for a

rebuild recovery. However, it terminates with an error because no destination was

specified.

Example 16

DB=ORIGINALDB OPTIONS (NOZIP) RECOVER
(REPLICATE THRU AUDIT 2) =
AS (NEWUC)= FROM TESTDUMP

#
#RUNNING 0590
#0590 DISPLAY:>>>INPUT WAS:

#0590 DISPLAY:DB=ORIGINALDB OPTIONS
(NOZIP) RECOVER (REPLICATE THRU AUDIT 2) = AS
(NEWUC)= FROM TESTDUMP

#BOT 0593 (NEWUC)TAPEWORKER01/TESTDUMP
#0590 PK131 (NEWUC)ORIGINALDB/HLDUMPINFO/36648
REPLACED ON THISPACK

This statement copies all structures to the same pack name or pack names that were in

effect when the DMUTILITY dump (TESTDUMP) was created. In addition, this statement

changes the database usercode to NEWUC.

Example 17

DB=ORIGINALDB OPTIONS (NOZIP) RECOVER
(REPLICATE THRU AUDIT 2) = AS (NEWUC)
= ON NEWPACK FROM TESTDUMP

#RUNNING 0626
#0626 DISPLAY:>>>INPUT WAS:

#0626 DISPLAY:DB=ORIGINALDB OPTIONS
(NOZIP) RECOVER (REPLICATE THRU AUDIT 2)
= AS (NEWUC)= ON NEWPACK FROM TESTDUMP

#BOT 0629 (NEWUC)TAPEWORKER01/TESTDUMP
#0629 PK131 (NEWUC)ORIGINALDB/HLDUMPINFO/36648
REPLACED ON THISPACK

This statement copies all structures to a new location (NEWPACK) in preparation for a

rebuild recovery. In addition, this statement changes the database usercode to NEWUC.

The ON option is included in this example.

Example 18

DB=ORIGINALDB OPTIONS (NOZIP) RECOVER (REPLICATE THRU AUDIT 2)
= AS (NEWUC)=ON NEWPACK FROM MOST CURRENT

#RUNNING 9123
#9123 DISPLAY:>>>INPUT WAS:

Recovering the Database

8–34 8600 0759-622

#9123 DISPLAY:DB=ORIGINALDB OPTIONS (NOZIP)
RECOVER(REPLICATE THRU AUDIT 2) = AS (NEWUC)=
ON NEWPACK FROM MOST CURRENT

#9123 DISPLAY:**SYTNAX ERROR:**NEWDB** ’FROM’
<RECOVERY SOURCE> EXPECTED.
#P-DS 23424000, 45107000, 49558000, 99612000.
#ET=1.4 PT=0.5 IO=0.4

This statement attempts to copy all structures to a new location (NEWPACK) and also

changes the database usercode to NEWUC. This syntax is not valid because a source

database specification is required.

Example 19

DB=ORIGINALDB OPTIONS (NOZIP) RECOVER (REPLICATE THRU AUDIT
2)= AS (NEWUC)= ON NEWPACK FROM MOST CURRENT

#RUNNING 9996
#9996 DISPLAY:>>>INPUT WAS:

#9996 DISPLAY:DB=ORIGINALDB OPTIONS (NOZIP) RECOVER
(REPLICATE THRU AUDIT 2) = AS (NEWUC)= ON NEWPACK FROM
MOST CURRENT

#9996 DISPLAY:**FATAL ERROR:DMDUMPDIR MUST BE ENABLED
TO USE - MOST CURRENT.
#P-DS 23424000, 45120460, 49558000, 99612000.
#ET=1.4 PT=0.4 IO=0.4

This statement attempts to copy all structures to a new location (NEWPACK) and also

changes the database usercode to NEWUC. Because a dump tape directory has not been

enabled, the process terminates with an error.

Example 20

RECOVER (REBUILD THRU AUDIT 4567) FROM QUIESCE DB

This command moves the entire database forward by processing all audit since the time of

the database QUIESCE. This process terminates after audit file 4567 is processed.

Example 21

RECOVER(REBUILD THRU AUDIT 999)
=FROM MOST CURRENT FULL

This statement selects only the most current full dump.

Example 22

RECOVER(REBUILD THRU AUDIT 999)=FROM MOST CURRENT ACCUM

This statement selects the most current full dump and those in the most current

accumulated dump (if one is present and more current than the full dump).

Recovering the Database

8600 0759-622 8–35

Example 23

RECOVER(REBUILDTHRU AUDIT 4567)= FROM ANOTHERDB063094 TAPE =
DBDUMPS063094

This command loads the entire database from the specified dump on a multidump tape

and moves the entire database forward by processing all the audit since the time of the

dump. This process terminates after audit file 4567 is processed.

Examples of the RECOVER Statement for Partial Database
Recovery

The following examples illustrate the RECONSTRUCT (RECOVER ROWS USING

BACKUP) function, which is used to recover damaged rows of database files.

Example 1

The following example causes the rows to be reconstructed from the backup dump

DB1DUMP and tape DB1TAPE, and the entire audit since the time of the dump.

RUN *SYSTEM/DMUTILITY("DB = DB1 RECOVER(ROWS USING BACKUP)
DB1/= FROM DB1DUMP TAPE = DB1TAPE")

Example 2

The following example causes the rows to be reconstructed from the backup dump

DB1DUMP and tape DB1TAPE, and the entire audit since the time of the dump. The

example uses the RESTORE option to recover the entire file from the backup dump and

the audit files.

RUN *SYSTEM/DMUTILITY("DB = DB1 RECOVER(ROWS USING BACKUP)
DB1/= (RESTORE) FROM DB1DUMP TAPE = DB1TAPE")

Example 3

The following examples recover damaged rows of the database DB1 since the most

current dump, most current full, and most current accumulated dump respectively. When

you are using the most current construct, you must enable DMDUMPDIR.

RUN *SYSTEM/DMUTILITY("DB = DB1 RECOVER(ROWS USING BACKUP)
DB1/= FROM MOST CURRENT")

RUN *SYSTEM/DMUTILITY("DB = DB1 RECOVER(ROWS USING BACKUP)
DB1/= FROM MUST CURRENT FULL")

RUN *SYSTEM/DMUTILITY("DB = DB1 RECOVER(ROWS USING BACKUP)
DB1/= FROM MUST CURRENT ACCUM")

Example 4

The following example causes the rows to be reconstructed from the backup dump

DB1DUMP and tape DB1TAPE, and the entire audit since the time of the dump. The

example enables the NOZIP option, which allows entire row recovery to be controlled by a

single WFL.

Recovering the Database

8–36 8600 0759-622

RUN *SYSTEM/DMUTILITY("DB = DB1 OPTIONS(NOZIP)
RECOVER(ROWSUSING BACKUP) DB1/= FROM DB1DUMP TAPE = DB1TAPE")

Example 5

The following example causes the rows to be reconstructed from the backup dump

DB1DUMP and tape DB1TAPE, and the entire audit since the time of the dump. The

example enables the FLUSHDB option, which helps determine when DMRECOVERY

needs to take restart points.

RUN *SYSTEM/DMUTILITY("DB = DB1 OPTIONS(FLUSHDB = 1)
RECOVER(ROWS USING BACKUP) DB1/= FROM DB1DUMP TAPE = DB1TAPE")

Example 6

The following example recovers rows from the specified family index 0 of the database

DB1 from the dump DB1DUMP, which is stored on tape DB1TAPE.

RUN *SYSTEM/DMUTILITY("DB = DB1 RECOVER(ROWS USING BACKUP)
DB1/= (FAMILYINDEX = 0) FROM DB1DUMP TAPE = DB1TAPE")

Example 7

The following example causes the rows to be reconstructed from the backup dump

DB1DUMP and tape DB1 with the given serial number specification 493203 and the entire

audit since the time of the dump.

RUN *SYSTEM/DMUTILITY("DB = DB1 RECOVER(ROWS USING BACKUP)
DB1/= FROM DB1DUMP TAPE = DB1TAPE(SERIALNO = 493203)")

Example 8

The following example causes the rows to be reconstructed from the backup dump

DB1DUMP and tape DB1TAPE with the given density specification FMTST9840 and the

entire audit since the time of the dump.

RUN *SYSTEM/DMUTILITY("DB = DB1 RECOVER(ROWS USING BACKUP)
DB1/= FROM DB1DUMP TAPE = DB1TAPE(DENSITY = FMTST9840)")

Examples of the RECOVER Statement for Whole Database
Recovery

The following examples illustrate the use of the REBUILD function, which moves the

entire database forward in time. DMUTILITY begins the REBUILD process by loading the

entire database from one or more dumps on multidump tapes.

Example 1

The following command implements the REBUILD THRU AUDIT function, which applies

the afterimages from all audit files created since the time of the dump. This process

continues until all afterimages in the audit file specified by <integer> have been applied.

This command applies to the database QRESCFILE, dump DB1DUMP, which is stored on

tape QRESCFILETAPE.

Recovering the Database

8600 0759-622 8–37

RUN *SYSTEM/DMUTILITY("DB = QRESCFILE RECOVER(REBUILD
THRU AUDIT 999) QRESCFILE/= FROM DB1DUMP TAPE = QRESCFILETAPE")

Example 2

The following command will recover the entire database QRESCFILE since the most

current dump, most current full, and most current accumulated respectively.

RUN *SYSTEM/DMUTILITY("DB = QRESCFILE RECOVER(REBUILD
THRU AUDIT 999) QRESCFILE/= FROM MOST CURRENT")

RUN *SYSTEM/DMUTILITY("DB = QRESCFILE RECOVER(REBUILD
THRU AUDIT 999) QRESCFILE/= FROM MOST CURRENT FULL)

RUN *SYSTEM/DMUTILITY("DB = QRESCFILE RECOVER(REBUILD
THRU AUDIT 999) QRESCFILE/= FROM MOST CURRENT ACCUM")

Example 3

The following command will recover the entire database QRESCFILE up from a specified

time point of AUGUST 25 AT 12:00, from dump DB1DUMP, which is stored on tape

QRESCFILETAPE.

RUN *SYSTEM/DMUTILITY("DB =
QRESCFILE RECOVER(REBUILD TO GEQ AUGUST 25 AT 12:00)
QRESCFILE/= FROM DB1DUMP TAPE = QRESCFILE TAPE")

Example 4

The following command will recover the entire database QRESCFILE from dump

DB1DUMP, which is stored on tape QRESCFILETAPE, using the NOZIP option, which will

allow entire database recovery to be controlled by a single WFL.

RUN *SYSTEM/DMUTILITY("DB =
QRESCFILE OPTIONS(NOZIP) RECOVER(REBUILD THRU AUDIT 999)
QRESCFILE/= FROM DB1DUMP TAPE = QRESCFILETAPE")

Example 5

The following command recovers the entire database QRESCFILE from dump DB1DUMP,

which is stored on tape QRESCFILETAPE using the FLUSHDB option, which helps

determine when DMRECOVERY needs to take restart points.

RUN *SYSTEM/DMUTILITY("DB =
QRESCFILE OPTIONS(FLUSHDB = 1) RECOVER(REBUILD THRU AUDIT 999)
QRESCFILE/= FROM DB1DUMP TAPE = QRESCFILETAPE")

Example 6

The following command recovers files that are stored on family index 0 from the database

QRESCFILE. This backup exists on dump DB1DUMP, which is stored on tape

QRESCFILETAPE.

RUN *SYSTEM/DMUTILITY("DB = QRESCFILE
RECOVER(REBUILD THRU AUDIT 999) QRESCFILE/=
(FAMILYINDEX = 0) FROM DB1DUMP TAPE = QRESCFILEETAPE")

Recovering the Database

8–38 8600 0759-622

Example 7

The following command recovers the entire database QRESCFILE from dump DB1DUMP,

which is stored on tape QRESCFILETAPE with the specified serial number 394039.

RUN *SYSTEM/DMUTILITY("DB = QRESCFILE
RECOVER(REBUILD THRU AUDIT 999) QRESCFILE/=
FROM DB1DUMP TAPE = QRESCFILETAPE(SERIALNO = 394039)")

Example 8

The following command recovers the entire database QRESCFILE from dump DB1DUMP,

which is stored on tape QRESCFILETAPE with the specified tape density FMTST9840.

RUN *SYSTEM/DMUTILITY("DB = QRESCFILE
RECOVER(REBUILD THRU AUDIT 999) QRESCFILE/=
FROM DB1DUMP TAPE = QRESCFILETAPE(DENSITY = FMTST9840)")

Database Recovery Using Incremental and
Accumulated Dumps

When using incremental and accumulated dumps in the recovery or copy process, the

order of the dumps specified in the recovery source list must adhere to the following

guidelines:

• A full dump must be designated as the first dump specification.

• One accumulated dump and one or more incremental dumps follow a full dump.

• An accumulated dump cannot follow an incremental dump.

• Dumps specified must be in the order in which they are performed.

• When DMUTILITY is running the RECOVER or COPY command to recover the

database, each tape name must include “CYCLE = <last cycle>” and “VERSION =

<last version number>” in the <tape specification> construct unless the dump is

stored on a multidump tape.

Note: Tape processing becomes single threaded when DMUTILITY is loading from a

multidump tape.

If the recovery starts and the dumps are not specified according to the previous

guidelines, you must choose whether to abort or initialize the recovery process without

using the remaining dump files by processing the necessary audit files.

Although the incremental and accumulated dump feature is available, all recoveries require

a full dump. The number of audit files saved remains the same. It is recommended that

you save at a minimum the last two to three dumps along with the audit files generated

from the same timeframe. If a recovery process using an incremental or accumulated

dump fails, the alternative is to recover the database using only the full dump and

corresponding audit files.

Recovering the Database

8600 0759-622 8–39

The DMUTILITY and DMDUMPDIR programs allow recovery using the RECOVER FROM

MOST CURRENT construct to automatically access the correct dumps when incremental

and accumulated backups exist. The database DUMPSTAMP option enables the creation

of incremental and accumulated backups.

The DMUTILITY and DMDUMPDIR programs allow recovery using the RECOVER FROM

MOST CURRENT FULL construct to automatically access the most current full backup

with the database DUMPSTAMP option enabled. This recovery occurs even when

corresponding accumulated backups, incremental backups, or both backups exist.

The DMUTILITY and DMDUMPDIR programs allow recovery using the RECOVER FROM

MOST CURRENT ACCUM construct to automatically access the correct dumps when you

want the most current full and accumulated backup. This recovery occurs even when

corresponding incremental backups exist.

Running Recovery

The format for running partial database recovery is the following:

RUN RECONSTRUCT/<database name>

The format for running partial database recovery under a permanent directory is the

following:

RUN <path name>/RECONSTRUCT/<database name>;
DATAPATH = *DIR/TEST ON TESTPACK;

The format for running whole database recovery is the following:

RUN SYSTEM/DMRECOVERY ("<db statement>")

The format for running whole database recovery under a permanent directory is the

following:

RUN SYSTEM/DMRECOVERY ("<db statement>");
DATAPATH = <path name> ON <family name>

These are some of the messages that can appear during ABORT recovery or when

running RECONSTRUCT or DMRECOVERY:

• AUDITUPDATE LEVEL IS <#>. RECOVERY UPDATE LEVEL IS <#>.

The <#> is a number representing the update level. The audit file has an update

level that differs from that of recovery. You can either continue the run or discontinue

it.

• THE FOLLOWING AUDIT BLOCK IS IN ERROR.

There is something wrong with the audit file. The run discontinues.

• AUDIT IO ERROR: “TERMINATE” TO FINISH NORMALLY - OTHERWISE “DS”

The database is in sync, but recovery has not progressed to the user-specified point.

Enter TERMINATE to stop processing or DS to discontinue the run. A TERMINATE

command completes processing to the point before the error occurred. For example,

Recovering the Database

8–40 8600 0759-622

during a REBUILD THROUGH AUDIT FILE 9 command, if an error occurs at audit

file 7, the TERMINATE command completes processing at audit file 6.

• INSERT WRITE RING ON UNIT – <#>; THEN AX TO CONTINUE.

The <#> is a number representing the tape drive number. DMRECOVERY needs to

write to tape, but the tape has no write ring. Insert a write ring on the tape; then use

the AX (Accept) command on the operator display terminal (ODT) to continue.

• WORKER # <#> TERMINATED ABNORMALLY. AX TO RESTART WORKER <#>.

The <#> construct is a number representing the worker number. Something

happened to one of the RECONSTRUCTFILTER workers. Either correct the problem

and continue the run with an AX command, or discontinue it with a DS (Discontinue)

command.

For more information on the AX and DS commands, refer to the System Commands

Operations Reference Manual.

Note: DMUTILITY passes the parameters to the recovery programs by way of the

files <dbname>/RECONSTRUCTINFO (for row recovery), <dbname>/REBUILDINFO

(for REBUILD), and <dbname>/ROLLBACKINFO (for ROLLBACK). The layouts of

these files can be found in DATABASE/PROPERTIES.

• NO FILE <database name>/AUDIT<nnn> (MT) #1 <nnn>:0

The requested audit file is not on disk, and the recovery program looks for the audit

file on tape.

You can mount the corresponding audit tape or use the FILE ASSIGNMENT

command to specify the disk pack on which the audit file resides. If you use the

FILE ASSIGNMENT command, specify CYCLE = 1 in the FILE ASSIGNMENT

statement. If you do not specify CYCLE = 1, the message “Unmatched Genealogy”

appears.

• ACCEPT: RETRY OR FAMILY = <family name> TO CONTINUE
THE ROLLBACK OR "STOP" TO END ROLLBACK
*** CHOOSING STOP WILL FINISH ROLLBACK AT AFN = <n>,
ABSN = <number>, AUDIT TIME = <date-time> ***

Rollback recovery detected a missing audit file. If you choose the AX STOP option,

rollback recovery ends at the indicated AFN, ABSN, and time. Take one of the

following actions:

- Provide the requested audit file and continue the rollback recovery by entering AX

RETRY or AX FAMILY = <family name>

- End the rollback recovery at a consistent point by entering AX STOP.

• ACCEPT: RETRY OR FAMILY = <family name> TO CONTINUE THE ROLLBACK

Rollback recovery detected a missing duplicate audit. Provide the audit and continue

the run with either AX RETRY or AX FAMILY = <family name>. You can also restart

the recovery run after you after you provide the missing audit and enter the DS

command.

Recovering the Database

8600 0759-622 8–41

TAPESERVER System Option and RoboHost Units

A subtle operational change occurs if the TAPESERVER system option is set. If you

designate an audit file that cannot be retrieved by a RoboHost unit because either the

RoboHost unit or the tape itself is not available, then perform the following steps:

1. Use the NF (No File) system command to respond to the No File condition.

2. Supply the required AX response to the following user message:

RETRY OR FAMILY = <FAMILY NAME>

Visible Recovery Commands

The Visible Recovery commands are similar to the Visible DBS commands (described in

Section 12, Communicating with the Database,) in that they enable you to change various

database factors, display status information, and print statistics. However, the differences

between the Visible Recovery commands and Visible DBS commands are as follows:

• The Visible Recovery commands enable you to monitor and optimize recovery

operations rather than normal database operations.

• While the Visible DBS commands are issued as SM (Send to MCS or database)

system commands to the database stack, the Visible Recovery commands are issued

as AX (Accept) system commands to an internal task that is dependent on the

recovery task.

If you display all of your jobs in the mix, results similar to the following example appear.

The SYSTEM/DMRECOVERY task has a different mix number (162) than its dependent

task (165), which follows it in the list. You issue a Visible Recovery command against

dependent task 165, not the SYSTEM/DMRECOVERY task of 162.

Mix Pri JOB ENTRIES (ALL) USER=PROD1
161 50 JOB (PROD1)
162 50 ..(PROD1) *SYSTEM/DMRECOVERY ON SYS432
165 50(PROD1) (PROD1)CTRLDB ON ADDTEST

To issue a Visible Recovery STATUS command for the preceding example, type

165 AX STATUS

The two categories of Visible Recovery commands are

1. Tuning commands

Use the tuning commands to tailor the amount of memory used by a recovery

operation and how often information is written to disk. The three tuning commands

are

• ALLOWEDCORE = <integer>

• OVERLAYGOAL = <decimal value>

• WRITEDELAYFACTOR = <decimal value>

2. Monitoring commands

Recovering the Database

8–42 8600 0759-622

Use the monitoring commands to check on the status of a recovery operation. The

three monitoring commands are

• STATUS

• STATISTICS

• STATISTICS CLEAR

The following subsections explain each command in detail.

ALLOWEDCORE = <integer> Command

Use this Visible Recovery command to designate the amount of core memory available for

the recovery process.

Initial Value

The initial ALLOWEDCORE value for a recovery operation is the value set for the

ALLOWEDCORE parameter in the database control file. The default value is 50,000

words.

Maximum Value

The maximum ALLOWEDCORE setting for a recovery operation is 549,755,813,887

words.

Effect of Changes

Any changes you make to the ALLOWEDCORE setting are written to the database control

file and remain in place after the recovery operation completes.

To optimize the ALLOWEDCORE setting for normal database operations, use the Visible

DBS CHANGE command ALLOWEDCORE = <unsigned integer>. For more information

on the Visible DBS commands, refer to Section 12, Communicating with the Database.

Optimizing Normal Database and Recovery Operations

If, in your environment, it is appropriate to use different ALLOWEDCORE settings for

recovery and normal database operations, perform the following steps to optimize both

operations:

1. Note the normal database operation setting for the ALLOWEDCORE value.

2. Initiate the recovery operation.

3. Optimize the ALLOWEDCORE setting for the recovery operation.

4. Open the database after recovery completes.

5. Use the Visible DBS CHANGE command ALLOWEDCORE = <unsigned integer> to

reset the ALLOWEDCORE setting to the value noted in step 1.

Recovering the Database

8600 0759-622 8–43

OVERLAYGOAL = <decimal value> Command

Use this Visible Recovery command to control the rate at which buffers are overlaid to disk

during a recovery operation.

Initial Value

The initial setting for the overlay rate is the value set for the OVERLAYGOAL parameter in

the database control file. By default, the overlay rate is 5 percent of the ALLOWEDCORE

parameter setting per minute. For example, if the ALLOWEDCORE setting is 100,000

words, the default overlay rate is 5,000 words per minute.

Allowed Values

You can set the OVERLAYGOAL parameter to any decimal value in the range 0 to 100. If

you assign a nonzero value to the OVERLAYGOAL parameter, the maximum number of

buffers is limited to the smaller of the following two values:

• 512 buffers or the number of system buffers if that number is larger

• The number of buffers within the limits of the ALLOWEDCORE setting

Effect of Changes

Any changes you make to the OVERLAYGOAL parameter are written to the database

control file and remain in place after the recovery operation completes.

To reset the value for normal database operations, use the Visible DBS CHANGE

command OVERLAYGOAL = <value>. For more information on the Visible DBS

commands, refer to Section 12, Communicating with the Database.

Optimizing Normal Database and Recovery Operations

If, in your environment, it is appropriate to use different overlay rates for recovery and

normal database operations, perform the following steps to optimize both operations:

1. Note the normal database operation setting for the OVERLAYGOAL parameter.

2. Initiate the recovery operation.

3. Optimize the overlay rate for the recovery operation.

4. Open the database after recovery completes.

5. Use the Visible DBS CHANGE command OVERLAYGOAL = <value> to reset the

overlay rate to the value noted in step 1.

WRITEDELAYFACTOR = <decimal value> Command

Use this Visible Recovery command to set the time (in seconds) that must elapse after a

buffer is modified and before a writeahead operation is initiated.

Recovering the Database

8–44 8600 0759-622

Each time a buffer is modified, the changed information must be written to disk. Usually

as soon as a buffer is modified, a write operation is initiated to write the changed

information to disk. If the same buffer is modified repeatedly, delays in the recovery

operation can occur because the buffer cannot be modified again until the change has

been written to disk.

Using the WRITEDELAYFACTOR command you can limit how often a buffer is written to

disk. Figure 8–1 illustrates the standard buffer access/write operation scenario. In this

scenario, each buffer access is followed by a write operation.

Figure 8–1. Standard Buffer Access/Write Operation Scenario

Figure 8–2 illustrates the effect of the WRITEDELAYFACTOR command. In this scenario,

several buffer accesses occur before each write operation. The write operation occurs

when the time interval you specify in the WRITEDELAYFACTOR command has elapsed. If

a buffer access occurs before the specified time has elapsed, the time counter is reset.

Recovering the Database

8600 0759-622 8–45

Figure 8–2. Buffer Access/Write Operation Scenario

with WRITEDELAYFACTOR Effect

Initial Value

The WRITEDELAYFACTOR value is set initially to 0.2 seconds. The minimum

WRITEDELAYFACTOR value you can assign is 0. There is no maximum value.

Do not assign too large a value in the WRITEDELAYFACTOR command because keeping

too much information in memory can adversely affect performance. To optimize recovery

performance, you must find a balance between performing write operations too

frequently and keeping too much information in memory.

STATUS Command

Use this Visible Recovery command to display the current status of the recovery

operation. Figure 8–3 is a sample Visible Recovery status display.

Recovering the Database

8–46 8600 0759-622

STATISTICS START: MM/DD/YY 10:35: 2
STATISTICS END: MM/DD/YY 14:37:29 INTERVAL: 0 DAYS, 0: 2:27
AUDIT START: MM/DD/YY 20:35:46
AUDIT END: MM/DD/YY 20:35:46 INTERVAL: 0 DAYS, 0: 0: 0
CURRENT AFN=1, ABSN = 420
ALLOWEDCORE: 3000, TOTALCORE: 2976
OLAYGOAL: 5, OLAYRATE: 5.0472, OVERLAYS:12
READAHEAD FACTOR: 220 AUDIT RECORDS
WRITEDELAYFACTOR: 0.2 SECONDS
READS: 3910, READAHEADS: 3902, AVG IO TIME: .0196788, AVG IO WAIT: 6.0247-4
WRITES: 4568, WRITEAHEADS: 4568, AVG IO TIME: .0203959, AVG IO WAIT: .0012135

Figure 8–3. Sample Visible Recovery Status Display

Each of the elements in the status display is explained in the following text.

STATISTICS START, STATISTICS END, INTERVAL

These values represent the start, end, and interval time either since the recovery operation

started or since you issued the Visible Recovery command STATISTICS CLEAR,

whichever is the most recent.

AUDIT START, AUDIT END, INTERVAL

These values represent the times associated with the first and the most recent control

points encountered in the audit trail, and the gap between the two control points. The

times provided are the original, real times as found in the audit trail. If no end control point

is encountered, the audit interval is shown as 0 (zero), and the AUDIT START and AUDIT

END values are identical.

CURRENT AFN, ABSN

These values identify the current position, in terms of the audit file number (AFN) and audit

block serial number (ABSN), of the recovery operation in the audit trail.

ALLOWEDCORE, TOTALCORE

These values identify the maximum amount of memory the recovery operation is allowed

to use (ALLOWEDCORE value) and the amount actually in use (TOTALCORE value).

If the TOTALCORE value is the same as the ALLOWEDCORE value, consider using the

Visible Recovery command ALLOWEDCORE to increase the amount of core memory

available for the recovery operation.

Recovering the Database

8600 0759-622 8–47

READAHEADFACTOR, WRITEDELAYFACTOR

The READAHEADFACTOR value identifies the number of audit records to be scanned

during a readahead cycle. That is, the READAHEADFACTOR value determines the amount

of audit information that has been read from the audit trail and that is currently waiting to

be processed.

The value of READAHEADFACTOR is altered as a result of performing readaheads. If

readaheads are considered successful, the READAHEADFACTOR value is increased,

meaning that more audit records are scanned in the next readahead cycle. Readaheads

are considered unsuccessful if the number of physical reads initiated during the readahead

cycle fall below a specified percentage. This drop-off in physical reads might happen if the

majority of the blocks needed are already in memory or are in the process of being read. If

readaheads are unsuccessful, the READAHEADFACTOR value is decreased so that fewer

audit records are scanned in the next readahead cycle. The READAHEADFACTOR value is

initialized to 20.

To optimize recovery performance, you must maximize the readahead and writeahead

operations while minimizing the amount of I/O wait time.

The WRITEDELAYFACTOR value provides the current setting for the

WRITEDELAYFACTOR factor. The WRITEDELAYFACTOR value enables several buffer

accesses to occur before a write operation is initiated. This action can reduce the time

spent waiting for write operations to complete.

The default setting for the WRITEDELAYFACTOR factor is 0.2 seconds.

You can alter the setting for this factor by using the Visible Recovery command

WRITEDELAYFACTOR.

For more information, refer to “WRITEDELAYFACTOR = <decimal value> Command”

earlier in this guide.

Additional Status Report Information

The Visible Recovery statistics report also contains the following information. In all cases,

the values represent the counts either since the recovery operation started or since you

issued the last STATISTICS CLEAR command, whichever is the most recent.

• The number of read operations performed

• The number of write operations performed

• The number of readahead operations performed

A low value for the number of readahead operations might indicate that all the

ALLOWEDCORE memory is being used. It might also indicate that the setting for the

WRITEDELAYFACTOR factor is too high.

• The number of writeahead operations performed

• The average number of seconds for I/O operations

• The average number of seconds spent waiting for I/O operations

Recovering the Database

8–48 8600 0759-622

STATISTICS and STATISTICS CLEAR Commands

Use the Visible Recovery STATISTICS command to generate a report or listing of recovery

operation statistics. Use the Visible Recovery STATISTICS CLEAR command to generate a

statistics report, clear the existing statistics, and start a new interval. For both commands,

the information is generated as a printer backup (BD) file.

Recovering the Database

8600 0759-622 8–49

Sample Visible Recovery Statistics Report

Figure 8–4 shows a sample Visible Recovery statistics report.

*** HALT/LOAD RECOVERY STATISTICS REPORT FOR JOB 9866/9866 ***
STATISTICS START: MM/DD/YY 14:22:29
STATISTICS END: MM/DD/YY 14:23:50 INTERVAL: 0 DAYS, 0: 1:21
AUDIT START: MM/DD/YY 14:53:37
AUDIT END: MM/DD/
YY 11:58:36 INTERVAL: 0 DAYS, 21: 4:60
CURRENT AFN=1, ABSN = UNDEFINED
ALLOWEDCORE: 50000, TOTALCORE: 1173
OLAYGOAL: 5, OLAYRATE: 0, OVERLAYS:0
READAHEAD FACTOR: 0 AUDIT RECORDS
WRITEDELAYFACTOR: 0.2 SECONDS
DMREAD STATISTICS
TOTAL DMREAD CALLS 62
GETBUFFERS 2 3.22%
ACTUALREADS 60 96.77
READAHEADS 1 1.61%
NON-DISK READS 61 98.38%
DISK READS 1 1.61%
LOGICAL READS 59 95.16%
LOGICAL READS ON READAHEAD 1 100.00%
NUMBER OF WRITE AHEADS 0 0.00%
AUDIT IMAGE APPLICATION STATISTICS
(1) AUDIT RECORDS SCANNED WHEN APPLYING AFTER IMAGES
(2) AUDIT RECORDS ACTUALLY APPLIED AS AFTER IMAGE
(3) AUDIT RECORDS SCANNED WHEN APPLYING BEFORE IMAGES
(4) AUDIT RECORDS ACTUALLY APPLIED AS BEFORE IMAGE
AUDIT RECORD
TYPE# MNEMONIC (1) (2) (3) (4)

2 BCP 21 0 0 0
3 ECP 21 0 0 0
4 BTR 20 0 0 0
5 ETR 20 0 0 0

10 DSC 20 20 0 0
16 ADSS 20 20 0 0
21 DBSI 7 0 0 0
22 DBST 8 0 6 0
29 RECOV 12 0 0 0
32 RDSO 13 0 0 0
33 RDSC 13 0 0 0
76 LGRR 1 0 0 0
79 STRDC 3 0 0 0
81 SAC 20 0 0 0
91 SIBO 1 0 0 0
92 SIBC 1 1 0 0
101 AISE2 20 20 0 0
--
TOTALS 221 60 6 0

Recovering the Database

8–50 8600 0759-622

DATABASE I/O STATISTICS
(1) NUMBER OF READS
(2) NUMBER OF READ AHEADS
(3) AVERAGE READ I/O TIME (SECONDS)
(4) AVERAGE READ WAIT TIME (SECONDS)
(5) NUMBER OF WRITES
(6) NUMBER OF WRITE AHEADS
(7) AVERAGE WRITE I/O TIME (SECONDS)
(8) AVERAGE WRITE WAIT TIME (SECONDS)
(9) NUMBER OF BUFFERS
STRUCTURE *--------------READS-----------*----------WRITES------*--
NO. NAME (1) (2) (3) 4) (5) (6) (7) (8) (9)
3 DATASETONE 0 0 0.00000 0.00000 2 0 0.01849 0.00008 2
4 S2345678901234567 1 0.02570 0.02726 1 0 0.01728 0.00009 1

TOTALS 1 0 0.02570 0.02726 3 0 0.03577 0.00017 3
AUDIT I/O STATISTICS
NUMBER OF READS 15
NUMBER OF READ AHEADS 0
TOTAL READ WAIT TIME 0.0 SECONDS
AVERAGE READ WAIT TIME 6.0 MS.

Figure 8–4. Sample Visible Recovery Statistics Report

COPY Statement (DMUTILITY)

The COPY statement is used to recover unaudited databases. It is also used to copy an

offline dump of the entire database, audited or unaudited, from tape to disk. The syntax for

this statement is illustrated and explained on the following pages.

You can copy the following from backup dumps:

• Parts of the database

• Selected rows

• Selected family indexes

• Rows from one or more partial dumps

Note: Use the COPY statement only to restore data from a single dump or a set of

dumps that were created from a single DUMP statement. Examples 14 and 15 later in this

section demonstrate copy operations from multiple dumps.

Syntax

──┬───────────────┬─┬───────────┬─ COPY ─┬──────────────┬──────────────►
└─<copy option>─┘ └─ OFFLINE ─┘ └─ <copy row> ─┘
┌◄─────────────── ; ───────────────┐

►─┴─ <copy list> FROM <copy source> ─┴─────────────────────────────────┤

Recovering the Database

8600 0759-622 8–51

<copy option>

┌◄─────────────── , ───────────────┐
── OPTIONS ── (─┴─┬─/1\─ WORKERS = <integer> ────┬─┴─) ──────────────┤

├─/1\─ BYCYCLE ────────────────┤
├─/1\─ QDCVERIFY ──────────────┤
└─/1\─ QDCWORKERS = <integer> ─┘

<copy row>

── (ROWS USING BACKUP) ──┤

<copy list>

┌◄──────────────────────────── , ───────────────────────────┐
──┴─┬─<file name>───────┬─┬─────────────────┬─┬─────────────┬─┴────────┤

└─ (<copy list>) ─┘ └─<copy selector>─┘ └─<copy dest>─┘

<copy selector>

┌◄──────────────┬── AND ─┬───────────────┐
│ └◄─ & ───┘ │

── (─┴─┬────────────────────────────────────┬─┴─) ───────────────────┤
├─/1\─ FAMILYINDEX ── = ──<range>────┤
├─/1\─ ROW ── = ──<range>────────────┤
├─/1\─ PACKNAME ── = ──<family name>─┤
└─/1\─ SECTION ── = ──<range>────────┘

<copy dest>

──┬─<copy as>─┬───────────┬──┤
│ └─<copy to>─┤
├─<copy onto>───────────┤
└─<copy to>─────────────┘

<copy as>

── AS <file name> ─┬────────────────────┬──────────────────────────────┤
└─ ON <family name> ─┘

<copy onto>

── ONTO <file name> ─┬────────────────────┬────────────────────────────┤
└─ ON <family name> ─┘

<copy to>

── TO ── (── FAMILYINDEX = ─┬─<integer>─┬─) ─────────────────────────┤
└─ RETAIN ──┘

<range>

┌◄───────────── , ────────────────────────────────┐
──┴─<unsigned integer>─┬────────────────────────┬───┴──────────────────┤

└─ - <unsigned integer> ─┘

Recovering the Database

8–52 8600 0759-622

<copy source>

┌◄─────────────────── , ──────────────────┐
──┴─┬─<tape specification>────────────────┬─┴──────────────────────────┤

├─<disk specification>────────────────┤
├─<multidump tape specification>──────┤
└─ QDC ── (──<QDC title clause>──) ─┘

<tape specification>

┌◄───────────────────────────────── , ────────────────────────────────┐
──┴─<tape name>─┬───┬─┴──┤

│ ┌◄─────────────────── , ──────────────────┐ │
└─ (─┴─┬─/1\─ VERSION = <integer> ───────────┬─┴─) ─┘

├─/1\─ CYCLE = <integer> ─────────────┤
├─/1\─ SERIALNO = ─┬─<integer>────────┤
│ └─<string6>────────┤
└─/1\─ DENSITY = ──<density mnemonic>─┘

<disk specification>

──<disk dump file name>── ON ──<family name>───────────────────────────┤

<multidump tape specification>

──<dump name>── TAPE ── = ──<tape name>──────────────────────────────►
►─┬──┬───────────┤
│ ┌◄──────────────────── , ────────────────────┐ │
└─ (─┴─┬─/1\─ VERSION ── = 1 ───────────────────┬─┴─) ─┘

├─/1\─ CYCLE ── = 1 ─────────────────────┤
├─/1\─ SERIALNO ── = ─┬─<integer>────────┤
│ └─<string6>────────┤
└─/1\─ DENSITY ── = ──<density mnemonic>─┘

Explanation

The COPY syntax you designate determines if the entire database is copied or if only a

portion of the database is copied.

Note: To copy the entire database, ensure that the necessary database dump tapes are

specified.

DMUTILITY can perform a COPY without a current level control file being present. If the

control file is present in the <copy list>, then the COPY can proceed by reading the control

file from the <copy source> and opening this as the control file.

The <copy dest> specifies the location of the control file for the destination database. If

the <db statement> does not specify <usercode> or <family name>, then these are

inferred and use the information from the <copy dest>. In the absence of an explicit

specification in the <copy dest>, the default destination is assumed. All information

specified in the <db statement> must match the information implied or explicitly stated in

the <copy dest>.

Recovering the Database

8600 0759-622 8–53

If the control file is contained in the <copy list> and its specification in the <copy dest>

matches all information in the <db statement>, then a COPY can be performed without a

current level control file. If the control file specification in the <copy dest> does not match

the <db statement>, then a fatal error results. If the control file is not in the <copy list>

and is not located by the <db statement>, then a fatal error results.

If the <copy selector> is specified or if not all the tape dumps are used in the <copy

source>, then only the selected rows or the rows of the specified tapes are copied.

The <copy row> syntax must be specified so that the selected rows or the rows in the

partial dump are copied into the destination file. To copy only a portion on the database, the

destination files must exist. If the destination files do not exist, DMUTILITY waits on a No

File condition.

Note: Use extreme caution when copying only parts of a database. Data corruption and

inconsistencies can easily occur.

If used for any purpose other than copying the entire database from an offline dump, the

COPY statement causes the version timestamps of the files being copied to be changed

so that they no longer match the version timestamps in the control file.

It is recommended that you do not override the version timestamps. The most common

reasons for a version timestamp mismatch are that you did not specify OFFLINE in the

dump statement or that all of the rows of a structure were not reloaded.

If the entire database was copied from an offline dump to a different family pack, and the

database has been updated to point to the new pack, you will encounter version

timestamp mismatch for both the restart and global data set the next time the database is

opened. This is because the version timestamps of the restart and global data sets were

updated during the offline dump, and they no longer match the version timestamps in the

control file. In this case, it is safe to override the version timestamps.

For audited databases, take care to avoid creating undetected audit discontinuities. Even

when the entire database is copied, the audit trail must be taken into consideration and

maintained with the copy. The end of the audit must be restored to its position at the time

the database was dumped. Thus, when making a dump, the last audit file should be kept

with the dump in case the database is to be copied back at a later time. Copying from an

online dump is not recommended.

<copy option>

The following options are available for copy:

Recovering the Database

8–54 8600 0759-622

• WORKERS

This option controls the maximum number of tape drives used to recover files in

parallel. The maximum number of workers or tape drives that can be specified is 50.

WORKERS is not available for use with multidump tapes.

For single dump tapes, increasing the number of workers can decrease the total time

required to complete the database recovery process. Limiting the number of workers

can free up tape drives for other purposes. If the same file has been copied to multiple

tapes, multiple workers cannot copy the same rows of that file at the same time.

Rather, the second worker and any subsequent workers wait for the first worker to

finish before continuing. Normally, this occurs if multiple dump tapes were used, each

with a different tape name. In this case, the database control file is present on cycle 1,

version 1 of each tape.

• BYCYCLE

When reloading the database, DMUTILITY processes one READVOLUME task for

each physical task for each physical tape required. The READVOLUME task is

processed in the following order if DMUTILITY has access to all the cycles and

versions from which the dump is composed: (CYCLE 1, VERSION 1), (CYCLE 1,

VERSION 2), . . . (CYCLE 1, VERSION n), (CYCLE 2, VERSION 1), (CYCLE 2, VERSION

2), . . . (CYCLE 2, VERSION m), . . . (CYCLE x, VERSION y). Each READVOLUME task

reads its own tape and usually the beginning of the next tape, since the last row

normally splits across two tapes.

If you did not include a cycle and version specification in the syntax, DMUTILITY reads

the tape directory from the first tape. This tape only has information about the number

of cycles, not the number of versions for each cycle. In this case, DMUTILITY

processes one READVOLUME task for each cycle because the directory shows only

one version exists for each cycle.

If you include a cycle and version number in the syntax, DMUTILITY reads the tape

directory from that tape, which likely has more information about all the cycles and

the actual number of versions for each cycle. In this case, one READVOLUME task is

processed for each version in the order previously described.

This process is designed to locate the desired rows as soon as possible. However, it

can appear that the same tape has unnecessarily been requested multiple times by

different READVOLUME tasks if all the rows are being reloaded.

When specified, the BYCYCLE option forces DMUTILITY to process one

READVOLUME task for each cycle instead of for each version even if DMUTILITY has

knowledge of multiple versions existing for some cycles. This action is most efficient

when the entire database is being reloaded, since all versions have to be read. One

READVOLUME task per cycle means an independent task for each cycle so that tapes

do not need to be requested multiple times by different READVOLUME tasks.

When DMUTILITY is copying rows, this option can cause extra searching time for the

desired rows that do not reside on the first version of the required cycle.

Note: Because CYCLE is always 1 for multidump tapes, tape processing becomes

single threaded when DMUTILITY is loading from a multidump tape.

•
QDCVERIFY

Recovering the Database

8600 0759-622 8–55

This option initiates the verification of selected data during the COPY process when

QDC (<QDC title clause>) is designated in the <copy source> construct. The

verification detects CHECKSUM and ADDRESSCHECK errors of the selected data.

• QDCWORKERS

This option controls the number of workers to be processed in parallel during a copy

that had QDC (<QDC title clause>) designated in the <copy source> construct. From

1 to 50 workers can be specified. If the QDCWORKERS option is not specified, the

value 1 is assumed.

OFFLINE

This option prevents other users from accessing the database. DMUTILITY waits for all

programs that opened the database to complete processing before it performs the

OFFLINE copy. If a database is being copied AS or ONTO another database, OFFLINE also

prevents users from accessing the destination database. When the OFFLINE copy is

successfully completed, DMUTILITY unlocks the source database control file. It also

unlocks the destination database control file, if the COPY was AS or ONTO another

database.

If DMUTILITY is discontinued during the OFFLINE copy or fails to unlock the control file,

the CANCEL statement can be used to unlock the source database control file. Do not

cancel the OFFLINE copy lock of the copied control file.

<copy row>

This option copies selected row or rows from a partial dump when performing a partial

database copy. The rest of the rows are retained. If this option is not specified when

performing a partial database copy, the selected rows are copied but the remaining rows

are discarded. This action could cause database corruption.

This option creates temporary files that are deleted at the end of the copy process. The

temporary file names take the following format:

<database file name>/TEMP<yyyymmddhhmm>

Ensure that there is enough disk space to create these temporary files. The amount of disk

space required depends on the size of the structures being copied.

<copy list>

This option designates the files and rows to be loaded. The slash equal sign (/=) can be

used to copy a family of files. The equal sign (=) alone designates that all files on the dump

tape are to be loaded.

Recovering the Database

8–56 8600 0759-622

<copy selector>

This option specifies which rows of the file are to be copied. If a copy list is

enclosed in parentheses and a copy selector is specified, then all database files in

that copy list are restricted by the copy selector. Database files in the copy list that

already have a copy selector specification have the outer selection constraints

related to the inner selection constraints through the Boolean construct OR.

Specifying SECTION in the copy selector causes only those rows that belong to the

specified sections to be copied.

FAMILYINDEX

If specified in the copy selector, only those rows that were present on the specified family

indexes at the time of the dump are copied from the dump tape. If the dump specified in

the copy source does not reflect the current physical placement of the rows on the pack

family indexes, you must be careful to ensure that the rows copied are the ones wanted.

This situation can arise if, sometime after the family index dump is taken, a COPY or

RECOVER is performed without retaining the family index.

ROW

If specified in the <copy selector> construct, only those particular rows are copied.

PACKNAME allows the user to limit DMUTILITY to a particular pack family without

enumerating the files that were present on the specified PACKNAME at the time of the

dump.

<copy dest>

This option identifies where the rows are to be copied. If <copy dest> is not specified,

DMUTILITY creates a new file on disk. The title of the new file copied is the same as the

title of the file on the dump tape.

<copy as>

This option causes DMUTILITY to copy the rows of a file from the dump tape and create a

new file on disk. The title of the newly created file is the file name specified in the <copy

as> specification. The file is copied to the pack family specified in the ON <family name>

clause, whether or not the original family was the same. If the ON <family name> clause

is not specified, the file is copied to its original pack family.

You can also use the <copy as> syntax to move a database to a new location.

These same steps can be used to access data from dumps that are older than the current

level of Enterprise Database Server software, which are called archive dumps. The archive

retrieval process allows the current level of the Enterprise Database Server software to

gain access to data that was backed up under previous levels of Enterprise Database

Server software.

Recovering the Database

8600 0759-622 8–57

In the case of archive retrieval, avoid copying the files over the top of current database

files.

1. Transfer the dump, DASDL source, and description file from their original location to a

new location and usercode.

2. Modify all of the appropriate places in the DASDL source to reflect the new pack

location. Make usercode and Enterprise Database Server software title changes at

this time.

3. Ensure that the following DASDL options are also included:

• UPDATE

• $SET ZIP

• $RESET DMCONTROL

4. Generate an updated description file and compile a new DMSUPPORT library by

compiling the modified DASDL source. For example,

COMPILE MYNEW/DASDL AS $MYDBNAME

5. Create a compatible control file by using the DMCONTROL INITIALIZE option. For

example,

RUN $SYSTEM/DMCONTROL("DB=MYDBNAME INITIALIZE ")

6. Use DMUTILITY to copy the database for traditional databases. For example,

RUN $SYSTEM/DMUTILITY("DB=MYDBNAME COPY = AS (NEWUSER) = ON
NEWPACK FROM MYDBNAMEDUMP ")

In addition to the data files, DMUTILITY copies the control file from the dump.

When you use DMUTILITY to copy a permanent directory database, use one of the

following forms.

• To replace the files in *DIR/NODE/MYDBNAME, use

RUN $SYSTEM/DMUTILITY("DB=MYDBNAME COPY
= FROM MYDBNAMEDUMP"); DATAPATH = *DIR/NODE ON PACKNAME

• To copy the database to the same directory on a different pack, use

RUN $SYSTEM/DMUTILITY("DB=MYDBNAME COPY
MYDBNAME/= AS MYDBNAME/= ON NEWPACK FROM MYDBNAMEDUMP");
DATAPATH = *DIR/NODE ON PACKNAME

• To copy the database from *DIR/NODE to *DIR/NEWNODE, use

RUN $SYSTEM/DMUTILITY("DB=MYDBNAME COPY MYDBNAME/= AS
*DIR/NEWNODE/MYDBNAME/= ON PACK FROM MYDBNAMEDUMP");
DATAPATH = *DIR/NODE ON PACKNAME

7. Update the control file copied from the dump against the new description file. For

example,

RUN $SYSTEM/DMCONTROL ("DB=MYDBNAME UPDATE")

Note: Ensure the DMCONTROL program is updating the control file that was copied

from the DMUTILITY program dump in step 6.

The database is now ready for use.

Recovering the Database

8–58 8600 0759-622

For archive retrieval, compile applications for use with this copy of the database. For

current databases, database equation can be used. The following example uses the WFL

MODIFY command to perform a “permanent” database equation:

WFL MODIFY <codefile title> DATABASE MYDBNAME
(TITLE=(NEWUC)MYDBNAME ON NEWPACK)

<copy onto>

This option causes DMUTILITY to copy the rows of a file from the dump tape onto the file

specified in the <copy onto> specification. The title of the copied file is the file name

specified in the <copy onto> specification. If the ON <family name> clause is specified,

the file being copied onto must reside on the specified family name. If the ON <family

name> clause is not specified, the file being copied onto must reside on the original pack

family of the file being copied. If the file being copied onto is not present, a No File

condition results.

If a file is not present on the destination pack, the security type of the copy is set to the

security type of the file on the dump tape. If the file was guarded, the security guard title is

obtained from the control file on the dump tape.

<copy to>

This option identifies the family index where the rows are to be copied. If RETAIN is

specified, the rows are copied to the same family index they occupied when they were

dumped. If <copy to> is not specified, the rows are allocated on arbitrary family indexes

but on the same pack family as the file to which they correspond.

If <copy to> is specified following <copy as>, and the ON <family name> clause is

specified, the FAMILYINDEX pertains to the family name specified in <copy as>.

If the FAMILYINDEX specified in the <copy to> specification does not exist, DMUTILITY

waits on a SECTORS REQUIRED condition for that FAMILYINDEX to be present.

<copy source>

The following options are available:

Recovering the Database

8600 0759-622 8–59

• Tape, disk, or multidump tape

This option identifies the tapes and dumps to be used during the copy process. If the

WORKERS option is not specified and the database dump being copied was created

using the TAPES clause, the WORKERS option is set to the value of TAPES used at

the time of the dump. If the TAPES option is greater than 20, the WORKERS value is

set to 20. TAPES and WORKERS are not valid for use with multidump tapes.

The tape directories of successive single dump reels are cumulative. The tape

directory of the last tape dumped contains information about all rows of the database

that were dumped. For example, assume a database was dumped to TAPEX, cycle 1

and cycle 2, and that each cycle has three versions. Also assume that cycle 1, version

3, was the last tape written. Under usual processing, you would specify cycle 1,

version 3, in the recovery source. However, if all the rows that need to be recovered

are on cycle 2, version 3, then specify cycle 2, version 3, as the recovery source.

Note: Offline dumps of the secondary database are intended as backup sources for

complete or partial database recovery at either the primary or secondary host using

the DMUTILITY RECOVER command. The use of an offline dump of the secondary

database is not recommended as a source for the DMUTILITY COPY command. For

additional information about using an offline dump of the secondary database, refer to

the information on managing a Remote Database Backup environment in the Remote

Database Backup Operations Guide.

•
QDC (<QDC title clause>)

Refer to “Using a Quiesce Database Copy as a Recovery or a Copy Source” in

Section 14, Using a Quiesce Database, for information.

Examples

Example 1

This command copies all database files from tape DBDUMP063094 to disk.

COPY = FROM DBDUMP063094

Example 2

This command copies all rows of the database that were present on family index 3 at the

time of the dump. All rows not on family index 3 at the time of the dump are left intact.

COPY = (FAMILYINDEX = 3) ONTO = FROM TAPEX

Example 3

This command copies all rows of the database to the same pack family and family index on

which they resided at the time of the dump.

COPY = TO (FAMILYINDEX = RETAIN) FROM TAPEX

Recovering the Database

8–60 8600 0759-622

Example 4

This command copies all rows of DB/D/DATA from the tape TAPEX to SYSPACK. The

original pack family need not be SYSPACK.

COPY DB/D/DATA AS DB/D/DATA ON SYSPACK FROM TAPEX

Example 5

This command copies all rows of DB/D/DATA from the tape TAPEX to family index 2 of

pack family SYSPACK. The original pack family need not be SYSPACK.

COPY DB/D/DATA AS DB/D/DATA ON
SYSPACK TO (FAMILYINDEX = 2) FROM TAPEX

Example 6

This command copies all rows of the database to the pack family and family index on

which they resided at the time of the dump.

COPY = TO (FAMILYINDEX = RETAIN) FROM ANOTHERDB063094
TAPE=DBDUMPS063094

Example 7

The following command copies all database files from dump DB1DUMP and tape

DB1TAPE to disk.

RUN *SYSTEM/DMUTILITY("DB = DB1
COPY DB1/= FROM DB1DUMP TAPE = DB1TAPE")

Example 8

The following command copies all rows of the database DB1 that were present on family

index 3 at the time of the dump DB1DUMP. All rows not on family 3 at the time of the

dump are left intact.

RUN *SYSTEM/DMUTILITY("DB = DB1 COPY DB1/=
(FAMILYINDEX = 3) FROM DB1DUMP TAPE = DB1TAPE")

Example 9

The following command copies all database files from dump DB1DUMP and tape

DB1TAPE to disk. Because it is an OFFLINE copy, it prevents other users from accessing

the database. DMUTILITY waits for all programs that opened the database to complete

processing before it performs the OFFLINE copy.

RUN *SYSTEM/DMUITLITY("DB = DB1
OFFLINE COPY DB1/= FROM DB1DUMP TAPE = DB1TAPE")

Example 10

The following command causes DMUTILITY to copy the rows of a file of the dump

DB1DUMP and tape DB1TAPE, and create a new file on disk. The title of the newly

created file is the file name specified in the <copy as> specification.

Recovering the Database

8600 0759-622 8–61

RUN *SYSTEM/DMUTILITY("DB = DB1 COPY DB1/=
AS TESTDIR/= FROM DB1DUMP
TAPE = DB1TAPE")

Example 11

The following command causes DMUTILITY to copy the entire database DB1 from the

dump DB1DUMP, which is stored on the tape DB1TAPE with the given serial number

specification 394302.

RUN *SYSTEM/DMUTILITY("DB = DB1 COPY DB1/=
FROM DB1DUMP TAPE = DB1TAPE(SERIALNO = 394302)")

Example 12

The following command causes DMUTILITY to copy the entire database DB1 from the

dump DB1DUMP, which is stored on the tape DB1TAPE with the given density

specification FMTST9840.

RUN *SYSTEM/DMUTILITY("DB = DB1 COPY DB1/=
FROM DB1DUMP TAPE = DB1TAPE(DENSITY = FMTST9840)")

Example 13

The following command causes DMUTILITY to copy all database files from dumps T1, T2,

and T3 that were created by the listed DUMP statement based on the specified family

index 1:

RUN *SYSTEM/DMUTILITY ("DB = DB1
DUMP=(FAMILYINDEX=1) TO T1;

=(FAMILYINDEX=2) TO T2;
=(FAMILYINDEX=3) TO T3")

RUN *SYSTEM/DMUTILITY("DB = DB1 COPY=FROM T1,T2,T3")

Example 14

The following command causes DMUTILITY to copy all database files from dumps T1 and

T2 that were created by the listed DUMP statement based on the specified pack name:

RUN *SYSTEM/DMUTILITY ("DB = DB1
DUMP=(PACKNAME=DATAPK1) TO T1;

=(PACKNAME=DATAPK2) TO T2")

RUN *SYSTEM/DMUTILITY("DB = DB1 COPY=FROM T1,T2")

Tape Dumps

The tape directories of successive single dump tape reels are cumulative. The tape

directory of the last tape dumped contains information about all rows of the database that

were dumped. For example, assume a database was dumped to TAPEX, cycle 1 and cycle

2, and that each has three versions. Also assume that cycle 1, version 3, was the last tape

written. Under usual processing, you would specify cycle 1, version 3, in the recovery

source.

Recovering the Database

8–62 8600 0759-622

Notes:

• Because CYCLE is always 1 for multidump tapes, tape processing becomes single

threaded when DMUTILITY is loading from a multidump tape.

• Whenever you use an existing multidump tape on a system, the fast access directory

for that tape must be present on the system. You can copy the directory from another

system or create the directory for the tape by using the TAPESET DIRECTORY

CREATE command.

• Unisys recommends that you do not move multidump tapes between systems to add

dumps to them because this can result in inconsistent fast access directory files on

the different systems. These inconsistent directory files can cause existing dumps to

be overwritten.

With the exception of incremental and accumulated dumps, if all the rows that need to be

recovered are on cycle 1, version 3, then specify cycle 1, version 3 as the single dump tape

copy source. When you use incremental and accumulated dumps to copy the database,

each tape name must include “CYCLE = last cycle” and “VERSION = last version

number” in the tape specification clause.

A dump tape should be named only once in the copy source list, and the specified cycle

and version should contain the latest tape directory. DMUTILITY then processes each

physical tape in parallel, dependent on the number of workers and the number of tapes

specified. The maximum number of workers allowed is 50. If the WORKERS recover

option is not specified, the value of the TAPES option at the time the dump is created

determines the number of workers.

A DMUTILITY-initiated COPY using the direct data set rows that were in the preallocated

region at the time of the dump causes DMUTILITY to simulate the loading of these rows

by preallocating them. The effects of the row preallocation cause these rows to appear as

though they had actually been written to the dump tape. Refer to “DMUTILITY INITIALIZE

Statement” in Section 5, Initializing and Maintaining.

Disk Dumps

The following information explains how to use the COPY statement syntax if you are using

disk dumps.

A disk dump should be named only once in the copy source list.

DMUTILITY expects all files named in a copy list to reside on the corresponding copy disk

dump source.

A DMUTILITY-initiated COPY using the direct data set rows that were in the preallocated

region at the time of the dump causes DMUTILITY to simulate the loading of these rows

by preallocating them. The effects of the row preallocation cause these rows to appear as

though they had actually been written to the dump.

Recovering the Database

8600 0759-622 8–63

DMUTILITY TAPECLONE Statement

The TAPECLONE statement, intended only for use in the Remote Database Backup

environment, initiates the database clone process on the secondary host.

For more information on the clone process in the Remote Database Backup environment,

refer to the Remote Database Backup Operations Guide.

STRUCTURECLONE Statement (DMUTILITY)

The STRUCTURECLONE statement, intended for use only in the Remote Database

Backup environment, initiates the database structure clone process on the secondary

host.

For more information on the structure clone process in the Remote Database Backup

environment, refer to the Remote Database Backup Operations Guide.

Recovering the Database

8–64 8600 0759-622

Section 9
Copying Audit Files

Audit files contain a history of the changes made to an audited database and are a

necessary component of the database recovery process. If audit files are not available

when a database failure occurs, all changes made to a database since the last backup

dump was taken might be lost. It is therefore important to manage the audit files for your

database. Just as special tools are required to make a backup copy of your database, so a

special tool, the COPYAUDIT program, is required to manage audit files and their backups.

The COPYAUDIT program enables you to perform the following audit file management

tasks:

• Copy audit files from one medium to another.

• Print or display online directories for audit file tapes.

• Verify the contents of audit files.

Note: The tasks identified in this section can be initiated through Database Operations

Center.

In This Section

This section describes the COPYAUDIT program and the tasks you can perform with the

program. Individual topics include

• Why copy audit files?

• Facilities provided by the COPYAUDIT program

• Initiating the COPYAUDIT program

• Checking the results of a COPYAUDIT run

• Methods for copying audit files

• Using the QUICKCOPY command

• Using the COPY command

• Using the DIRECTORY command to display audit file tape directories

• Using the VERIFY command to verify audit file contents

Appendix C, COPYAUDIT Error Messages, supplements the information provided in this

section. At the end of this section, quick-reference information is provided for all the

syntax diagrams related to using the COPYAUDIT program.

8600 0759-622 9–1

Conventions

In this section the following conventions are used:

• The term quickcopy tape is used to identify a tape to which audit files are copied using

the COPYAUDIT QUICKCOPY command.

• The terms quickcopy audit file and backup audit file are used to identify the backup

copy of an audit file that has been generated by copying an audit file from disk to tape

using the COPYAUDIT QUICKCOPY command. The quickcopy, or backup, audit file

must be copied back to disk before it can be used for database recovery or used by the

PRINTAUDIT program.

Why Copy Audit Files?

Introduction

You need to copy audit files for the following reasons:

• To maintain a backup copy of audit information in case it is needed in a database

operation

• To help ensure that there is enough space on disk for the generation of new audit files

You can make space available on your system by backing up the older audit files to

tape and then removing the audit files from disk.

• To restore a backup copy of an audit file to disk for database recovery or for use with

the PRINTAUDIT program

The COPYAUDIT program is a tool that enables you to safely copy audit files from one

medium to another by verifying each audit file as the file is copied.

Note: Do not copy audit files by using library maintenance. No verification checks are

performed, and any tape files produced are not directly usable by the database recovery

process.

To Archive Audit Files for Database Recovery Purposes

The database recovery process uses the information contained in the database audit files

to roll back, to rebuild, or to reconstruct portions of a database. Therefore, it is important to

maintain backup copies of your audit files in case a database recovery is required. The

default SAVEFACTOR for a COPYAUDIT tape is 999 days.

You can recover a database by using audit files that are stored on tape or disk. However, if

the audit files were copied or appended to tape using the COPYAUDIT QUICKCOPY

command, you must copy the audit files back to disk before performing a database

recovery. You can use audit files copied to tape with the COPYAUDIT COPY command for

database recovery without first being copied back to disk.

Copying Audit Files

9–2 8600 0759-622

To Keep Sufficient Space for Audit Files on Your System

Busy databases can generate enough data to fill an audit file every 30 minutes or fewer. If

you make primary and secondary copies of all audit files and maintain all audit files on disk,

you can rapidly run out of disk space, causing your database to stop and wait until more

space is made available for the audits. To avoid disk space problems, use the COPYAUDIT

program to transfer your audit files to an archive medium and then automatically remove

the audit files from disk. The COPYAUDIT program also provides facilities to copy audit

files from the archive medium back to your system.

Facilities Provided by the COPYAUDIT Program

Table 9–1 identifies the tasks you can perform using the COPYAUDIT program and the

headings under which the task is described.

Table 9–1. Tasks That Can Be Accomplished by Using the COPYAUDIT

Program

To perform this task . . . Refer to . . .

Copy one or more audit files to a

singlereel or to a multiplereel

tape.

• Methods for Copying Audit Files

• Using the QUICKCOPY Command

Copy exactly one audit file to a

singlereel tape.

• Methods for Copying Audit Files

• Using the COPY Command

Copy audit files to disk. • Methods for Copying Audit Files

• Using the QUICKCOPY Command

• Using the COPY Command

Copy audit files to tapes that

already contain audit files.

• Using the QUICKCOPY Command

• Append Option

Print or display an audit tape

directory.

Using the DIRECTORY Command to Display Audit File Tape

Directories

Verify the contents of audit files. Using the VERIFY Command to Verify Audit File Contents

Initiating the COPYAUDIT Program

Initiating COPYAUDIT Automatically

To have the Accessroutines initiate the COPYAUDIT program automatically each time an

audit file switch occurs, include the VERIFY clause, the QUICKCOPY TO clause, or the

COPY TO clause in the audit trail declaration in the database DASDL source file. Including

any of these clauses causes the Accessroutines to automatically initiate a WFL job that in

turn initiates the COPYAUDIT program.

Copying Audit Files

8600 0759-622 9–3

When an audit file switch occurs, the Accessroutines performs the following tasks:

1. If the DONTFORCE Visible DBS option is reset (the default setting), the

Accessroutines ensures two controlpoints occur as soon as possible after the new

audit file is opened.

If the DONTFORCE Visible DBS option is set, the Accessroutines waits until two

controlpoints occur naturally.

The controlpoints must occur prior to the COPYAUDIT program being run to ensure

that any subsequent ABORT or halt/load recoveries do not use the audit file being

copied by the COPYAUDIT program.

2. Using a WFL job, the Accessroutines initiates the COPYAUDIT program.

By default, the name of the WFL job started by the Accessroutines is

DATABASE/WFL/COPYAUDIT. This WFL job is provided on the release tape with your

data management software.

For information on the DASDL syntax required for designating COPYAUDIT options, refer

to the Data and Structure Definition Language (DASDL) Programming Reference Manual.

Initiating COPYAUDIT Manually

You can initiate the COPYAUDIT program manually by issuing the appropriate statement

from a message control system (MCS) such as CANDE or through a WFL job.

To initiate the COPYAUDIT program manually on a database, use one of the following

statements:

• RUN SYSTEM/COPYAUDIT("<COPYAUDIT statement>");
FILE CF (TITLE=control file title>);

When specified, the COPYAUDIT program obtains the security guard information

from the control file and maintains it on the copied audit file when the audit is

copied to the disk medium. The file equation of the CF is optional. For additional

information, refer to “Effect of the DASDL SECURITYGUARD Attribute” later in this

section.

• START DATABASE/WFL/COPYAUDIT("<COPYAUDIT statement>");

COPYAUDIT Statement Syntax

The following diagram illustrates the basic syntax of the COPYAUDIT statement.

──┬─────────┬─┬─ QUICKCOPY command ─┬──────────────────────────────────┤
└─ DEBUG ─┘ ├─ COPY command ──────┤

├─ DIRECTORY command ─┤
└─ VERIFY command ────┘

The DEBUG option causes a program dump to be taken if an error occurs during the

COPYAUDIT run. By default the DEBUG option is not set.

The syntax for the individual COPYAUDIT commands is explained under the following

headings:

Copying Audit Files

9–4 8600 0759-622

• Using the QUICKCOPY Command

• Using the COPY Command

• Using the DIRECTORY Command to Display Audit File Tape Directories

• Using the VERIFY Command to Verify Audit File Contents

Sample COPYAUDIT WFL Job

The following example illustrates some of the modifications you can make to the standard

COPYAUDIT WFL job:

BEGIN JOB COPYAUDITS;

% Identifying the name of the printer backup file
for any output messages.
BDNAME=BD/DOC/86000759;

TASK COPYAUDTASK;
RUN *SYSTEM/COPYAUDIT("VERIFY TESTPSVDB/AUDIT1 ON TAPE")

[COPYAUDTASK]; VALUE =0;
IF COPYAUDTASK IS COMPLETEDOK THEN
IF COPYAUDTASK(TASKVALUE) = 1 THEN

DISPLAY("COPYAUDIT COMPLETED CORRECTLY,
REMOVE AND STORE TAPE");

IF COPYAUDTASK IS COMPLETEDOK THEN
IF COPYAUDTASK(TASKVALUE) = 2 THEN

DISPLAY("COPYAUDIT WARNINGS OCCURRED,
CHECK BEFORE PROCEEDING");

IF COPYAUDTASK ISNT COMPLETEDOK OR
COPYAUDTASK(TASKVALUE) = 0 THEN

DISPLAY("COPYAUDIT FAILURE OCCURRED, RESOLVE PROBLEM");

END JOB.

Checking the Results of a COPYAUDIT Run

When the COPYAUDIT program completes, a task value is returned. The task value

identifies whether any problems occurred during the run. The job or process that initiates

the COPYAUDIT program can interrogate the task value to identify the nature of the

problem.

Task Value Meaning

0 The COPYAUDIT run ended abnormally.

Investigate and correct the cause of the failure, and then rerun the COPYAUDIT

program.

1 The COPYAUDIT run was successful.

Copying Audit Files

8600 0759-622 9–5

Task Value Meaning

2 The COPYAUDIT run completed, but a warning was issued.

Check the warning and, if appropriate, correct the problem and rerun the

COPYAUDIT program.

If the COPYAUDIT run is successful and you included the REMOVE option in the syntax,

the original audit file is automatically deleted. If you are operating in a Remote Database

Backup environment, you can use the RDB Utility to set an option that delays the removal

of the audit file until the audit information has been applied to the secondary database. For

more information on delaying the removal of audit files in a Remote Database Backup

environment, refer to the Remote Database Backup Operations Guide.

If an error occurs during the COPYAUDIT run, you can retry the COPYAUDIT run or

terminate the job. The parameters used by the Accessroutines to initiate the COPYAUDIT

program are displayed to enable you to rerun the job manually once the cause of the error

is corrected.

A falsestopper pattern is a stopper pattern that has been erroneously placed in the audit

file. A stopper pattern is present only at the end of an audit file. If the COPYAUDIT program

encounters a falsestopper pattern in an audit block, possibly because of a bad disk area,

only the good audit blocks before the falsestopper pattern are copied. All audit blocks

following the falsestopper pattern are ignored, since DMRECOVERY stops the recovery

process as soon as it encounters a falsestopper pattern.

Methods for Copying Audit Files

Introduction

Two basic methods are provided for copying audit files: QUICKCOPY and COPY. The two

methods are alternatives to each other.

QUICKCOPY Command

Using the QUICKCOPY command you can

• Copy one or more audit files from disk to tape with a fixedlength block size and

optionally verify each file as it is copied.

• Copy audit files to singlereel or multiplereel tapes and optionally verify each file as it is

copied.

For this task, the number of tape reels required is dependent on the amount of audit

information being copied and is not a function of the number of audit files being

copied.

• Copy one or more audit files from tape to disk and optionally verify each file as it is

copied.

• Append one or more audit files to an existing quickcopy audit file tape.

Copying Audit Files

9–6 8600 0759-622

• Use tape devices that cannot write data with varying block lengths.

• Use tape devices that do not support a readreverse capability.

• Ensure that data compression either does or does not occur.

• Specify the use of the TAPESET command when using tape drives with the Locate

Fast Access capability.

The QUICKCOPY command supports the copying of audit files to

• Multiplereel tapes

• Compressed tapes

• Drives that do not support the readreverse capability

The audit files are copied to tape in fixed-length blocks, and you must copy back the audit

files to disk before you can use them for database recovery purposes.

Effect of the DASDL SECURITYGUARD ATTRIBUTE

If the SECURITYGUARD attribute is set for the audit file, it is maintained on the copied

audit in the following situations:

• When copying the primary audit as the primary audit, or copying the secondary audit

as the secondary audit from one disk medium to another disk medium

• When the COPYAUDIT program is initiated with the file equation of the control file in

order to perform one of the following tasks:

- copy audit from tape/tapeset to disk medium

- copy primary audit as secondary audit from disk medium to disk medium

- copy secondary audit as primary audit from disk medium to disk medium

Copy Speed

Using the QUICKCOPY command can be faster than using the COPY command, especially

when audit record lengths are small. Audit blocks tend to be smaller when the DASDL

options INDEPENDENTTRANS and REAPPLYCOMPLETED are set.

The QUICKCOPY command also supports the use of the TAPESET command to group a

series of quickcopy tapes as a single logical tape. Then a disk file can contain information

regarding the contents of the tapes in the tape set. Using content information and tape

drives with the Locate Fast Access capability can drastically improve the speed at which

files are copied to and from tape.

Maximizing Tape Usage

To maximize tape usage, you can

• Use the COMPRESSED option to ensure that audit files are written to compressed

tapes.

• Copy more than one audit file to a tape.

Copying Audit Files

8600 0759-622 9–7

You can copy more than one audit file to a tape using either of the following methods:

- Run the COPYAUDIT program only when several audit files need to be copied to

tape, and then specify the range of files to be copied in the QUICKCOPY

command syntax.

- Use the QUICKCOPY command APPEND option to add one or more audit files to

a tape that already contains one or more quickcopy audit files.

Data Compression

All forms of the QUICKCOPY command work with compressed tapes. By default, the

COPYAUDIT program uses whatever tape you load. If you load a compressed tape, then

data compression occurs. If you load a noncompressed tape, data compression does not

occur.

To ensure that data compression occurs on devices that support compression, include the

COMPRESSED option when designating the tape medium. To ensure that compressed

tapes are not used, include the NONCOMPRESSED option when designating the tape

medium.

Note: Compression options are not supported with the COPY command.

Audit File Naming Convention

The COPYAUDIT program applies the following naming convention, referred to as the

quickcopy naming convention, to audit files on tapes and to the tapes themselves when

the QUICKCOPY command is used to copy audit files to tape:

• Primary audit files are copied as <database name>/QCAUDIT<integer>.

• Secondary audit files are copied as <database name>/QC2AUDIT<integer>.

• The tape name is the same as the quickcopy audit file name.

• For multiple-file tapes, the tape name is the same as the name of the first quickcopy

audit file on the tape.

• Files copied back to disk have their original name restored.

TAPESET Naming Conventions

The COPYAUDIT program applies the following naming conventions to tapes and audit

files on tapes when the QUICKCOPY command with the TAPESET option is used to copy

audit files to tape:

• Primary audit files are copied as <database name>/QCAUDIT<integer>.

• Secondary audit files are copied as <database name>/2QCAUDIT<integer>.

• The tape name for a tape set containing primary audit files is <database

name>/TAPESET<integer>. The <integer> value is the audit file number of the first

audit file in the tape set.

• The tape name for a tape set containing secondary audit files is <database

name>/2TAPESET<integer>. The <integer> value is the audit file number of the first

audit file in the tape set.

Copying Audit Files

9–8 8600 0759-622

• For multiple-reel tape sets, all reels have the same name as the first reel in the tape

set.

• Files copied back to disk have their original name restored.

• In the Remote Database Backup environment, if the TAPESET option is specified on

the secondary host, the TAPESET number on that host corresponds to the current

AFN on the secondary host but not to the TAPESET number on the primary host.

Database Recovery

If you copy an audit file to tape using the QUICKCOPY command, you must copy back the

audit file to disk before the file can be used for database recovery purposes. You can copy

back the audit file to disk using either the QUICKCOPY or the COPY command.

Since the audit files must be copied back to disk before they are used with the database

recovery process, the QUICKCOPY command supports the following capabilities that are

incompatible with the database recovery process:

• Data compression

• Reel switching; that is, an audit file can be larger than one physical tape reel

• Copying more than one audit file to a tape

• Appending audit files to existing audit file tapes

Effect of the DASDL LOCKEDFILE Attribute

If the LOCKEDFILE attribute is set for the database, then the attribute is also set for any

audit files. On disk, the LOCKEDFILE attribute can be set on a file-by-file basis. On tapes,

the LOCKEDFILE attribute can be set at the tape level only; that is, either all files on the

tape have the LOCKEDFILE attribute set or none of the files have the LOCKEDFILE

attribute set.

If you try to append an audit file to a tape and the LOCKEDFILE attribute setting for the

tape and for the file are different, a warning is issued and you are given the option of

copying the audit file to a new tape rather than appending the audit file to an existing tape.

COPY Command

The COPY command supports copying audit files from one medium to another. When you

use the COPY command, you must ensure that the audit file fits on a single reel of tape.

Refer to the Data and Structure Definition Language (DASDL) Programming Reference

Manual for sample audit file size calculations.

Unlike audit files copied to tape using the QUICKCOPY command, audit files copied to

tape using the COPY command can be used directly by the database recovery process.

However, unlike the QUICKCOPY command, the COPY command does not support the

following features:

• Data compression

• Reel switching (That is, an audit file can be larger than one physical tape reel.)

Copying Audit Files

8600 0759-622 9–9

• Copying more than one audit file to a tape

• Appending audit files to existing audit file tapes

• Sectioned audit files (You must use the QUICKCOPY command.)

• TAPESET option (You must use the QUICKCOPY command.)

Data Compression

By default, the COPYAUDIT program requests a noncompressed tape if you use the COPY

command. Data compression is incompatible with the COPY command for both of the

following reasons:

• Data expansion might occur with certain combinations and sequences of data, and

the COPYAUDIT run might fail because of insufficient space on the tape.

• Compressed tapes cannot be used directly by the database recovery process and all

tapes created using the COPY command must be capable of being used directly by

the database recovery process.

Audit File Naming Convention

Audit files copied to tape using the COPY command have the following naming

convention:

• Primary audit files are copied as <database name>/AUDIT<integer>.

• Secondary audit files are copied as <database name>/2AUDIT<integer>.

Database Recovery

Audit files that are copied to tape with the COPY command can be used directly for

database recovery without first copying back the files to disk if the tape drive used during

recovery has read-reverse capability. If the tape drive does not support the read-reverse

capability, it might be necessary to copy the file back to disk before the recovery process

can complete. To support the database recovery process, audit files copied to tape using

the COPY command must fit on a singlereel tape.

Effect of the DASDL LOCKEDFILE Attribute

If the LOCKEDFILE attribute is set for the database, then the attribute is also set for any

audit files. The LOCKEDFILE attribute setting is passed to each tape to which you copy an

audit file.

Effect of the DASDL SECURITYGUARD Attribute

If the SECURITYGUARD attribute is set for the audit file, it is maintained on the copied

audit in the following situations:

• When copying primary audit as primary audit, or when copying secondary audit as

secondary audit from disk medium to disk medium

• When the COPYAUDIT program is initiated with the file equation of the control file in

order to perform one of the following tasks:

Copying Audit Files

9–10 8600 0759-622

- copy audit from tape to disk medium

- copy primary audit as secondary audit from disk medium to disk medium

- copy secondary audit as primary audit from disk medium to disk medium

Using the QUICKCOPY Command

Introduction

Much of the QUICKCOPY command and COPY command syntax is similar. The

QUICKCOPY command syntax differs from the COPY command syntax as follows:

• QUICKCOPY keyword replaces the COPY keyword.

• APPEND keyword is available to support the appending of audit files to existing audit

tapes.

• MAXFILESPERTAPE phrase is available to control the number of audit files that can be

stored on any one tape.

• Audit file range phrase is available to enable more than one audit file to be copied or

appended in a single COPYAUDIT run.

• FROM and TO clauses are limited to allow only disktotape or tapetodisk copies; that

is, the QUICKCOPY command cannot be used to copy audit files from tapetotape or

from disktodisk.

Use the QUICKCOPY operation to copy sectioned audit files between disks and tapes. The

QUICKCOPY operation combines the sections of an audit file into a single quickcopy file.

Note: You must use the COPY operation to copy sectioned audit files from disk to disk.

Syntax

The following diagrams illustrate the syntax for the QUICKCOPY command. Explanations

of these syntax elements follow the diagrams.

QUICKCOPY Command

── QUICKCOPY ─┬──────────┬─┬───────────────────────────────────┬───────►
└─ APPEND ─┘ └─ MAXFILESPERTAPE ── = ──<integer>─┘

►─┬─<audit file name>──┬───►
└─<audit file range>─┘

►─┬─ ALL ─┬──┬─────────►
│ └─ OVERRIDE ───────────────────────────────────────┤
└─<audit block serial number>──<audit block serial number>─┘

──┬─────────────┬─┬────────────────────┬─ FROM ────────────────────────►
└─ EXCLUSIVE ─┘ └─ AS ─┬─ PRIMARY ───┤

└─ SECONDARY ─┘
►─┬─<disk medium>── TO ──<output tape medium>─┬─┬────────────────────┬─►
└─<input tape medium>── TO ──<disk medium>──┘ └─ DATACOMPRESSION ──┘

Copying Audit Files

8600 0759-622 9–11

►──┬────────────────────┬─┬──────────────────┬─┬───────────────────┬──┤
└─ CHECK ─┬──────────┤ └─ COPIES = ─┬─ 1 ─┤ └─ FORWARD COMPARE ─┘

└─ REMOVE ─┘ └─ 2 ─┘

<audit file name>

──┬────────────────┬─ <database name>/ ─┬──────┬─┬─────┬───────────────►
├─ * ────────────┤ └─ QC ─┘ └─ 2 ─┘
└─ (<usercode>) ─┘

►─ AUDIT<integer> ───┤

<audit file range>

──<audit file name>─┬─ THRU ─┬─<audit file name>───────────────────────┤
└─ ─ ────┘

<disk medium>

──┬─ DISK ───┬───────────────┤
├─ PACK ─┬───┤
│ └─ = <family name> ─────────────────────────┤
│ ┌◄──── / ────┐ │
└─ DBPATH = *DIR/ ─┴─/7\─<node>─┴─ ON <family name> ─┘

<output tape medium>

──┬─ TAPE ────────────────┬──►
└─ TAPESET ─┬───────────┤

└─<integer>─┘
►─┬───┬──────────────►
│ ┌◄─────────────────── , ──────────────────┐ │
└─ (─┴─┬─/1\─<density>───────────────────────┬─┴─) ─┘

├─/1\─┬─ COMPRESSED ──────────────────┤
│ └─ NONCOMPRESSED ───────────────┤
└─/1\─ AUDITENCRYPT ─┬────────────────┤

└─ = ─┬─ TDES ───┤
├─ AES256 ─┤
└─ AESGCM ─┘

►─┬───┬──────────────────────────┤
└─ SCRATCHPOOL ── = ──<scratch pool name>─┘

<input tape medium>

──┬─ TAPE ───────────────┬─┬─────────────────────┬─────────────────────┤
└─ TAPESET ──<integer>─┘ └─ (──<density>──) ─┘

<density>

── DENSITY = ──<density mnemonic>──────────────────────────────────────┤

APPEND Option

The APPEND option adds one or more audit files to the end of an existing singlereel or

multiplereel tape. The name of the tape is always the name of the first audit file copied to

the tape.

The append process requires that

Copying Audit Files

9–12 8600 0759-622

• The audit files to be appended are for the same database as the audit files already on

the tape.

For example, you cannot append the audit file DB/AUDIT1 to a tape that contains a

copy of the audit file MYDB/AUDIT2.

• When you append more than one audit file at a time, all the audit files being appended

must be for the same database.

For example, you cannot append the audit file DB/AUDIT1 and the audit file

MYDB/AUDIT2 to the same tape.

• The audit files must be appended in the order in which they were created.

For example, if DB/AUDIT4 is the last audit file copied to a tape, you cannot append

audit file DB/AUDIT3 or DB/AUDIT6 to the tape. However, you can append the audit

file DB/AUDIT5.

• A logical gap cannot exist in the audit files on a tape.

For example, if a tape contains audit file DB/QCAUDIT5, you can append audit files

DB/AUDIT6, DB/AUDIT7, and DB/AUDIT8, but you cannot append audit files

DB/AUDIT7 and DB/AUDIT8 without first appending DB/AUDIT6.

• The first audit file for a database, or the first audit file after an audit file number rollover

occurs, must always be copied to a new tape. In both cases, the audit file has the

name <database name>/AUDIT1 or <database name>/2AUDIT1.

For example, you cannot append audit file DB/AUDIT1 to a tape containing audit file

DB/QCAUDIT9999.

• You can only append audit files to new tapes or to tapes that were created using the

QUICKCOPY command.

• When you use the APPEND option, the previous audit file must be present to ensure

the continuity of the audit files being appended. If the previous audit file is not present,

COPYAUDIT waits on a NO FILE condition. Choose NF and use one of the following

COPYAUDIT commands:

- If you want to switch to a different tape, use AX NEW.

- If you want to try to open the previous audit file again, use AX RETRY.

- If you are running the COPYAUDIT program manually and want to terminate the

COPYAUDIT program, use AX QUIT.

If the Accessroutines zipped the COPYAUDIT job, the COPYAUDIT program

automatically switches to a new tape.

• The APPEND option is assumed when a TAPESET specification is used and the audit

file number is greater than the TAPESET number.

In the following example, DB/AUDIT4 appends to TAPESET 3 because the audit file

number is greater than the TAPESET number:

QUICKCOPY DB/AUDIT4 ALL FROM PACK=AUDPK TO TAPESET 3

Copying Audit Files

8600 0759-622 9–13

Caution

If audit files are released faster than they can be written to the tape, operator

intervention might be needed to use a IL (Ignore Label) system command to

direct the copy task to search a tape again after a previous audit file has been

written to it.

MAXFILESPERTAPE Clause

Use the MAXFILESPERTAPE clause to designate the maximum number of audit files that

you can copy to a single-reel or to a multiple-reel tape. The allowed values include any

integer in the range 1 through 9999. By default, the MAXFILESPERTAPE clause is

assigned the value 9999, and audit files are always appended to the same tape.

The QUICKCOPY and QUICKCOPY APPEND commands provide the ability to store more

than one audit file on a tape reel, and to split an audit file over two or more tape reels.

Before the audit files can be used for database recovery purposes, the audit files must be

copied back to disk. To minimize the time required to locate and copy back the required

audit files to disk, it can be advantageous to limit the number of audit files on any

singlereel or multiplereel tape. The MAXFILESPERTAPE clause provides this control.

The value you assign in the MAXFILESPERTAPE clause is retained and applied to future

append requests for the tape. To change the value, run the COPYAUDIT program and

assign a new value.

If you include a MAXFILESPERTAPE clause in the QUICKCOPY or QUICKCOPY APPEND

statement, the COPYAUDIT program checks the number of audit files currently on the

tape prior to copying or appending an audit file to that tape. If the number of audit files on

the tape is greater than the value specified in the MAXFILESPERTAPE clause, the audit file

is copied to a new tape.

Example

Assume the following:

• A tape contains quickcopy versions of the audit files DB/AUDIT2 through DB/AUDIT4.

• You want to append the audit files DB/AUDIT5 through DB/AUDIT12.

• You assign a value of 5 in the MAXFILESPERTAPE clause.

Under these circumstances, the following actions occur:

• The files DB/AUDIT5 and DB/AUDIT6 are appended to the tape that contains the files

DB/QCAUDIT2 through DB/QCAUDIT4.

• The files DB/AUDIT7 through DB/AUDIT11 are copied to a new tape.

• The file DB/AUDIT12 is copied to a third tape.

Copying Audit Files

9–14 8600 0759-622

At the end of this sample COPYAUDIT run, the following tapes exist. As shown in the

following table, the name assigned to each tape is the name of the first audit file copied to

that tape.

Tape named . . . Contains the files . . .

DB/QCAUDIT2 DB/QCAUDIT2 through DB/QCAUDIT6

DB/QCAUDIT7 DB/QCAUDIT7 through DB/QCAUDIT11

DB/QCAUDIT12 DB/QCAUDIT12

Audit File Name and Audit File Range Clauses

Use the audit file name and audit file range clauses to identify the audit file or files you

want to copy or append.

Never use quotation marks in these clauses, even if the database name includes a

hyphen (-).

When copying audit files to or from tape, the usercode specification applies only to the

source or destination audit file on disk. For example, when copying an audit file from tape

to disk, the usercode specifies the file usercode that is written to disk. If the disk usercode

is the same as that of the usercode used to run the COPYAUDIT program, the usercode

specification is unnecessary.

If an audit file was copied to tape using the QUICKCOPY command, you must use the

quickcopy naming convention when copying back the audit file to disk.

Use the number 2 to identify a secondary audit file. Secondary audit files are generated

when the database description includes the DASDL audit trail DUPLICATED option.

Use the integer in the file name to identify the audit file number. Audit file numbers range

from 1 to 9999.

TAPESET Numbers

All information regarding TAPESET numbers pertains to the XE features.

Use the integer in the TAPESET specification to identify the TAPESET number. TAPESET

numbers are based on audit file numbers and range from 1 to 9999.

When copying a range of files from a tape set to disk, it is possible the ending file number

is beyond the range of files contained in the tape set. In this case, the COPYAUDIT

program emits the following warning:

Copying Audit Files

8600 0759-622 9–15

Some of the files specified do not exist in this TAPESET

Only those files that exist in the tape set are copied to disk. The COPYAUDIT program

terminates without copying any files not in the tape set.

ALL Option

Use the ALL option to designate that you want to copy the complete audit file. Optionally,

you can explicitly designate the first and last audit block serial numbers (ABSNs) of the

audit file you want to copy.

OVERRIDE Option

Use the OVERRIDE option to copy the current audit file.

You cannot use the REMOVE option with the OVERRIDE option. This restriction is present

to ensure that if you copy an incomplete audit file, the file is not deleted automatically at

the end of the COPYAUDIT run.

By default, the COPYAUDIT program validates the last audit block serial number (ABSN) of

the audit file you are copying by finding the previous ABSN field of the first block of the

next audit file, and by ensuring that the two ABSNs are the same. Using the OVERRIDE

option avoids this consistency check. This option is especially useful when copying one

complete audit file because the other files are not available for verification of ABSNs.

For example, if you copy the audit file DB/AUDIT1, the last ABSN of the DB/AUDIT1 file is

identified by finding the first ABSN in the audit file DB/AUDIT2.

If you do not use the OVERRIDE option and the next audit file is not available, a No File

condition occurs, and one of the following No File messages displays:

NO FILE <audit file name> ON <family name>

NO FILE <audit file name> ON TAPE

After the No File message appears, the following message is displayed:

ACCEPT:
ENTER <task number> AX RETRY OR FAMILY = <familyname>
ENTER TAPE FOR <family name> IF <audit file name> IS ON TAPE

Enter AX RETRY to have the COPYAUDIT program check again in the same location for the

next audit file. If you enter a new location, the COPYAUDIT program looks in the new

location for the next audit file.

If you use the FA (File Attributes) system command to identify the correct name and

location of the audit file, ensure that you identify all the necessary attributes of the audit

file. It is especially important to identify the correct CYCLE and VERSION file attributes. If

you supply incomplete or incorrect information in the FA system command, an

UNMATCHED GENEALOGY error can occur.

Copying Audit Files

9–16 8600 0759-622

The OVERRIDE option is not required when copying audit files from TAPE or TAPESET to

DISK using the QUICKCOPY command.

EXCLUSIVE Option

Use the EXCLUSIVE option to open the input audit file in exclusive mode.

The EXCLUSIVE option is ignored if the input audit file is on tape.

Audit Block Serial Number Clauses

Use the audit block serial number clauses to identify the first and last ABSNs in the audit

file you want to copy. If you use this method of designating the start and end point of the

audit file, you cannot use the OVERRIDE option. Using the ALL option is the preferred

method for identifying the start and end point of the audit file.

AS PRIMARY and AS SECONDARY Options

Use the AS PRIMARY option to copy a secondary audit file as a primary audit file. And use

the AS SECONDARY option to copy a primary audit file as a secondary audit file.

The audit files on a multiple-file tape must be either all primary audit files or all secondary

audit files. You cannot mix primary and secondary audit files on a single tape. If you

attempt to mix audit file types when appending audit files, the type of the audit files being

copied is automatically changed to match the type of audit files already on the tape.

Disk Medium, Input Tape Medium, and Output Tape Medium
Clauses

Use the disk medium, and the input and output tape medium clauses to identify the

source and destination locations for the copy operation. Using the QUICKCOPY command

you can copy from disk to tape or from tape to disk. You cannot copy audit files from disk

to disk or from tape to tape.

TAPESET Specification

Use the TAPESET specification to improve QUICKCOPY performance when using tape

drives with the Locate Fast Access capability. If the TAPESET number is not specified, the

TAPESET number defaults to the same value as the audit file number.

To use the TAPESET specification with the APPEND option, a directory file for the

TAPESET specification must exist. The APPEND option is assumed when a TAPESET

specification is used and the audit file number is greater than the TAPESET number.

The COPYAUDIT program automatically creates a directory file when the first reel of a set

of tapes is created by the TAPESET option. Directory files are created on the pack

identified by the DL LIBMAINTDIR command. If no location is specified, directory files are

located on the system halt/load unit.

Copying Audit Files

8600 0759-622 9–17

Directory file titles use the following format:

<database name>/<audit pack name>/<tape set number>
<primary or secondary audit file>
<first or second copy>/<yyyymmdd><hhmmss>

For example, if the audit files for the PARTSDB database are located on the AUDPACK,

and the first audit file that appears in a set of tapes is PARTSDB/AUDIT1523 (created at

9:26:08 a.m. on March 21, 2000), the directory file for the second copy of the primary audit

tape set is the following:

PARTSDB/AUDPACK/152312/20000321092608

A TAPESET directory file is automatically removed (following a response to a waiting

entry) when a volume, or physical reel, from the set of tapes is purged using the ODT PG

or SN command. Refer to the System Commands Operations Reference Manual for more

information.

At times, you might want to copy the directory file manually prior to purging the tape so

that the directory file can be reinstated following the purge.

If a COPYAUDIT command specifies a TAPESET option and the associated directory file

cannot be found, the COPYAUDIT program emits the following warning:

TAPESET directory file <file name> not found

If the file is found but it is corrupted, the COPYAUDIT program emits the following

warning:

TAPESET
directory file <file name> contains errors and is not usable

In both instances, the COPYAUDIT program proceeds as if the TAPESET specification had

not been given. That is, the COPYAUDIT program uses the MCP file search mechanism to

locate the necessary files.

If the directory file for the TAPESET option is lost or corrupted, use the DIRECTORY

command with the CREATE option to re-create the directing file.

Use the integer in the TAPESET specification to identify the TAPESET number. TAPESET

numbers are based on audit file numbers and range from 1 to 9999.

When copying or verifying a range of files from a set of tapes created by the TAPESET

option, it is possible the ending file number is beyond the range of files contained in this

set of tapes. In this instance, the COPYAUDIT program emits the following warning:

Some of the files specified do not exist in this TAPESET

Only those files that exist in the set of tape are copied to disk. The COPYAUDIT program

terminates without copying any files not in the tape set.

Copying Audit Files

9–18 8600 0759-622

Examples

The following examples illustrate the use of the TAPESET option and the results of using

different audit file number and TAPESET specification values.

Example 1

The following command copies the audit file DB/AUDIT817 to TAPESET817 even though

the TAPESET number is not specified:

QUICKCOPY DB/AUDIT817 ALL FROM PACK=AUDPK TO TAPESET

Example 2

The following commands copy an audit file to a new set of tapes. DB/AUDIT3 copies to

TAPESET3 because the audit file number is equal to the TAPESET number. DB/AUDIT4

appends to TAPESET3 because the audit file number is greater than the TAPESET number

and the APPEND option is implied. In the last example, a syntax error occurs because the

audit file number is less than the TAPESET number.

QUICKCOPY DB/AUDIT3 ALL FROM PACK=AUDPK TO TAPESET 3
QUICKCOPY DB/AUDIT4 ALL FROM PACK=AUDPK TO TAPESET 3
QUICKCOPY DB/AUDIT4 ALL FROM PACK=AUDPK TO TAPESET 5

Example 3

The following command appends the audit file DB/AUDIT2 to TAPESET1 if the audit file

number is greater than the TAPESET number. If the audit file number is equal to or less

than the TAPESET number, a syntax error occurs.

QUICKCOPY APPEND DB/AUDIT2 ALL FROM PACK=AUDPK TO TAPESET 1

Example 4

The following command makes two audit file copies of the primary audit file for a

permanent directory database. The complete audit file name is

*DIR/MEGAMART/EX1/TEST-DB/AUDIT6789. The copies are checked and the original file

is deleted.

COPY TEST-DB/AUDIT6789 ALL FROM DBPATH=*DIR/MEGAMART/EX1
ON AUDITPACK TO TAPE CHECK REMOVE COPIES=2

Density Specification

Use the density specification to designate the type of tape drive to be used. If you do not

supply a density value, the I/O subsystem uses the system default rules to determine the

type of tape device to use.

REQUIRES MT Condition

The COPYAUDIT program waits on a REQUIRES MT condition under any of the following

circumstances:

Copying Audit Files

8600 0759-622 9–19

• If you designate a density value, and a tape with that density is not available

• If a scratch tape is unavailable

• If the system option 27 (serial number) is set

In this instance, the system expects the tape to have a specific serial number. You

cannot supply a serial number using the COPYAUDIT syntax. Perform either of the

following tasks as a solution:

- Supply the serial number by using the FA (File Attributes) system command when

the REQUIRES MT condition occurs.

- Use the SCRATCHPOOL option to designate the output tape.

COMPRESSED and NONCOMPRESSED Options

When using the QUICKCOPY command you can explicitly designate whether data

compression is to occur. By default, data compression occurs if you mount a compressed

tape, and no data compression occurs if you mount a noncompressed tape.

To explicitly require data compression on devices that support data compression, use the

COMPRESSED option. To explicitly require that data compression does not occur, use the

NONCOMPRESSED option.

You can use the COMPRESSED and NONCOMPRESSED option only when designating

the output tape medium. If you include either option when designating the input tape

medium, the option is ignored.

Note: If you specify both the COMPRESSED and DATACOMPRESSION options at the

same time, a double compression occurs (which might not be desirable).

AUDITENCRYPT Option

When using the QUICKCOPY command you can explicitly designate whether encryption

is to occur. By default, encryption does not occur.

You can indicate either the TDES, AES256, or AESGCM encryption algorithm when

requesting encryption in a QUICKCOPY operation or let the TDES algorithm be used by

default.

Notes:

• Before an audit file that was encrypted when copied to tape can be processed by

MCP or Enterprise Database Server software—such as DMRECOVERY, PRINTAUDIT,

and others—the tape must be copied back to disk by using the COPYAUDIT software.

• Files are automatically decrypted by the COPYAUDIT software.

Refer to Section 15, Using Database Tape Encryption, for specific examples and additional

information about the AUDITENCRYPT option.

Copying Audit Files

9–20 8600 0759-622

SCRATCHPOOL Option

Use the SCRATCHPOOL option to restrict the output to a tape from the specified scratch

pool. The scratch pool name is a 1character to 17character identifier.

You can use the SCRATCHPOOL option only when designating the output tape medium. If

you include the option when designating the input tape medium, the request is ignored.

DATACOMPRESSION Option

Use the DATACOMPRESSION option to enable the QUICKCOPY operation to compress

the data during the copy to tape process.

CHECK Option

Use the CHECK option to have the COPYAUDIT program check the internal integrity of the

audit file copy; the audit file contents are not checked against the contents of the original

audit file. If you use the CHECK option, the COPYAUDIT program performs the following

tasks:

• Reads each new audit file copy in the forward direction and checks for integrity errors.

Note: If you use the COPY command, by default, the integrity check occurs using a

readreverse technique. To check the copy of the audit file using a forwardcomparison

technique, you must explicitly include the FORWARD COMPARE option in the

COPYAUDIT statement.

• Verifies the ABSNs and time stamps for continuity.

• Verifies the checksum, if the DASDL audit trail CHECKSUM option was designated in

the database description file when the audit file was created.

If an error occurs, an error message displays. Refer to Appendix D, Using Mirrored Disks

for Disaster Recovery, for an explanation of the error message.

Use the CHECK option to verify that the copied audit file is an accurate copy of the source

audit file.

When using the CHECK option with the COPY command, the audit file image on the TO

<medium> is compared to the audit file on the FROM <medium>. This verification

includes, but is not limited to, block-to-block ABSN and timestamp checks and checksum

validation (where applicable).

When using the QUICKCOPY command to copy an audit file to tape, the QUICKCOPY

algorithm places additional data onto the tape to ensure the integrity of the tape files. As

long as tape integrity can be verified, it is presumed that the data on the tape is identical to

that of the original audit file. The error checking invoked by the CHECK option or the

VERIFY command for quickcopy tapes uses only the internal integrity checks and does not

compare against the data in the original audit file.

Copying Audit Files

8600 0759-622 9–21

REMOVE Option

Use the REMOVE option to delete the original audit file as soon as the quickcopy operation

completes successfully.

You cannot use both the OVERRIDE option and the REMOVE option in the same

COPYAUDIT statement. This restriction prevents the accidental deletion of an audit file

without a complete backup copy being available.

COPIES Option

Use the COPIES option to identify the number of copies of the audit file you want to

make. At most you can request that two copies of the audit file are to be made

simultaneously. By default, only one copy is made.

All copies of the audit file are given the same name.

Requesting two copies of an audit file is valid only when the output medium is tape. If you

request two copies of the audit file when the output medium is disk, COPYAUDIT error 76

occurs.

FORWARD COMPARE Option

All quickcopy operations use a forwardcomparison technique. Including the FORWARD

COMPARE option in the syntax of your QUICKCOPY statement is optional and for

documentation purposes only. Use of the FORWARD COMPARE option is valid only if you

also include the CHECK option in your statement.

Examples

The following examples illustrate correct QUICKCOPY command syntax.

Example 1

The following command copies the primary audit files TESTDB/AUDIT1 through

TESTDB/AUDIT5 on pack AUDPK to a tape. After each audit file is copied, the tape is

repositioned and the audit file is read in the forward direction to check for correctness.

QUICKCOPY TESTDB/AUDIT1 THRU TESTDB/AUDIT5 ALL FROM PACK=AUDPK
TO TAPE CHECK FORWARD COMPARE

Example 2

The following command appends the secondary audit files TESTDB/2AUDIT6 through

TESTDB/2AUDIT8 on pack SECAUDPK to the tape created in Example 1:

QUICKCOPY APPEND TESTDB/2AUDIT6 - TESTDB/2AUDIT8 ALL AS PRIMARY
FROM PACK=SECAUDPK TO TAPE CHECK

Copying Audit Files

9–22 8600 0759-622

In this example, the tape is assumed to already contain some primary audit files, and

because a tape can contain only primary or only secondary audit files, the audit files are

copied as primary audit files.

After each audit file is copied, the tape is repositioned and the audit file is read in the

forward direction to check for correctness. The forward comparison occurs even though

the FORWARD COMPARE option is omitted from the statement, because the quickcopy

operation does not support the readreverse comparison technique.

Using the COPY Command

Syntax

The following diagrams illustrate the syntax for the COPY command. The text following

the diagrams explains the elements of the COPY command syntax diagrams that differ

from the elements in the QUICKCOPY command syntax. Use the information that follows

with the information provided earlier in this section under the heading “Using the

QUICKCOPY Command.”

For sectioned audits, the COPY command restores all sections of the audit file from

the archive medium. XE features do not provide the capability to copy specific audit

sections.

The COPY command can be used when the source file is a sectioned audit file on disk,

only if the destination is also on disk. If the destination is not on disk, the QUICKCOPY

command must be used.

Using the COPY command while specifying a disk-based sectioned audit file as the source

and the destination as a tape results in the following error message:

The QUICKCOPY command must be used to copy a
sectioned audit file from disk to tape.

COPY Command

── COPY ──<audit file name>──►

►─┬─ ALL ─┬──┬─────────►
│ └─ OVERRIDE ───────────────────────────────────────┤
└─<audit block serial number>──<audit block serial number>─┘

──┬─────────────┬─┬────────────────────┬─ FROM ──<input medium>── TO ──►
└─ EXCLUSIVE ─┘ └─ AS ─┬─ PRIMARY ───┤

└─ SECONDARY ─┘
►─<output medium>──►
►─┬────────────────────┬─┬─────────────────────┬─┬───────────────────┬─┤
└─ CHECK ─┬──────────┤ └─ COPIES ── = ─┬─ 1 ─┤ └─ FORWARD COMPARE ─┘

└─ REMOVE ─┘ └─ 2 ─┘

Copying Audit Files

8600 0759-622 9–23

<audit file name>

──┬────────────────┬─ <database name>/ ─┬──────┬─┬─────┬───────────────►
├─ * ────────────┤ └─ QC ─┘ └─ 2 ─┘
└─ (<usercode>) ─┘

►─ AUDIT<integer> ───┤

<input medium>

──┬─<disk medium>───────┬──┤
└─<input tape medium>─┘

<output medium>

──┬─<disk medium>────────┬───┤
└─<output tape medium>─┘

<disk medium>

──┬─ DISK ───┬───────────────┤
├─ PACK ─┬───┤
│ └─ = <family name> ─────────────────────────┤
│ ┌◄──── / ────┐ │
└─ DBPATH = *DIR/ ─┴─/7\─<node>─┴─ ON <family name> ─┘

<input tape medium>

──┬─ TAPE ───────────────────┬───┬──────────────────────────┬────┤
│ │ │ │
└─ TAPESET ── <integer> ───┘ └───── (<density>) ──────┘

<output tape medium>

── TAPE ─┬─────────────────────┬───────────────────────────────────────►
└─ (──<density>──) ─┘

►─┬───┬──────────────────────────┤
└─ SCRATCHPOOL ── = ──<scratch pool name>─┘

<density>

── DENSITY = ──<density mnemonic>──────────────────────────────────────┤

Audit File Name Clause

Use the audit file name clause to identify the audit file you want to copy.

If the audit file was copied to tape using the QUICKCOPY command, you must use the

quickcopy naming convention when copying back the audit file to disk.

Medium Option

Using the COPY command you can copy audit files

• From disk to tape

• From tape to disk

• From tape to tape

Copying Audit Files

9–24 8600 0759-622

• From disk to disk

Density Specification

Use the density specification to designate the type of tape drive to be used. If you do not

supply a density specification, the I/O subsystem uses the system default rules to

determine the type of tape drive to use.

FORWARD COMPARE Option

Use the FORWARD COMPARE option to request that the tape be rewound and that the

copy of the audit file be checked using a forwardcomparison technique rather than the

default readreverse comparison technique. This option is valid only if the CHECK option is

also designated. If you use the FORWARD COMPARE option without also using the

CHECK option, the request is ignored.

Use the FORWARD COMPARE option with tape drives that do not support the

readreverse comparison technique.

Examples

The following examples illustrate correct COPY command syntax.

Example 1

The following command makes two secondary audit file copies of the primary audit file

(ADM1)TEST-DB/AUDIT6789. The copies are checked and then the original file is deleted.

COPY (ADM1)TEST-DB/AUDIT6789 ALL AS SECONDARY
FROM PACK=AUDITPACK TO TAPE CHECK REMOVE COPIES=2

Example 2

The following command copies the primary audit file Z/AUDIT1 to a tape using a quickcopy

operation. After the audit file is copied, the tape is rewound and the copy checked using a

forwardcomparison technique. The copy of the audit file is automatically renamed

Z/QCAUDIT1 and must be copied back to disk before it can be used with any Enterprise

Database Server software.

COPY Z/AUDIT1 ALL FROM PACK=DMTEXT TO
TAPE CHECK FORWARD COMPARE

Example 3

The following commands copy the primary audit file Z/AUDIT1 from a tape to the USER

pack:

COPY Z/AUDIT1 ALL FROM TAPE TO PACK = USER

Copying Audit Files

8600 0759-622 9–25

Example 4

The following command copies all sections of the primary sectioned audit file Z/AUDIT1

from USER1 PACK to USER2 PACK:

Note: You only need to specify the audit file name. Do not include the section number.

COPY Z/AUDIT1 ALL FROM PACK=USER1 TO PACK=USER2

For example, if the audit file has five sections, five audit files are copied to USER2:

Z/AUDIT1
Z/AUDIT1/1
Z/AUDIT1/2
Z/AUDIT1/3
Z/AUDIT1/4

Using the DIRECTORY Command to Display Audit
File Tape Directories

Introduction

The DIRECTORY command enables you to identify the audit files contained on each

quickcopy tape. You can view the directory online or print the directory. If you use the

PRINT option, the directory prints to a session printer backup file.

To identify the tape for which you want a directory, you must supply the tape name. The

tape name is always the same as the name of the first file copied to the tape.

The CREATE option is valid only when the audit tape name specifies a TAPESET name.

Use the CREATE option to create the disk file that contains the directory information for

files on the tape set. It is recommended that you use this command to create the directory

file if the directory file is lost or corrupted, or if the audit TAPESET command originated

from a different host system.

The CREATE option requires access to all tape set reels. If your response to a NO FILE

condition indicates that a reel is not available when needed, the DIRECTORY command

terminates but completed entries written to the directory are retained.

Syntax

The following diagram illustrates the syntax for the DIRECTORY command:

── DIRECTORY ──<audit tape name>─┬──────────┬──────────────────────────┤
├─ PRINT ──┤
└─ CREATE ─┘

Copying Audit Files

9–26 8600 0759-622

<audit tape name>

──<database name>── / ─┬─ QCAUDIT ──┬─<integer>────────────────────────┤
├─ QC2AUDIT ─┤
├─ TAPESET ──┤
└─ 2TAPESET ─┘

The following example will create a new directory file on pack for the TAPESET:

DIRECTORY PVDB/TAPESET21 CREATE

Example

The following statement generates a printer backup file containing the names of the audit

files included on a tape called PVDB/QCAUDIT21. The directory shows the audit file

names with the quickcopy naming convention, which identifies that the audit files were

copied to tape using the QUICKCOPY command, and that the files must be copied back to

disk before they can be used for database recovery purposes.

DIR PVDB/QCAUDIT21 PRINT

The file generated by the command might contain the following entries:

DIRECTORY FOR TAPE PVDB/QCAUDIT21(SERIALNO=101010) ON UNIT#12

FILE#1 = PVDB/QCAUDIT21 (03/15/95);
FIRST ABSN=2860 LAST ABSN=5589
FILE#2 = PVDB/QCAUDIT22 (03/15/95);
FIRST ABSN=5589 LAST ABSN=8385
FILE#3 = PVDB/QCAUDIT23 (03/15/95);
FIRST ABSN=8385 LAST ABSN=11678
FILE#4 = PVDB/QCAUDIT24 (03/15/95);
FIRST ABSN=11678 LAST ABSN=15543

Using the VERIFY Command to Verify Audit File
Contents

Introduction

Use the VERIFY command to ascertain if an audit file can be used by the data

management software without error. You can verify one audit file or a range of audit files.

One audit file can be verified on disk or on tape. A range of audit files can be verified only

on a quickcopy tape. You cannot verify a range of audit files on disk.

The VERIFY command tests individual logical audit files. It does not test for consistency

between audit files.

For nonsectioned audits, the semantics of the VERIFY command are unchanged.

Copying Audit Files

8600 0759-622 9–27

For sectioned audits, the VERIFY command validates the entire audit file. The

Enterprise XE features do not provide the capability to verify specific audit sections.

The verification process includes the following checks:

• All audit file data blocks are checked to ensure that they are present and in the correct

order.

• The ABSNs and timestamps are verified.

• The audit block serial numbers (ABSNs) are checked to make sure that they increase

by one from block to block.

• The timestamp in the previous block is compared with the copy of the previous

timestamp in the current block.

• The checksum is verified if the DASDL audit trail option CHECKSUM is designated in

the database description file.

If an error is detected during the verification process, the COPYAUDIT program returns an

error.

Syntax

The following diagrams illustrate the syntax for the VERIFY command.

VERIFY Command

── VERIFY ─┬─<audit file name>──┬─ ON ──<medium>─┬─────────────┬───────┤
└─<audit file range>─┘ └─ EXCLUSIVE ─┘

<audit file name>

──┬────────────────┬─ <database name>/ ─┬──────┬─┬─────┬───────────────►
├─ * ────────────┤ └─ QC ─┘ └─ 2 ─┘
└─ (<usercode>) ─┘

►─ AUDIT<integer> ───┤

<audit file range>

──<audit file name>─┬─ THRU ─┬─<audit file name>───────────────────────┤
└─ ─ ────┘

<medium>

──┬─<disk medium>─┬──┤
└─<tape medium>─┘

──┬─ DISK ───┬───────────────┤
├─ PACK ─┬───┤
│ └─ = <family name> ─────────────────────────┤
│ ┌◄──── / ────┐ │
└─ DBPATH = *DIR/ ─┴─/7\─<node>─┴─ ON <family name> ─┘

Copying Audit Files

9–28 8600 0759-622

<tape medium>

──┬─ TAPE ───────────────┬─┬─────────────────────┬─────────────────────┤
└─ TAPESET ──<integer>─┘ └─ (──<density>──) ─┘

<density>

── DENSITY = ──<density mnemonic>──────────────────────────────────────┤

Examples

The following command verifies the audit file (ADMIN)BANKDB/AUDIT723, which is

located on a pack called PRIMAUD:

VERIFY (ADMIN)BANKDB/AUDIT723 ON PACK=PRIMAUD

The following command verifies the audit files (ADMIN)BANKDB/QCAUDIT24 through

(ADMIN)BANKDB/QCAUDIT28, which are located on tape:

VERIFY (ADMIN)BANKDB/QCAUDIT24 THRU (ADMIN)BANKDB/QCAUDIT28
ON TAPE

Quick-Reference Information

The information presented here is for quick-reference purposes only. For an explanation of

any element of a syntax diagram, refer to the appropriate information presented earlier in

this section.

COPYAUDIT Statement

──┬─────────┬─┬─ QUICKCOPY command ─┬──────────────────────────────────┤
└─ DEBUG ─┘ ├─ COPY command ──────┤

├─ DIRECTORY command ─┤
└─ VERIFY command ────┘

QUICKCOPY Command

── QUICKCOPY ─┬──────────┬─┬───────────────────────────────────┬───────►
└─ APPEND ─┘ └─ MAXFILESPERTAPE ── = ──<integer>─┘

►─┬─<audit file name>──┬───►
└─<audit file range>─┘

►─┬─ ALL ─┬──┬─────────┤
│ └─ OVERRIDE ───────────────────────────────────────┤
└─<audit block serial number>──<audit block serial number>─┘

──┬─────────────┬─┬────────────────────┬─ FROM ────────────────────────►
└─ EXCLUSIVE ─┘ └─ AS ─┬─ PRIMARY ───┤

└─ SECONDARY ─┘

►─┬─<disk medium>── TO ──<output tape medium>─┬─┬────────────────────┬─►
└─<input tape medium>── TO ──<disk medium>──┘ └─ CHECK ─┬──────────┤

└─ REMOVE ─┘

Copying Audit Files

8600 0759-622 9–29

►─┬──────────────────┬─┬───────────────────┬───────────────────────────┤
└─ COPIES = ─┬─ 1 ─┤ └─ FORWARD COMPARE ─┘

└─ 2 ─┘

<audit file name>

──┬────────────────┬─ <database name>/ ─┬──────┬─┬─────┬───────────────►
├─ * ────────────┤ └─ QC ─┘ └─ 2 ─┘
└─ (<usercode>) ─┘

►─ AUDIT<integer> ───┤

<audit file range>

──<audit file name>─┬─ THRU ─┬─<audit file name>───────────────────────┤
└─ ─ ────┘

<disk medium>

──┬─ DISK ───┬───────────────┤
├─ PACK ─┬───┤
│ └─ = <family name> ─────────────────────────┤
│ ┌◄──── / ────┐ │
└─ DBPATH = *DIR/ ─┴─/7\─<node>─┴─ ON <family name> ─┘

<input tape medium>

──┬─ TAPE ───────────────┬─┬─────────────────────┬─────────────────────┤
└─ TAPESET ──<integer>─┘ └─ (──<density>──) ─┘

<output tape medium>

──┬─ TAPE ────────────────┬──►
└─ TAPESET ─┬───────────┤

└─<integer>─┘

►─┬───┬──────────────►
│ ┌◄─────────────────── , ──────────────────┐ │
└─ (─┴─┬─/1\─<density>───────────────────────┬─┴─) ─┘

├─/1\─┬─ COMPRESSED ──────────────────┤
│ └─ NONCOMPRESSED ───────────────┤
└─/1\─ AUDITENCRYPT ─┬────────────────┤

└─ = ─┬─ TDES ───┤
├─ AES256 ─┤
└─ AESGCM ─┘

►─┬───┬──────────────────────────┤
└─ SCRATCHPOOL ── = ──<scratch pool name>─┘

<density>

── DENSITY = ──<density mnemonic>──────────────────────────────────────┤

COPY Command

── COPY ──<audit file name>──►

►─┬─ ALL ─┬──┬─────────►
│ └─ OVERRIDE ───────────────────────────────────────┤
└─<audit block serial number>──<audit block serial number>─┘

Copying Audit Files

9–30 8600 0759-622

──┬─────────────┬─┬────────────────────┬─ FROM ──<input medium>── TO ──►
└─ EXCLUSIVE ─┘ └─ AS ─┬─ PRIMARY ───┤

└─ SECONDARY ─┘
►─<output medium>──

►─┬────────────────────┬─┬─────────────────────┬─┬───────────────────┬─┤
└─ CHECK ─┬──────────┤ └─ COPIES ── = ─┬─ 1 ─┤ └─ FORWARD COMPARE ─┘

└─ REMOVE ─┘ └─ 2 ─┘

<audit file name>

──┬────────────────┬─ <database name>/ ─┬──────┬─┬─────┬───────────────►
├─ * ────────────┤ └─ QC ─┘ └─ 2 ─┘
└─ (<usercode>) ─┘

►─ AUDIT<integer> ───┤

<input medium>

──┬─<disk medium>───────┬──┤
└─<input tape medium>─┘

<output medium>

──┬─<disk medium>────────┬───┤
└─<output tape medium>─┘

<disk medium>

──┬─ DISK ───┬───────────────┤
├─ PACK ─┬───┤
│ └─ = <family name> ─────────────────────────┤
│ ┌◄──── / ────┐ │
└─ DBPATH = *DIR/ ─┴─/7\─<node>─┴─ ON <family name> ─┘

<input tape medium>

──┬─ TAPE ───────────────┬─┬─────────────────────────────────┬─────────┤
└─ TAPESET ──<integer>─┘ └─ (── DENSITY = <density> ──) ─┘

<output tape medium>

── TAPE ─┬─────────────────────┬───────────────────────────────────────►
└─ (──<density>──) ─┘

►─┬───┬──────────────────────────┤
└─ SCRATCHPOOL ── = ──<scratch pool name>─┘

<density>

── (── DENSITY = ──<density mnemonic>──) ────────────────────────────┤

DIRECTORY Command

── DIRECTORY ──<audit tape name>─┬──────────┬──────────────────────────┤
├─ PRINT ──┤
└─ CREATE ─┘

Copying Audit Files

8600 0759-622 9–31

<audit tape name>

──<database name>── / ─┬─ QCAUDIT ──┬─<integer>────────────────────────┤
├─ QC2AUDIT ─┤
├─ TAPESET ──┤
└─ 2TAPESET ─┘

VERIFY Command

── VERIFY ─┬─<audit file name>──┬─ ON ──<medium>─┬─────────────┬───────┤
└─<audit file range>─┘ └─ EXCLUSIVE ─┘

<audit file name>

──┬────────────────┬─ <database name>/ ─┬──────┬─┬─────┬───────────────►
├─ * ────────────┤ └─ QC ─┘ └─ 2 ─┘
└─ (<usercode>) ─┘

►─ AUDIT<integer> ───┤

<audit file range>

──<audit file name>─┬─ THRU ─┬─<audit file name>───────────────────────┤
└─ ─ ────┘

<medium>

──┬─<disk medium>─┬──┤
└─<tape medium>─┘

<disk medium>

──┬─ DISK ───┬───────────────┤
├─ PACK ─┬───┤
│ └─ = <family name> ─────────────────────────┤
│ ┌◄──── / ────┐ │
└─ DBPATH = *DIR/ ─┴─/7\─<node>─┴─ ON <family name> ─┘

<tape medium>

──┬─ TAPE ───────────────┬─┬─────────────────────┬─────────────────────┤
└─ TAPESET ──<integer>─┘ └─ (──<density>──) ─┘

<density>

── DENSITY ── = ──<density mnemonic>───────────────────────────────────┤

Copying Audit Files

9–32 8600 0759-622

Section 10
Printing, Viewing, and Extracting Audit
Information

Overview

The PRINTAUDIT program is a tool that enables you to print, view, and extract to a data file

all or part of an audit file.

Note: The tasks identified in this section can be initiated through Database Operations

Center.

In This Section

The information on using the PRINTAUDIT program is divided into the following topics:

• PRINTAUDIT program overview

• Initiating the PRINTAUDIT program

• Overview of PRINTAUDIT commands

• Selecting audit data

• Generating a customized version of the PRINTAUDIT program

• Quick-reference information for all the syntax diagrams related to using the

PRINTAUDIT program

PRINTAUDIT Program Overview

Introduction

The PRINTAUDIT program enables you to perform any of the following tasks:

• Print all or part of an audit file (PRINT command).

• Display online all or part of an audit file (DISPLAY command).

• Write to a disk file all or part of an audit file (EXTRACT command).

• Create a tailored version of the PRINTAUDIT program for specialized data extraction

(SELECT command).

8600 0759-622 10–1

The PRINTAUDIT program works with both primary and secondary audit files, and can be

run interactively or in batch mode. You can also use the PRINTAUDIT program with the

audit files on both the Remote Database Backup primary and secondary hosts.

Selecting Audit Information

Using the PRINTAUDIT program, you can select

• The complete audit file

• A range of audit records (referred to in this section as an interval)

• The type of audit information

• The type of audit information within an interval

Types of Interval

You can specify an interval based on any of the following criteria:

• Time interval by month, day, year, hour, minute, and second

• Serial interval by audit block serial number (ABSN)

• Relative block interval by relative block numbers

Criteria for Selecting Audit Records

You can select audit records based on any of the following criteria:

• Stack number or a range of stack numbers

• Program mix number or a range of program mix numbers

• Program identifier—that is, the program file title

• Structure number, a range of structure numbers, blocks within a structure, or by a

word offset within a block

• Record type selection by audit record type

• Field selection by data within a specified field

If the data selection choices available in PRINTAUDIT do not suit your needs, you can use

the PRINTAUDIT SELECT command to create a tailored PRINTAUDIT program that does

suit your needs.

Initiating the PRINTAUDIT Program

Introduction

You can run the PRINTAUDIT program interactively or in batch mode. In either mode the

syntax is similar. The primary differences between the two PRINTAUDIT modes are that

Printing, Viewing, and Extracting Audit Information

10–2 8600 0759-622

• In interactive mode, you are prompted for the PRINTAUDIT commands that you want

to issue.

• In interactive mode, you cannot use the SELECT command to create a tailored

PRINTAUDIT program.

• In batch mode, you must supply a card file that details the audit information you want

to access.

Interactive Mode

To initiate an interactive PRINTAUDIT session, use the following procedure:

1. Enter the following CANDE command:

RUN *SYSTEM/PRINTAUDIT;
FILE AUDIT (TITLE=<audit file title>);
FILE DASDL (TITLE=<description file title>);

The PRINTAUDIT program displays “PLEASE ENTER REQUEST:” to indicate that the

program is ready for additional commands and options.

2. Enter the PRINTAUDIT commands.

Normally, you can enter the commands on a single line; however, commands can be

longer than the space available on one line width of the terminal screen. If your

command exceeds one line, use the following procedure to enter a multiple-line

command:

a. Type the first line of the command and type a percent sign (%) at the end of the

line to indicate that more input follows.

b. Press the transmit key.

The PRINTAUDIT program responds with #% (a number sign followed by a

percent sign).

c. Repeat steps a and b until you are ready to enter the last line of the command.

d. Type the last line of the command and do not put a percent sign (%) at the end

of the line.

e. Press the transmit key.

The PRINTAUDIT program processes the entire command. The requested

information is either printed or displayed online. Once the command has been

processed and the results generated, the PRINTAUDIT program displays the

following messages:

REQUEST COMPLETE
PLEASE ENTER REQUEST

Batch Mode

To initiate the PRINTAUDIT program in batch mode, you must include a card file in the run

statement. Use the card file to identify the PRINTAUDIT commands you want to process.

The internal name of the card file is CARD.

Printing, Viewing, and Extracting Audit Information

8600 0759-622 10–3

If you run the PRINTAUDIT program, and a card file is not present and the task attribute

STATION is not 0 (zero), an interactive PRINTAUDIT session starts.

If the card file is not present and the task attribute STATION is 0 (zero), the program prints

all records of the specified audit file in hexadecimal digit format.

You can use a WFL file equation to equate the card file to a disk file.

Using a WFL Job

Use a WFL job with the following layout to initiate a PRINTAUDIT run in batch mode:

BEGIN JOB PRINTAUDIT;
RUN SYSTEM/PRINTAUDIT;
FILE AUDIT (TITLE=<audit file title>);
FILE DASDL (TITLE=<description file title>);
DATA CARD
<one or more PRINTAUDIT commands>
? % end DATA CARD
END JOB

Using CANDE

Use a CANDE statement with the following format to initiate a PRINTAUDIT run in batch

mode:

RUN *SYSTEM/PRINTAUDIT;
FILE AUDIT(TITLE=<audit file title>);
FILE DASDL (TITLE=<description file title>);
FILE CARD (TITLE=<card file name> ON <pack name>);

Entering Information in the Card File

Normally, commands are entered in a single record; however, some commands can

exceed the allowable record width. To enter a multiple-record command, insert a percent

sign (%) at the end of the record to indicate that more input follows. Repeat the process as

many times as necessary. Do not put a percent sign (%) at the end of the last line of the

command.

Identifying the Audit File to be Analyzed

Use the FILE AUDIT file equation statement to identify the audit file to be analyzed.

The audit file can be either a primary or a secondary audit file, and can reside on disk or

tape. The naming convention for audit files is

• Primary audit files have the title <database name>/AUDIT<audit number>.

• Secondary audit files have the title <database name>/2AUDIT<audit number>.

You cannot use the PRINTAUDIT program with quickcopy audit files. If you want to use

the PRINTAUDIT program with audit files copied to tape using the QUICKCOPY

command, you must first copy back the audit files to disk.

Printing, Viewing, and Extracting Audit Information

10–4 8600 0759-622

Examples

The following statement causes the PRINTAUDIT program to run interactively and to

process the secondary audit file (ADMIN)BANKDB/2AUDIT765, which is located on tape.

In this example, the database description file is titled (ADMIN)DESCRIPTION/BANKDB

and is located on a pack called ISYS.

RUN *SYSTEM/PRINTAUDIT;
FILE AUDIT (TITLE=(ADMIN)BANKDB/2AUDIT765, KIND=TAPE);
FILE DASDL(TITLE=(ADMIN)DESCRIPTION/BANKDB ON ISYS);

The following statement causes the PRINTAUDIT program to run interactively and to

process the audit file *DIR/TEST/BANKDB/AUDIT1, which is located within a permanent

directory. In this example, the database description file is not used.

RUN *SYSTEM/PRINTAUDIT;
FILE AUDIT (TITLE=*DIR/TEST/BANKDB/AUDIT1 ON MYAUDITPK);

TAPESERVER System Option and RoboHost Units

A subtle operational change occurs if the TAPESERVER system option is set. If you

designate an audit file that cannot be retrieved by a RoboHost unit because either the

RoboHost unit or the tape itself is not available, then perform the following steps:

1. Use the NF (No File) system command to respond to the No File condition.

2. Supply the required AX response to the following user message:

RETRY OR FAMILY = <FAMILY NAME>

Relating Structure Names to Structure Numbers

Using the PRINTAUDIT program you can view audit information that relates to specific

database structures. The description file title supplied in the PRINTAUDIT run statement is

used to correlate structure names to structure numbers. By default the description file is

assumed to have the following title:

DESCRIPTION/<database name> ON <myself.family>

The myself.family construct identifies the default primary or secondary pack associated

with the usercode from which you run the PRINTAUDIT program.

If the description file is not available and you want to select information based on a

database structure, use the structure number and not the structure name to identify the

structure about which you want information.

Example

The following statement causes the PRINTAUDIT program to run interactively and

identifies the name of the description file as *DESCRIPTION/BANKDB and the location as

the pack SYSPACK. In this example, the audit file being processed is named

(ADMIN)BANKDB/AUDIT82 and is located on the pack AUDPACK.

Printing, Viewing, and Extracting Audit Information

8600 0759-622 10–5

RUN *SYSTEM/PRINTAUDIT;
FILE AUDIT (TITLE=(ADMIN)BANKDB/AUDIT82 ON AUDPACK);
FILE DASDL(TITLE=*DESCRIPTION/BANKDB ON SYSPACK);

Overview of PRINTAUDIT Commands

The following information provides the syntax of the PRINTAUDIT commands. The

commands can be either entered on the screen during an interactive PRINTAUDIT session

or included in a card file that is identified when you run the PRINTAUDIT program in batch

mode.

For ease of reference and access, the syntax diagrams are divided into the following

groups:

• Basic command syntax

• Designating intervals

• Designating a time interval

• Designating a serial number interval

• Designating a relative block interval

• Selecting audit data

- Selecting records by stack number

- Selecting records by program mix number

- Selecting records by program identifier

- Selecting records by structure identifier or block number

- Selecting records by field

- Selecting records by record type

• Generating a customized version of the PRINTAUDIT program

- Developing the ALGOL code

- Using the SELECT statement with the ALGOL code

- Examples of PRINTAUDIT commands

Basic Command Syntax

Syntax

The basic format of all PRINTAUDIT commands is illustrated by the following syntax

diagrams. Explanations of these syntax elements follow the diagrams.

PRINTAUDIT Command

──┬─<PRINTAUDIT output request>─┬──────────────────────────────────────┤
└─ QUIT ──────────────────────┘

Printing, Viewing, and Extracting Audit Information

10–6 8600 0759-622

<PRINTAUDIT output request>

──┬─ PRINT ───┬─┬────────────┬─┬────────────────────────┬──────────────►
├─ DISPLAY ─┤ └─<interval>─┘ └─<selection expression>─┤
├─ EXTRACT ─┘ │
└─ SELECT ─┬────────────┬─┬───────────────────────────┤

└─<interval>─┘ └─<SELECT options>──────────┘

►─┬────────────────────────┬───┤
└─<format specification>─┘

<format specification>

┌◄───┐
──┴─┬─/1\─┬─ ALPHA ──────────────────────────────────┬─┴───────────────┤

│ └─ NOALPHA ────────────────────────────────┤
└─/1\─ LINES ─┬─────┬─<unsigned decimal integer>─┘

└─ = ─┘

PRINTAUDIT Output Request

The PRINTAUDIT output request identifies the information you want to select and directs

the output to one of the following locations.

Request Directs the selected audit information to . . .

PRINT The system printer.

DISPLAY The terminal, so that the information can be viewed online.

EXTRACT A disk file called PRINTAUDIT/REPORT/<task number>.

To supply a different disk file name, file-equate the name you want to

use to the internal file name DK when you initiate the PRINTAUDIT

program.

For example, the following CANDE statement initiates the

PRINTAUDIT program in interactive mode to analyze the audit file

(DMPROD)DB/AUDIT5 ON ISYS. The statement uses the file

equation statement to direct extracted information to a file called

(SRL)MYDB/PRINTAUDIT/REPORT ON REPORT. For this example to

work, the usercode from which the PRINTAUDIT program is run

must have access to both the SRL and DMPROD usercodes.

RUN *SYSTEM/PRINTAUDIT;
FILE AUDIT (TITLE=(DMPROD)DB/AUDIT5 ON ISYS);
FILE DK (TITLE=(SRL)MYDB/PRINTAUDIT/REPORT ON

REPORT);

Printing, Viewing, and Extracting Audit Information

8600 0759-622 10–7

Request Directs the selected audit information to . . .

SELECT A location determined by a tailored version of the PRINTAUDIT

program you develop.

The PRINTAUDIT program enables you to choose audit information.

However, if the information you require cannot be identified with the

options provided in the basic PRINTAUDIT program, use the

PRINTAUDIT command SELECT to create a tailored version of the

PRINTAUDIT program so that you can choose audit information based

on criteria you define.

You can use the SELECT command only when running the

PRINTAUDIT program in batch mode.

QUIT Command

Use the QUIT command to end an interactive PRINTAUDIT session.

Interval Clause

Use the interval clause to identify the portion of the audit file from which information is to

be selected.

Refer to “Designating Intervals” later in this section for detailed information on this topic.

Selection Expression

Use the selection expression to identify the audit records you want to print, display, or

extract.

If you supply a selection expression without defining an interval clause, all audit records in

the audit file that meet the selection expression criteria are chosen.

If you supply both a selection expression and an interval clause, both conditions must be

met before a record is chosen.

Refer to “Selecting Audit Data” later in this section for detailed information on this topic.

SELECT Options

Use the SELECT options when creating a tailored version of the PRINTAUDIT program.

For more information, refer to “Generating a Customized Version of the PRINTAUDIT

Program” later in this section.

Printing, Viewing, and Extracting Audit Information

10–8 8600 0759-622

Format Specification

Use the format specification to further refine the format of the output from a PRINTAUDIT

run. The options available in the format specification are described in the following text.

Option Explanation

ALPHA Directs the PRINTAUDIT program to format information in both

hexadecimal and alphanumeric formats. By default, the output is

in hexadecimal format only.

NOALPHA Directs the PRINTAUDIT program to format information in

hexadecimal format only. This is the default setting.

LINES = <unsigned decimal

integer>

Defines the maximum number of lines of hexadecimal

information printed for each audit record. Audit record heading

information is not included in the line count. The default number

of lines printed for each audit record is 99999.

Designating Intervals

Introduction

You can use any of the following intervals to identify the portion of the audit file you want

to examine. By default, the PRINTAUDIT program examines the complete audit file.

• Time interval

• Serial number interval

• Relative block interval

The following diagram illustrates the relationship between the three types of interval. Each

of the interval types is described in more detail in the text that follows.

<interval>

──┬─<time interval>───────────┬──┤
├─<serial number interval>──┤
└─<relative block interval>─┘

Block Zero and Partial Audit Record Information

In addition to the audit information you specifically request, the PRINTAUDIT program

always selects the contents of block 0 (zero) and any partial audit records at the beginning

or at the end of an audit file.

An audit record is a logical entity that is often larger than one physical block or record.

When an audit file switch occurs, the logical audit record might be split into two physical

parts because of physical space limitations. The first part is stored in the old audit file, and

Printing, Viewing, and Extracting Audit Information

8600 0759-622 10–9

the second part in the new audit file. The two physical halves of the audit record are

referred to as partial audit records. Partial audit records are always selected because the

PRINTAUDIT program cannot determine if the records meet the requested selection

criteria.

The information displayed for block 0 (zero) contains the following two fields:

• AUDITEOF (word 1)

The AUDITEOF field identifies the location of the end of the audit file. The frequency

with which the information in the AUDITEOF field is updated depends on the setting

of the DASDL audit trail option UPDATE EOF.

For more information on the UPDATE EOF audit trail option, refer to the Data and

Structure Definition Language (DASDL) Programming Reference Manual.

• AUDITTIMESTAMP (word 2)

The AUDITTIMESTAMP field identifies when the audit file was created.

Designating a Time Interval

Introduction

Use the time interval to identify the portion of the audit file to be examined based on the

date and time at which the audit information was created. Using the time interval you can

designate two timestamps. One timestamp designates a starting point and the other

timestamp designates a stopping point for the selection. As part of the timestamp you can

designate both a date and a time.

Getting More or Less Data Than You Expect

There are many different types of audit records. Some audit records contain timestamps

and others do not. The PRINTAUDIT program verifies which audit records fit a time interval

based on a timestamp that is contained only in a subset of the audit records. Therefore,

using a time interval as your selection criterion might produce a different number of audit

records than you expect.

First Audit Record Selected

The first audit record encountered that meets the time interval criteria is the first record

that is selected. If no audit record is found with a suitable timestamp, then no records are

selected even if audit records were generated during the designated time interval.

Once a suitable audit record is located all subsequent audit records are selected whether

or not they contain a timestamp.

For example, under the following circumstances, audit records are returned only for the

period starting at 15:01 on May 22, 2005:

• You designate a starting point of 13:22 on May 22, 2005.

• There is no record with the timestamp 13:22.

Printing, Viewing, and Extracting Audit Information

10–10 8600 0759-622

• The first record with a timestamp greater than the one requested is 15:01 on May 22,

2005.

If the stopping point you designate is less than 15:01 on May 22, 2005, then no audit

records are selected.

Last Audit Record Selected

If an audit record with the exact ending timestamp is available, then that is the last audit

record selected. If there is not an audit record with the exact ending timestamp, the last

audit record selected is the one before the audit record that contains a timestamp greater

than the stopping point for the selection criteria. As a result, some of the audited records

selected might have been generated after the designated stopping point.

For example, under the following circumstances, all the audit records up to the record

containing the 11:05 on July 21 timestamp are selected:

• You designate a stopping point of 10:09 on June 26, 2005.

• There is no record with that timestamp.

• The first record with a timestamp greater than 10:09 on June 26 is 11:05 on July 21.

Effect of Time Changes

When using a time interval, if the system clock of the machine has been moved backward

(for example, to switch from daylight saving time to standard time), do not designate as

the starting or stopping point of the time interval a point in time during the time change.

For instance, if the system clock has been set backward from 2 a.m. to 1 a.m., do not use

a stopping point between 1 a.m. and 2 a.m. Instead, choose a time after 2 a.m. or before

1 a.m.

Designating One Timestamp in the Time Interval

If you supply only one timestamp, the timestamp identifies the starting time; the stopping

point is the end of the specified audit file.

Designating Two Timestamps in the Time Interval

If you supply two timestamps, the first timestamp is the starting point; the second

timestamp is the stopping point. The first timestamp must be earlier (less) than, or the

same as, the second timestamp.

If you designate two timestamps, and the audit file ends before the second timestamp is

reached, the PRINTAUDIT program automatically looks for the next audit file in the series.

Designating a Date but Not a Time

If the first timestamp you supply contains no time of day, the interval is assumed to start at

the beginning of the specified day. If the second timestamp you supply contains no time of

day, the interval is assumed to terminate at the end of the specified day.

Printing, Viewing, and Extracting Audit Information

8600 0759-622 10–11

For example, if the starting date and the ending dates are both set to 12/03/94, then all the

audit records for 12/03/94 are selected.

Designating a Time but Not a Date

If the first timestamp you supply contains no date, today’s date is assumed. If the second

timestamp you supply contains no date, the date of the first timestamp is assumed.

Syntax

The following diagrams illustrate the syntax for designating a time interval.

<time interval>

── TIME ──<date stamp>─┬────────────────────┬──────────────────────────┤
└─ TO ──<date stamp>─┘

<date stamp>

──┬─<date>── @ ──<time>─┬──┤
├─<date>──────────────┤
└─ @ ──<time>─────────┘

<date>

──<month>── / ──<day>── / ──<year>─────────────────────────────────────┤

<time>

──<hour>── : ──<minute>─┬───────────────┬──────────────────────────────┤
└─ : ──<second>─┘

Syntax Explanation

The following information explains the elements of the syntax diagrams.

Option Valid Values

<month> An integer between 1 and 12 that identifies the month.

<date> An integer between 1 and 31 that identifies the day.

<year> An integer of either 2 digits or 4 digits that identifies the year. When

specified in 4 digits, the year must be between 1970 and 2035. When

specified in 2 digits with a value in the range 00 to 35, the year is treated

as 20xx (that is, after A.D. 2000). When specified in 2 digits with a value

of 70 to 99, the year is treated as 19xx (that is, before A.D. 2000).

Twodigit years between 35 and 70 are invalid.

<hour> An integer between 0 and 23 that identifies the hour according to a

24hour clock. The value 0 (zero) represents midnight.

Printing, Viewing, and Extracting Audit Information

10–12 8600 0759-622

Option Valid Values

<minute> An integer between 0 and 60 that represents the number of minutes past

the hour.

If you use 60 for the minutes, then the time is converted to the next hour.

For example, supplying a time of 1:60:00 is equivalent to supplying a time

of 2:00:00.

<second> An integer between 0 and 60 that represents the number of seconds past

the minute and hour.

If you use 60 for the seconds, then the time is converted to the next

minute. For example, supplying a time of 1:30:60 is equivalent to

supplying a time of 1:31:00. If you do not supply a value for the seconds,

0 (zero) seconds is assumed.

Designating a Serial Number Interval

Introduction

Use the serial number interval to select a portion of the audit file based on the audit block

serial number (ABSN) associated with an audit record. Note that there can be more than

one audit record associated with each ABSN.

Designating Starting and Ending Points

If you use the serial number interval to select a portion of the audit file, you must explicitly

designate both the starting and ending ABSN. The first ABSN must be greater than 1 and

less than or equal to the second ABSN. The ending point for the interval can be in the

same audit file as the starting point, or it can be in a different audit file. Any required audit

file switching is performed automatically.

You can designate the serial numbers as either unsigned decimal integers or unsigned

hexadecimal integers.

Syntax

The following diagrams illustrate the syntax for designating a serial number interval.

<serial interval>

── SERIAL ──<ABSN>──<ABSN>───┤

<ABSN>

──┬─<unsigned decimal integer>───────────────┬─────────────────────────┤
└─ (──<unsigned hexadecimal integer>──) ─┘

Printing, Viewing, and Extracting Audit Information

8600 0759-622 10–13

Designating a Relative Block Interval

Introduction

Use the relative block interval to identify a portion of the audit file by identifying the

position of the blocks in relation to the start or end of the audit file.

Designating Starting and Ending Points

You must designate both a starting and an ending block number. The relative block interval

can be used to designate blocks in one audit file only; audit file switching is not supported

with this option.

The first relative block number you designate must be less than or equal to the second

block number you designate. You can designate the block numbers using unsigned

decimal integers, unsigned hexadecimal integers, or an * (asterisk).

Identifying Blocks in Relation to the Start of the Audit File

Use 1 to identify the first block in the audit file, use 2 to identify the second block, use 3 to

identify the third block, and so on.

Identifying Blocks in Relation to the End of the Audit File

Use * (asterisk) to identify the last block in the audit file, use *–1 to identify one block from

the end of the audit file, use *–2 to identify the second block from the end of the audit file,

and so on.

Note: If you use this method to identify blocks on a tape file, the entire tape is read first

to determine the number of the last block. Then the tape is rewound and read again while

being processed.

Syntax

The following diagrams illustrate the syntax for designating a relative block interval.

<relative block interval>

──<block number>──<block number>───────────────────────────────────────┤

<block number>

──┬─<unsigned decimal integer>───────────────┬─────────────────────────┤
├─ (──<unsigned hexadecimal integer>──) ─┤
├─ * ──────────────────────────────────────┤
└─ * ── ─ ──<unsigned decimal integer>─────┘

Printing, Viewing, and Extracting Audit Information

10–14 8600 0759-622

Selecting Audit Data

Introduction

You can select audit records based on any of the following criteria:

• Stack number or a range of stack numbers

• Program mix number or a range of program mix numbers

• Program identifier—that is, the program file title

• Structure identifier, a range of structure numbers, blocks within a structure, or a word

offset within a block

• Field selection by data within a specified field

• Record type selection by audit record type

By default, all audit information is selected. If you designate an audit interval and define

the type of data you want, only data that meets both conditions is selected.

Syntax

As shown in the following syntax diagram, you can use some selection criteria once only,

you can use some selection criteria more than once, and you can combine different

selection criteria. Each of the selection criteria is described in more detail in the text that

follows.

<selection expression>

┌◄───────────────────────────────────────┐
──┴─┬─<stack number selection>───────────┬─┴───────────────────────────┤

├─<mix number selection>─────────────┤
├─/1\─<program identifier selection>─┤
├─<structure selection>──────────────┤
├─/1\─<field selection>──────────────┤
└─/1\─<record type selection>────────┘

Selecting Records by Stack Number

Introduction

Use the stack number selection to choose records based on the stack numbers of the

programs that caused the database changes.

You can use both unsigned decimal integers and unsigned hexadecimal integers to identify

stack numbers.

Printing, Viewing, and Extracting Audit Information

8600 0759-622 10–15

Supplying a Range of Stack Numbers

You can provide a list of stack numbers or ranges of stack numbers. If you supply a range,

the smaller stack number must be provided first. For example, the range 10010-10017 is

valid, while the range 16026-15429 is invalid.

Combining Stack Number Selections with Other Selection
Criteria

If you use a stack number selection with any other selection criteria, only audit records

that have the correct stack number and meet the other selection criteria are selected.

Syntax

The following diagrams illustrate the syntax for designating a stack number selection.

<stack number selection>

┌◄────────────────── , ──────────────────┐
── STACK ─┬─────┬─┴─<stack number>─┬─────────────────────┬─┴───────────┤

└─ = ─┘ └─ ─ ──<stack number>─┘

<stack number>

──┬─<unsigned decimal integer>───────────────┬─────────────────────────┤
└─ (──<unsigned hexadecimal integer>──) ─┘

Selecting Records by Program Mix Number

Introduction

Use the mix number selection to choose records based on the mix numbers of the

programs that caused the database changes.

The required audit information is located by identifying the stack number related to the

designated mix number and then using the stack number to identify the appropriate audit

records. The restart data set open (RDSO) audit records contain the mix number to stack

number association information.

Supplying a Range of Mix Numbers

You can provide a list of mix numbers or ranges of mix numbers. If you supply a range, the

smaller mix number must be provided first. For example, the range 1834-1897 is valid,

while the range 8672-7234 is invalid.

Printing, Viewing, and Extracting Audit Information

10–16 8600 0759-622

Selecting Data Near the Beginning of an Audit File

If you select data by mix number, data toward the beginning of an audit file might not be

selected. If the RDSO record associated with a mix number occurs in a prior audit file, the

data in the current audit file affected by the mix number is not selected.

Combining Mix Number Selections with Other Selection
Criteria

If you use a mix number selection with any other selection criteria, only audit records that

have the correct mix number and meet the other selection criteria are selected.

Syntax

The following diagrams illustrate the syntax for designating a mix number selection.

<mix number selection>

┌◄──────────────── , ────────────────┐
── MIX ─┬─────┬─┴─<mix number>─┬───────────────────┬─┴─────────────────┤

└─ = ─┘ └─ ─ ──<mix number>─┘

<mix number>

──<unsigned decimal integer>───┤

Selecting Records by Program Identifier

Introduction

Use the program identifier to choose records based on the title of the program that caused

the database changes. The program identifier is matched against information in the restart

data set open (RDSO) and restart data set close (RDSC) records. If a match occurs, the

mix number information in the record is added to the list of mix numbers being selected.

Thus, if more than one execution of the program causes entries in the audit file, all records

for all executions are processed.

Selecting Data Near the Beginning of an Audit File

If you select data by program identifier, data toward the beginning of an audit file might not

be selected. If the RDSO record associated with the program occurs in a prior audit file,

the data in the current audit file affected by the program is not selected.

Identifying the Full Program Title

If you do not include a usercode with the program name, then the usercode from which

you are running the PRINTAUDIT program is used. If you do not include a pack name, then

all audit records that contain the program name are processed.

Printing, Viewing, and Extracting Audit Information

8600 0759-622 10–17

For more information on designating file titles, refer to the WFL Reference Manual.

Syntax

The following diagram illustrates the syntax for designating a program identifier selection.

<program identifier selection>

── PROGRAM ─┬─────┬─<file title>───────────────────────────────────────┤
└─ = ─┘

Selecting Records by Structure Identifier or Block Number

Introduction

Use the structure selection to choose records based on any of the following criteria:

• Structure names or numbers

• Ranges of structure numbers

• Blocks, or ranges of blocks, within a structure

• Records located at a designated word offset within a block within a structure

Combining Structure Selections with Other Selection Criteria

If you use a structure selection with any other selection criteria, only audit records that

affect the correct structure, block, or record and meet the other selection criteria are

selected.

Selecting Structures by Name

If you select a structure by name, the PRINTAUDIT program uses the database description

file identified in the PRINTAUDIT run statement to correlate a structure name to a

structure number. By default, the database description file is assumed to be

DESCRIPTION/<database name> ON <myself.family>

Selecting More Than One Structure or Block

If you select more than one structure or block,

• The second structure name must designate a structure whose structure number is

higher than that designated by the first structure name.

• The second structure number must be greater than or equal to the first structure

number.

• The second block number must be greater than or equal to the first block number.

Printing, Viewing, and Extracting Audit Information

10–18 8600 0759-622

Using the Block Address Field (BAF) and Word Address Field
(WAF) Values

Use the block address field (BAF) and word address field (WAF) values to identify

particular records in the database. If a beforeimage or an afterimage database record was

audited, then the identified audit record is selected. The BAF identifies the block that

contains the desired record. The WAF identifies the word offset of the record in the block.

Specifying an Alias Name in a Structure Identifier

You can specify an alias name for a structure identifier. This means that you can refer to a

structure identifier using 16-bit character structure names through COBOL85 programs

and Enterprise Database Server utility programs. The alias name is treated the same as a

regular structure name.

For more information about alias names, refer to the Data and Structure Definition

Language (DASDL) Programming Reference Manual.

Syntax

The following diagrams illustrate the syntax for designating a structure selection.

<structure selection>

── STRUCTURE ─┬─────┬──►
└─ = ─┘

┌◄──────────────────────────────── , ────────────────────────────────┐
►─┴─<structure identifier>─┬───┬─┴─┤

├─ ─ ──<structure identifier>─────────────┤
├─ BLOCK ─┬─┬─────┬─<block specification>─┘
└─ BAF ───┘ └─ = ─┘

<structure identifier>

──┬─<structure name>───┬───┤
└─<structure number>─┘

<structure name>

──<identifier>───┤

<structure number>

──<unsigned decimal integer>───┤

<block specification>

┌◄────────────────── , ──────────────────┐
──┴─<block number>─┬─────────────────────┬─┴───────────────────────────┤

├─ ─ ──<block number>─┤
└─ WAF ─┬─────┬─<waf>─┘

└─ = ─┘

Printing, Viewing, and Extracting Audit Information

8600 0759-622 10–19

<block number>

──┬─<unsigned decimal integer>───────────────┬─────────────────────────┤
└─ (──<unsigned hexadecimal integer>──) ─┘

<waf>

──┬─<unsigned decimal integer>───────────────┬─────────────────────────┤
└─ (──<unsigned hexadecimal integer>──) ─┘

Selecting Records by Field

Introduction

Use the field selection to choose audit records that contain beforeimage or afterimage

database records with a specific value at a particular position within the database record.

Compile your database with the compiler control option LAYOUT set so that you can

generate a list of the items, and key item offsets and sizes for the database record. The

offsets provided by the LAYOUT option are for the memory record layout format. The data

in an audit is in disk record layout format. Offsets for items other than key items might be

different between the memory and disk record layout formats.

Limiting the Search Automatically to Specific Record Types

When you use a field selection, the PRINTAUDIT program selects records only from the

following list of record types. All other record types are excluded from the selection

process.

• Afterimage only (AIO)

• Beforeimage only (BIO)

• Change compact data (CCD)

• Data set delete (DSD)

• Data set modify (DSM)

• Data set create (DSC)

Combining Field Selections with Other Selection Criteria

If you use a field selection with any other selection criteria, only audit records that contain

the appropriate field selection value and meet the other selection criteria are selected.

To obtain meaningful results, include exactly one structure selection with the field

selection.

Syntax

The following diagrams illustrate the syntax for designating a field selection.

Printing, Viewing, and Extracting Audit Information

10–20 8600 0759-622

<field selection>

── FIELD ── [──<word offset>─┬─────┬─<digit offset>──] ─┬─────┬──────►
└─ , ─┘ └─ = ─┘

►─<value>──┤

<word offset>

──<unsigned decimal integer>───┤

<digit offset>

──<unsigned decimal integer>───┤

<value>

──┬─<alpha string literal>───────┬─────────────────────────────────────┤
└─<hexadecimal string literal>─┘

<alpha string literal>

┌◄───┐
──┬──────┬─ " ─┴─/78\─<any EBCDIC character except quote>─┴─ " ────────┤
├─ 8 ──┤
└─ 80 ─┘

<hexadecimal string literal>

┌◄─────────────────────────────┐
──┬─ 4 ───┬─ " ─┴─/76\─<hexadecimal character>─┴─ " ───────────────────┤
├─ 40 ──┤
├─ 48 ──┤
└─ 480 ─┘

Syntax Explanation

You can use any EBCDIC character in the alpha string literal except for quotation marks (″).

You can use the digits 0 through 9, and the uppercase letters A through F in the

hexadecimal string literal.

For more information on alpha and hexadecimal string literals, refer to the discussion on

string literals in the Application Development Solutions ALGOL Programming Reference

Manual, Volume 1: Basic Implementation.

Selecting Records by Record Type

Introduction

The audit file is composed of records of various types. Each audit record type has an

associated number and mnemonic name. Use the record type selection to retrieve

information for a specific record type number or mnemonic.

Printing, Viewing, and Extracting Audit Information

8600 0759-622 10–21

Combining Record Type Selections with Other Selection
Criteria

If you use a record type selection with any other selection criteria, only audit records that

are the correct type and meet the other selection criteria are selected.

Matching Audit Record Types, Names, and Mnemonics

The record type mnemonics and their meanings are given in Table 10–1, which follows

the record type selection syntax diagram. In Table 10–1, the record types are listed by

mnemonic in alphabetic order.

Syntax

The following diagram illustrates the syntax for designating a record type selection.

<record type selection>

┌◄───────────── , ─────────────┐
── RECTYPE ─┬─────┬─┴─<audit record type mnemonic>─┴───────────────────┤

└─ = ─┘

Table 10–1. Record Type Mnemonics

Record Type

Mnemonic

Record

Type

Number Description

C Control records

Use C to designate all of the following records: SPT, BCP, ECP,

DBSI, DBST, FILEDC, STRDC, and RECOV

D Data change records

Use D to designate all of the following records: DSC, DSD, DSM,

AIO, BIO, and CCD.

ADSS 16 Allocate data set space

AGCI 89 Aggregate change image

AINT 23 Audit initial block values

AIO 30 Afterimage only

AIRE 39 Add index random entry

AISE2 101 Add index sequential entry

ALN 00 Audit line number (in Accessroutines)

ARNE 51 Add random entry

AUDMIS 90 Miscellaneous audit

AUDTB2 67 Audit change to word Y,X in block

Printing, Viewing, and Extracting Audit Information

10–22 8600 0759-622

Table 10–1. Record Type Mnemonics (cont.)

Record Type

Mnemonic

Record

Type

Number Description

BCP 02 Begin control point

BIO 31 Beforeimage only

BLKIMG 59 Block image

BTR 04 Begin transaction

BUSAIO 115 DATAEXCHANGE audit image

BVEOF 36 Bit vector end-of-file

B4ROOT 75 Ordered data set root beforeimage

CCD 62 Change compact data

CDI 104 Change dynamic information

CIRE 41 Change index random entry

CISE 15 Change index sequential entry

CPID 56 Change partition ID

CPNT 45 Change partition names table

CUOL 26 Change unordered data set storage links

DBSI 21 Database stack initiate

DBST 22 Database stack terminate

DDCD 80 Direct data set change of data end-offile

DDSEOF 54 Direct data set end-of-file

DDSIEF 53 Direct data set increment end-of-file

DDSIEOF 53 Direct data set increment end-of-file (same as DDSIEF)

DIRE 40 Delete index random entry

DISE 14 Delete index sequential entry

DISE2 102 Delete index sequential entry on Mark 3.9 and later releases

DLIRT 43 Delink index random table

DLKBLK 48 Delink block

DLLIST 38 Delink ordered/unordered list table

DRNE 52 Delete random entry

DSC 10 Data set create

DSD 11 Data set delete

DSM 12 Data set modify

Printing, Viewing, and Extracting Audit Information

8600 0759-622 10–23

Table 10–1. Record Type Mnemonics (cont.)

Record Type

Mnemonic

Record

Type

Number Description

DSSD 17 Deallocate data set space

ECP 03 End control point

ETR 05 End transaction

FGTBLK 28 Forget data block

FILEDC 74 File discontinuity

GCAISE 106 Garbage collection add index sequential entry

GCB 63 Get compact block

GCBLK 105 Garbage collection block

GCCISE 108 Garbage collection change index sequential entry

GCDISE 107 Garbage collection delete index sequential entry

GCGIST 109 Garbage collection get index sequential entry

GCGROW 111 Garbage collection grow index sequential table

GCISPT 112 Garbage collection index sequential split table

GCRIST 110 Garbage collection return index sequential table

GETBLK 27 Get data block

GIST 19 Get index sequential table

GRNS 49 Get random space

GRWIST 25 Grow index sequential table

GTRL 103 Global transaction link record

IDSBLK 61 Insert data set block

INSBLK 47 Insert block

ISPT 24 Index sequential split table

KIOA 90 KEYEDIOII allocation change

LGRA 34 Last good restart array

LGRR 76 Last good restart record

LTAR 93 Long transaction address record

MIDTR 78 Midtransaction

ODDSC 73 Ordered data set create

ODEOF 68 Get ordered data set block

ODRTBL 69 Return ordered data set block

Printing, Viewing, and Extracting Audit Information

10–24 8600 0759-622

Table 10–1. Record Type Mnemonics (cont.)

Record Type

Mnemonic

Record

Type

Number Description

ODSFDN 70 Shift ordered data set records down

ODSFUP 71 Shift ordered data set records up

ODSPBL 72 Split ordered data set block

OINZP 55 Open initialize partition

PFIX 94 Remote Database Backup path fixup record

PNT 44 Partition names table

QDCREC 114 Quiesce database copy audit record

RCB 64 Return compact block

RDERR 77 Block image of read errors

RDSC 33 Restart data set close

RDSO 32 Restart data set open

RECOV 29 Recovery point

RFIX 98 Online reorganization fixup

RFLUSH 100 Online reorganization FLUSHDB

RFMT 96 Online reorganization structure FMTSTAMP change

RIST 20 Return index sequential table

RLOCK 65 Row lockout

RMOVE 97 Online reorganization data move

RPATH 99 Online reorganization path

RRNS 50 Return random space

RSTATE 95 Online reorganization state change

RUODSS 28 Return unordered data set space (same as FGTBLK)

SAA 86 Single abort assign record

SAAG 88 Single abort aggregate record

SAC 81 Single abort create record

SAD 82 Single abort delete record

SAI 84 Single abort insert record

SAM 83 Single abort modify record

SAR 85 Single abort remove record

SDSEOF 35 Standard data set end-of-file

Printing, Viewing, and Extracting Audit Information

8600 0759-622 10–25

Table 10–1. Record Type Mnemonics (cont.)

Record Type

Mnemonic

Record

Type

Number Description

SIBC 92 Structure information block (SIB) close

SIBO 91 Structure information block (SIB) open

SPIRT 42 Split index random table

SPLIST 37 Split ordered/unordered list table

SPT 01 Syncpoint

STRDC 79 Structure discontinuity

SVPT 87 Savepoint record

TABAI 58 Table afterimage

TABBA 66 Table beforeimage and afterimage

TABBI 57 Table beforeimage

TBLXCH 18 Table exchange

Generating a Customized Version of the PRINTAUDIT
Program

Introduction

If you have data selection requirements that differ from the capabilities provided by the

standard PRINTAUDIT program, you can create a tailored version of the PRINTAUDIT

program.

This PRINTAUDIT facility is also called dynamic recompilation of the PRINTAUDIT

program.

Basic Steps

The basic steps in creating a tailored version of the PRINTAUDIT program are as follows:

• Write ALGOL code to define your data selection criteria.

• Embed the ALGOL code in your PRINTAUDIT statement as part of the SELECT

statement.

• Run the PRINTAUDIT program in batch mode to compile and run a tailored version of

the PRINTAUDIT program.

Printing, Viewing, and Extracting Audit Information

10–26 8600 0759-622

The ALGOL code you supply is inserted between the last declaration and the first

executable code of the basic PRINTAUDIT program. You can include declarations,

initialization code, inner loop code, and wrap-up code so that you can process as well as

print the audit trail information you want with the tailored PRINTAUDIT program.

These steps are discussed under the following headings later in this section:

• Developing the ALGOL code

• Using the SELECT statement with the ALGOL code

Compiling the Tailored PRINTAUDIT Program

The tailored version of the PRINTAUDIT program is compiled automatically when you run

the PRINTAUDIT program.

Table 10–2 identifies the file equations you can use when you run the PRINTAUDIT

program. The files are used at compilation time, and they are located by following the

standard file search rules.

Table 10–2. PRINTAUDIT File Equations

Internal Name Function and External Name

SOURCE Identifies the name and location of the PRINTAUDIT symbol file.

The default source file is DATABASE/PRINTAUDIT ON DISK.

PROPERTIES Identifies the name and location of the database properties file.

The default properties file is DATABASE/PROPERTIES ON DISK.

INTL Identifies the name and location of the internationalization features file.

The default internationalization features file is

SYMBOL/INTL/ALGOL/DMS/PROPERTIES ON DISK.

Naming Convention for Compiled Object Code

The compiled object code is named according to the following convention:

PRINTAUDIT/PROG/<job mix no><task mix no>

Naming Convention for Generated WFL Job

The WFL job generated for the compilation is also saved. The generated WFL job is

named according to the following convention:

PRINTAUDIT/PATCH/<job mix no><task mix no>

Printing, Viewing, and Extracting Audit Information

8600 0759-622 10–27

Developing the ALGOL Code

Required Elements

In the ALGOL code you supply, you must include a procedure (or define) with no

parameters, called USERPROCEDURE. Use the USERPROCEDURE procedure to provide

the audit data selection logic.

The USERPROCEDURE procedure is called automatically once for each audit record in the

interval you designate. To include the scanned record in the program output, assign the

value TRUE to the global Boolean variable PRINTIT. If you do not want to include the

record in the program output, assign a value of FALSE to the PRINTIT variable.

Optional Elements

You can include the following two optional elements in the ALGOL code:

• USERWRAPUP procedure

• User-declared variables and procedures

USERWRAPUP Procedure

Use the untyped procedure with no parameters, called USERWRAPUP, to define

additional tasks you want the tailored PRINTAUDIT program to complete after all the

required audit records have been selected. For example, use the USERWRAPUP

procedure to display or print the number of audit records selected.

The USERWRAPUP procedure is called automatically after the last audit record has been

processed, just before the end of the task.

Variable Elements

Table 10–3 presents a partial list of the variables you can use in the USERPROCEDURE

and USERWRAPUP procedures. Refer to the examples later in this section for additional

information on using these variables in your program.

Table 10–3. Variables Available to the USERPROCEDURE and

USERWRAPUP Procedures

Variable Type

AUDIT[n] Array

AUDITBLK0[n] Array

AUDITSN Real

AUDITSNR Real

AUDITSZ Real

Printing, Viewing, and Extracting Audit Information

10–28 8600 0759-622

Table 10–3. Variables Available to the USERPROCEDURE and

USERWRAPUP Procedures (cont.)

Variable Type

AUDREC(n) Word

AUDTYPE Real

CONTROLRECORD Boolean

PRINTIT Boolean

USERAUDINX Real

Audit Data Block Information

Table 10–4 describes the fields in an audit data block. You can refer to these fields in an

ALGOL program by using the format AUDIT [<field name>]. The AUDIT parameter refers

to the array containing the image of the current audit block. See the variable AUDIT[n] in

Table 10–3.

Table 10–4. Audit Data Block Information

Field Meaning

AUDITSERIALNUMF Provides the ABSN associated with the audit block.

AUDRECSPLIT Assigns the integer 1 if the audit record is split across more

than one physical block.

LASTAUDRECSPLIT Assigns the integer 1 if the last audit record is split across

more than one physical block.

LASTAUDITCWF Provides an index to the last control word in the audit block.

LASTUSEDAW Provides an index to the last word in the audit block.

MYAUDITBLOCKSZ Provides the size of the audit block in words.

AUDCHKSUMLOC Provides the location of the word containing the checksum

value.

PREVAUDSEG Provides the segment address of the previous audit block.

DMIOTIME(AUDIT) Provides the amount of database input/output time used to

generate the information in the audit block. The time is

provided in units of 2.4 microseconds.

NONDMPTIME(AUDIT) Provides the amount of nondatabase processor time used

to generate the information in the audit block. The time is

provided in units of 2.4 microseconds.

DMUPDPTIME(AUDIT) Provides the amount of processor time used for database

updates to generate the information in the audit block. The

time is provided in units of 2.4 microseconds.

Printing, Viewing, and Extracting Audit Information

8600 0759-622 10–29

Table 10–4. Audit Data Block Information (cont.)

Field Meaning

DMINQPTIME(AUDIT) Provides the amount of processor time used for database

inquiries to generate the information in the audit block. The

time is provided in units of 2.4 microseconds.

MYTIMESTAMP(AUDIT) Provides the time at which the last piece of information

was written in the audit block. This value identifies the

timestamp of the audit block.

PREVTIMESTAMP(AUDIT) Provides the timestamp associated with the previous audit

block.

Example 1

Use AUDIT[AUDITSERIALNUMF] to provide the ABSN associated with the audit block.

Example 2

Use AUDIT[DMIOTIME(AUDIT)] to provide the amount of database input/output time used

to generate the information in the audit block.

Stopper Pattern Information

When an audit block other than the last block in a row is written to an audit file on disk, a

stopper pattern is added to the end of the last audit file. This stopper pattern is used by the

recovery process to find the end of a disk type audit. The available stopper pattern

information is described in Table 10–5. The AUDIT parameter refers to the array containing

the image of the current audit block. See the variable AUDIT[n] in Table 10–3.

Table 10–5. Stopper Pattern Information

Field Meaning

STOPPERABSN(AUDIT) Provides the ABSN of the previous audit block.

STOPPERTHEEND(AUDIT) Marks the end of the audit file.

STOPPERDBTS(AUDIT) Provides the database timestamp.

STOPPERMTS(AUDIT) Provides the timestamp associated with the previous audit

block.

AUDITBLOCKSZWITHSTOPPER Provides the size of the audit block. This value takes into

account the size of the stopper pattern.

Example

Use STOPPERABSN(AUDIT) to provide the ABSN associated with the previous audit

block.

Printing, Viewing, and Extracting Audit Information

10–30 8600 0759-622

DMAuditLib Interface

All the information in the DMAuditLib interface array AUDIT_INFO is available to the

USERPROCEDURE and USERWRAPUP procedures. For more information on

DMAuditLib, refer to Section 20, Using the Audit Reader Library Interface.

Using the SELECT Statement with the ALGOL Code

Introduction

Use the PRINTAUDIT SELECT command to process your ALGOL code and generate a

tailored version of the PRINTAUDIT program.

Syntax

The following diagrams illustrate the syntax for the SELECT command.

SELECT Command

── SELECT ─┬────────────┬─┬──────────────────┬─────────────────────────►
└─<interval>─┘ └─<SELECT options>─┘

►─<user-written ALGOL code>──┤

<SELECT options>

┌◄───┐
──┴─┬─/1\─ CLASS ─┬─────┬─<unsigned decimal integer>─┬─┴───────────────┤

│ └─ = ─┘ │
├─/1\─ PRINT ────────────────────────────────────┤
└─/1\─ SAVE ─────────────────────────────────────┘

<interval>

──┬─<time interval>───────────┬──┤
├─<serial number interval>──┤
└─<relative block interval>─┘

Explanation

The three main elements to the SELECT command are the interval, the SELECT options,

and the userwritten ALGOL code. Samples of user-written ALGOL code are included in

the examples later in the section.

Defining the Interval

Use the interval to identify the portion of the audit file that is to be examined. The three

types of interval are as follows:

• Time interval

• Serial number interval

Printing, Viewing, and Extracting Audit Information

8600 0759-622 10–31

• Relative block interval

The purpose of these intervals and the exact syntax for defining any interval is discussed

fully under “Designating Intervals” earlier in this section.

Defining the SELECT Options

The following three SELECT options are available.

Option Meaning

CLASS Denotes that the WFL job created to compile the tailored PRINTAUDIT

program contains a WFL CLASS task attribute specification.

Use the WFL CLASS task attribute specification to identify the queue in

which the job is to run.

PRINT Prints the WFL job, including the ALGOL code statements you supply.

SAVE Saves the compiled, tailored version of the PRINTAUDIT program on disk.

Once the program is saved, the program is initiated automatically.

Note that the tailored PRINTAUDIT program is compiled, saved on disk, and

then run.

If you do not specify the SAVE option, the tailored PRINTAUDIT program is

compiled and run without being saved on disk.

Examples of PRINTAUDIT Commands

Introduction

Three types of examples are provided as follows:

• Sample PRINTAUDIT commands

• Sample interactive PRINTAUDIT session

• Sample code for generating a tailored PRINTAUDIT program

Sample PRINTAUDIT Commands

The following examples illustrate correct PRINTAUDIT command syntax.

Example 1

This example command directs that all of the records from an audit file be printed in

hexadecimal digits.

PRINT

Printing, Viewing, and Extracting Audit Information

10–32 8600 0759-622

Example 2

This example command prints the audit record information in hexadecimal digits. The

command specifies only a 2-digit year for the date. If you specify a value in the range of 70

to 99 for a 2-digit year, the system interprets the 4-digit year to be 19xx. If you specify a

value in the range 00 to 35 for a 2-digit year, the system interprets the 4-digit year to be

20xx.

PRINT TIME 11/15/95 8:23:36 TO 13:37:55 STR=17 RECTYPE=DSM

In this example, the information is limited to data that fits all of the following criteria:

• Audit record type data set modify (DSM) for structure 17

• Data generated between the time of 8:23:36 and 13:37:55 on November 15, 1995

Example 3

This example command prints the audit record information in hexadecimal digits. The

command specifies a 4-digit year for the date. When you specify a 4-digit year, the year

must be between 1970 and 2035.

PRINT TIME 11/15/2005 8:23:36 TO 13:37:55 STR=17 RECTYPE=DSM

Example 4

This example command displays on the terminal screen all the audit records for structure

number 4. The audit record information is displayed as both hexadecimal digits and

alphanumeric characters.

DISPLAY STR=4 ALPHA

Example 5

This example command displays on the terminal screen all audit records caused by the

program with the mix number 3293. The audit record information selected is displayed as

hexadecimal digits.

DISPLAY MIX=3293

Example 6

This example command prints all audit records caused by the program

(PROJA)UPDATE/PRODDB ON SYSPACK. The audit record information selected is printed

as both hexadecimal digits and alphanumeric characters.

PRINT PROG=(PROJA)UPDATE/PRODDB ON SYSPACK ALPHA

Example 7

This example command prints to a disk file all audit records in the current audit file that

were created at or after 11:47:58 on November 15, 2005. The audit record information is

written to disk as hexadecimal digits. No more than six lines of hexadecimal output is

written for each audit record.

Printing, Viewing, and Extracting Audit Information

8600 0759-622 10–33

Note: Read the descriptions of 2- and 4-digit years for Examples 2 and 3.

EXTRACT TIME 11/15/2005 11:47:58 LINES=6 NOALPHA

Example 8

This example command displays all audit records that contain the value “SMITH” in the

specified field of the structure called MASTER-DATA. The audit information selected is

displayed as hexadecimal digits.

DISPLAY STR=MASTER-DATA FIELD [12,4]="SMITH"

Sample Interactive PRINTAUDIT Session

The following example illustrates the information displayed on your screen after you

initiate an interactive PRINTAUDIT session.

In the example, the user enters the command DISPLAY MIX = 3293 when prompted for a

PRINTAUDIT request. To clarify the example, user input is shown in bold characters.

PLEASE ENTER REQUEST:
DISPLAY MIX = 3293

** REPORT ON CONSTRAINTS: **
OUTPUT TO REMOTE

RANGE:
0 999999999

AUDIT RECORD ABBREVIATIONS:
** ALL **

MAX LINES OF HEX DUMP PER AUDIT RECORD:
99999

STACK NUMBERS:
** ALL **

MIX NUMBERS:
3293

STRUCTURE NUMBERS:
** ALL **

RUNNING.
TITLE =(ADD71)DATADICTIONARY/AUDIT174 ON DMS71
PACKNAME =DMS71.
KIND =PACK
MAXRECSIZE = 900 WORDS
BLOCKSIZE = 900 WORDS
AREASIZE = 100 BLOCKS
AREAS = 481
LASTRECORD = 2
****************** BLOCK 0 OF FILE 174 ***************

AUDIT EOF= 2(000000000002)
AUDIT TIME STAMP = 11/05/2005 12:24:04.620

0(0000) 00000000BA1E 000000000002 000454C2DA24 002400820005 000000000000
5(0005) 000000000039 000000000000 190000000064 3AEE4F432510 000000000002

10(000A) 3BCD454C2DA5 000000000000 000000000000 000000000000 000000000000
15(000F) 000000000000 FOR 10 WORDS (2 LINES)
25(0019) 000000000000 000000000000 000000000000 000000000000 972E7610E20D

Printing, Viewing, and Extracting Audit Information

10–34 8600 0759-622

************** BLOCK 2 OF FILE 174 ******************
**** SER= 476648(00000000BA20) LCW 593(0251) LWD 593(0251) SPLIT=0
**** MY TS=13:05:23.960(000492561269) PR TS=12:24:12.451(000454F4A36A)

RDSO = 32 STR= 2SNR=(226) INX= 10(000A) SZ= 14
DATETIMESTAMP = 11/05/2005 12:24:16.605
3293/3293 (ADD71)SYSTEM/DATADICTIONARY/MANAGER ON DMS71

0(0000) 226002000E20 000000000001 000000000000 3BCD4550F0DD 0CDD0CDD002E
5(0005) 4DC1C4C4F3F6 5DE2E8E2E3C5 D461C4C1E3C1 C4C9C3E3C9D6 D5C1D9E861D4
10(000A)C1D5C1C7C5D9 40D6D540C4D4 E2F3F64B0000 226002000E20

REQUEST COMPLETED

Examples Illustrating the Generation of Tailored Versions of
the PRINTAUDIT Program

The following examples illustrate the use of the SELECT command for generating tailored

versions of the PRINTAUDIT program.

Example 1

In this example, a tailored PRINTAUDIT program is generated to print all the Data Set

Create (DSC) audit records for structure number 5. In the USERWRAPUP procedure, the

program

• Generates a count of the audit records that are printed

• Prints the total number of audit records in the file

• Prints the average block size of the audit records in the file

Following the WFL job is a sample of the type of information that might be generated by

the compilation of the tailored PRINTAUDIT program.

BEGIN JOB RUNPRINTAUDIT;
USER = MY;
BDNAME = BD/UCF/86000795/50;
CLASS = 10;
FAMILY DISK = MYPACK OTHERWISE PACK1;
RUN SYSTEM/PRINTAUDIT;
FILE AUDIT (KIND=PACK, TITLE=(MY)ALLSETDB/AUDIT1 ON MYPACK);
FILE DASDL (KIND=DISK, TITLE=(MY)DESCRIPTION/ALLSETDB ON MYPACK);
FILE SOURCE (TITLE=DATABASE/PRINTAUDIT);
FILE PROPERTIES (TITLE=DATABASE/PROPERTIES);
DATA CARD
SELECT %
PRINT SAVE CLASS=10 %
NOALPHA

%%% START OF USER SPECIFIED DECLARATIONS %%%
%%% SELECT OPTIONS ENDED WITH NOALPHA %%%

INTEGER COUNTEMUP,TOTALCOUNT,MEANBLOCKSZ ; % USER VARIABLES

PROCEDURE USERPROCEDURE; % FOR SELECTING AUDIT RECORDS (REQUIRED)
BEGIN % THIS EXAMPLE LOOKS FOR DSC RECORDS

Printing, Viewing, and Extracting Audit Information

8600 0759-622 10–35

% IN STRUCTURE 5 AND PRINTS THEM
PRINTIT := FALSE; % DO NOT PRINT AUDIT RECORD
IF AUDITSN = 5 THEN % FOUND STRUCTURE 5
IF AUDTYPE = DSC THEN % FOUND DATA SET CREATE
BEGIN

COUNTEMUP := * + 1; % COUNT DSC RECORDS
PRINTIT := TRUE; % PRINT THIS AUDIT RECORD

END;
TOTALCOUNT := * + 1; % COUNT ALL AUDIT RECORDS

MEANBLOCKSZ := * +
(AUDIT [MYAUDITBLOCKSZ] % USE DEFINE OF DATABASE/PROPERTIES

- MEANBLOCKSZ)/TOTALCOUNT;

END USERPROCEDURE;

PROCEDURE USERWRAPUP; % USER-SPECIFIED FINAL PROCEDURE
BEGIN % EXAMPLE PRINTS RECORD COUNTS

WRITE(PRINTER
,<J7," DATA SET CREATE RECORDS FOUND (STRUCTURE 5), "
,"TOTAL RECORDS LOOKED AT = ", J7
,", AVERAGE AUDIT BLOCK SIZE = ", J7>,
COUNTEMUP, TOTALCOUNT, MEANBLOCKSZ);

IF TAPE.OPEN THEN DISPLAY("*** AUDIT STILL OPEN IN WRAPUP");
WRITE(PRINTER,<"*** END OF OUTPUT ***">);
END USERWRAPUP;

PROCEDURE EXAMPLE_USER_PROCEDURE; % (OPTIONAL)
BEGIN % EXAMPLE OF A USER DECLARED PROCEDURE

% DISPLAYS STARTUP AND AUDIT STATE MESSAGES
% AND INITIALIZES USER DECLARED VARIABLES.

DISPLAY("*** CUSTOMIZED PRINTAUDIT EXAMPLE ***");
TOTALCOUNT:=MEANBLOCKSZ:=COUNTEMUP:=0; % RESET RECORD COUNTS

END EXAMPLE_USER_PROCEDURE;
%%% FIRST STATEMENT OF INNER BLOCK OF PRINTAUDIT %%%
%%% PLACE TO PUT USER SETUP AND INITIALIZATION %%%
EXAMPLE_USER_PROCEDURE; % CALL USER PROCEDURE (OPTIONAL)

DISPLAY("*** START OF SELECT ***");
%%% SELECT CODE GENERATED BY PRINTAUDIT FOLLOWS %%%
?END JOB;

Following is the information generated by the compilation of the tailored PRINTAUDIT

program. The output from the compilation includes a copy of the code used to generate

the program.

** REPORT ON CONSTRAINTS: **
OUTPUT TO PRINTER

RANGE:
0 999999999

AUDIT RECORD ABBREVIATIONS:
** ALL **

MAX LINES OF HEX DUMP PER AUDIT RECORD:
99999

Printing, Viewing, and Extracting Audit Information

10–36 8600 0759-622

STACK NUMBERS
** ALL **

MIX NUMBERS:
** ALL **

STRUCTURE NUMBERS:
** ALL *

?BEGIN JOB PRTAUD5978;
CLASS = 0010;
COMPILE PRINTAUDIT/PROG/59755978 WITH DMALGOL LIBRARY;
FILE AUDIT(TITLE = (MY)ALLSETSDB/AUDIT1 ON MYPACK

, PACKNAME=MYPACK
, KIND=DISKPACK);

COMPILER FILE PROPERTIES(TITLE = *DATABASE/PROPERTIES ON DISK
, PACKNAME=DISK
, KIND=DISKPACK);

COMPILER FILE INTL(TITLE = *SYMBOL/INTL/ALGOL/DMS/PROPERTIES ON DISK
, PACKNAME=DISK
, KIND=DISKPACK);

COMPILER FILE TAPE(TITLE = *DATABASE/PRINTAUDIT ON DISK
, PACKNAME=DISK
, KIND=DISKPACK);

COMPILER DATA CARD
INTEGER COUNTEMUP,TOTALCOUNT,MEANBLOCKSZ ; % USER VARIABLES
PROCEDURE USERPROCEDURE; % FOR SELECTING AUDIT RECORDS (REQUIRED)
BEGIN % THIS EXAMPLE LOOKS FOR DSC RECORDS

% IN STRUCTURE 5 AND PRINTS THEM
PRINTIT := FALSE; % DO NOT PRINT AUDIT RECORD
IF AUDITSN = 5 THEN % FOUND STRUCTURE 5
IF AUDTYPE = DSC THEN % FOUND DATA SET CREATE
BEGIN

COUNTEMUP := * + 1; % COUNT DSC RECORDS
PRINTIT := TRUE; % PRINT THIS AUDIT RECORD

END;
TOTALCOUNT := * + 1; % COUNT ALL AUDIT RECORDS
MEANBLOCKSZ := * +

(AUDIT [MYAUDITBLOCKSZ] % USE DEFINE OF DATABASE/PROPERTIES
- MEANBLOCKSZ)/TOTALCOUNT;

END USERPROCEDURE;
PROCEDURE USERWRAPUP; % USER-SPECIFIED FINAL PROCEDURE
BEGIN % EXAMPLE PRINTS RECORD COUNTS

WRITE(PRINTER
,<J7," DATA SET CREATE RECORDS FOUND (STRUCTURE 5), "
,"TOTAL RECORDS LOOKED AT = ", J7
,", AVERAGE AUDIT BLOCK SIZE = ", J7>,
COUNTEMUP, TOTALCOUNT, MEANBLOCKSZ);

IF TAPE.OPEN THEN DISPLAY("*** AUDIT STILL OPEN IN WRAPUP");
WRITE(PRINTER,<"*** END OF OUTPUT ***">);
END USERWRAPUP;
PROCEDURE EXAMPLE_USER_PROCEDURE; % (OPTIONAL)
BEGIN % EXAMPLE OF A USER DECLARED PROCEDURE

% DISPLAYS STARTUP AND AUDIT STATE MESSAGES
% AND INITIALIZES USER DECLARED VARIABLES.

DISPLAY("*** CUSTOMIZED PRINTAUDIT EXAMPLE ***");
TOTALCOUNT:=MEANBLOCKSZ:=COUNTEMUP:=0; % RESET RECORD COUNTS
END EXAMPLE_USER_PROCEDURE;

Printing, Viewing, and Extracting Audit Information

8600 0759-622 10–37

%%% FIRST STATEMENT OF INNER BLOCK OF PRINTAUDIT %%%
%%%PLACE TO PUT USER SETUP AND INITIALIZATION %%%
EXAMPLE_USER_PROCEDURE; % CALL USER PROCEDURE (OPTIONAL)
DISPLAY("*** START OF SELECT ***");

%%% SELECT CODE GENERATED BY PRINTAUDIT FOLLOWS %%%
BEGIN
LOWER:= 000000000000; UPPER:= 000999999999; REELSWITCHOK:= FALSE;
LOWERLREC:=FALSE; UPPERLREC:=FALSE;
ALPHADUMP:= TRUE;
HEXLN:= 000000099999;
END;
$ POP VOIDT SEQ
?
IF T IS COMPILEDOK THEN

RUN PRINTAUDIT/PROG/10191021;
END JOB.

Example 2

The following example generates a tailored PRINTAUDIT program that prints every quiet

point in an audit file, and displays the ABSN and word offset of the last quiet point.

BEGIN JOB PRINT/AUDIT;

RUN SYSTEM/PRINTAUDIT;
FILE AUDIT (KIND=PACK, TITLE=CLASSDB/AUDIT1);
FILE DASDL (TITLE=DESCRIPTION/CLASSDB);

DATA CARD
SELECT PRINT SAVE ALPHA

%%%%% BEGIN ALGOL PORTION %%%%%

REAL LASTQPABSN,
LASTQPOFFSET;

PROCEDURE USERPROCEDURE;
BEGIN

PRINTIT:=FALSE;
IF CONTROLRECORD

OR (AUDTYPE = BTR AND AUDREC(2) = 1) THEN
BEGIN

PRINTIT :=TRUE;
LASTQPABSN :=AUDIT[O];
LASTQPOFFSET:=USERAUDINX;

END;
END USERPROCEDURE;

PROCEDURE USERWRAPUP;
BEGIN

DISPLAY ("LAST QUIET POINT AT ABSN = " CAT
STRING(LASTQPABSN,*) CAT ", OFFSET = "
CAT STRING(LASTQPOFFSET,*));

END USERWRAPUP;
?END JOB PRINT/AUDIT;

Printing, Viewing, and Extracting Audit Information

10–38 8600 0759-622

Quick-Reference Information

The information presented here is for quick-reference purposes only. For an explanation of

any element of a syntax diagram, refer to the appropriate information presented earlier in

this section.

PRINTAUDIT Statement

──┬─<PRINTAUDIT output request>─┬──────────────────────────────────────┤
└─ QUIT ──────────────────────┘

<PRINTAUDIT output request>

──┬─ PRINT ───┬─┬────────────┬─┬────────────────────────┬──────────────►
├─ DISPLAY ─┤ └─<interval>─┘ └─<selection expression>─┤
├─ EXTRACT ─┘ │
└─ SELECT ─┬────────────┬─┬───────────────────────────┤

└─<interval>─┘ └─<SELECT options>──────────┘

►─┬────────────────────────┬───┤
└─<format specification>─┘

<interval>

──┬─<time interval>───────────┬──┤
├─<serial number interval>──┤
└─<relative block interval>─┘

<time interval>

── TIME ──<date stamp>─┬────────────────────┬──────────────────────────┤
└─ TO ──<date stamp>─┘

<date stamp>

──┬─<date>── & ──<time>─┬──┤
├─<date>──────────────┤
└─ & ──<time>─────────┘

<date>

──<month>── / ──<day>── / ──<year>─────────────────────────────────────┤

<time>

──<hour>── : ──<minute>─┬───────────────┬──────────────────────────────┤
└─ : ──<second>─┘

<serial number interval>

── SERIAL ──<ABSN>──<ABSN>───┤

<ABSN>

──┬─<unsigned decimal integer>───────────────┬─────────────────────────┤
└─ (──<unsigned hexadecimal integer>──) ─┘

Printing, Viewing, and Extracting Audit Information

8600 0759-622 10–39

<relative block interval>

──<block number>──<block number>───────────────────────────────────────┤

<block number>

──┬─<unsigned decimal integer>───────────────┬─────────────────────────┤
├─ (──<unsigned hexadecimal integer>──) ─┤
├─ * ──────────────────────────────────────┤
└─ * ── ─ ──<unsigned decimal integer>─────┘

<selection expression>

┌◄───────────────────────────────────────┐
──┴─┬─<stack number selection>───────────┬─┴───────────────────────────┤

├─<mix number selection>─────────────┤
├─/1\─<program identifier selection>─┤
├─<structure selection>──────────────┤
├─/1\─<field selection>──────────────┤
└─/1\─<record type selection>────────┘

<stack number selection>

┌◄────────────────── , ──────────────────┐
── STACK ─┬─────┬─┴─<stack number>─┬─────────────────────┬─┴───────────┤

└─ = ─┘ └─ ─ ──<stack number>─┘

<stack number>

──┬─<unsigned decimal integer>───────────────┬─────────────────────────┤
└─ (──<unsigned hexadecimal integer>──) ─┘

<mix number selection>

┌◄──────────────── , ────────────────┐
── MIX ─┬─────┬─┴─<mix number>─┬───────────────────┬─┴─────────────────┤

└─ = ─┘ └─ ─ ──<mix number>─┘

<mix number>

──<unsigned decimal integer>───┤

<program identifier selection>

── PROGRAM ─┬─────┬─<file title>───────────────────────────────────────┤
└─ = ─┘

<structure selection>

── STRUCTURE ─┬─────┬──►
└─ = ─┘

┌◄──────────────────────────────── , ────────────────────────────────┐
►─┴─<structure identifier>─┬───┬─┴─┤

├─ ─ ──<structure identifier>─────────────┤
├─ BLOCK ─┬─┬─────┬─<block specification>─┘
└─ BAF ───┘ └─ = ─┘

<structure identifier>

──┬─<structure name>───┬───┤
└─<structure number>─┘

Printing, Viewing, and Extracting Audit Information

10–40 8600 0759-622

<structure name>

──<identifier>───┤

<structure number>

──<unsigned decimal integer>───┤

<block specification>

┌◄────────────────── , ──────────────────┐
──┴─<block number>─┬─────────────────────┬─┴───────────────────────────┤

├─ ─ ──<block number>─┤
└─ WAF ─┬─────┬─<waf>─┘

└─ = ─┘

<block number>

──┬─<unsigned decimal integer>───────────────┬─────────────────────────┤
└─ (──<unsigned hexadecimal integer>──) ─┘

<waf>

──┬─<unsigned decimal integer>───────────────┬─────────────────────────┤
└─ (──<unsigned hexadecimal integer>──) ─┘

<field selection>

── FIELD ── [──<word offset>─┬─────┬─<digit offset>──] ─┬─────┬──────►
└─ , ─┘ └─ = ─┘

►─<value>──┤

<word offset>

──<unsigned decimal integer>───┤

<digit offset>

──<unsigned decimal integer>───┤

<value>

──┬─<alpha string literal>─────────────────────────────┬───────────────┤
└─<hexadecimal code>── " ──<hexadecimal string>── " ─┘

<record type selection>

┌◄───────────── , ─────────────┐
── RECTYPE ─┬─────┬─┴─<audit record type mnemonic>─┴───────────────────┤

└─ = ─┘

SELECT Command

── SELECT ─┬────────────┬─┬──────────────────┬─────────────────────────┤
└─<interval>─┘ └─<SELECT options>─┘

Printing, Viewing, and Extracting Audit Information

8600 0759-622 10–41

<SELECT options>

┌◄───┐
──┴─┬─/1\─ CLASS ─┬─────┬─<unsigned decimal integer>─┬─┴───────────────┤

│ └─ = ─┘ │
├─/1\─ PRINT ────────────────────────────────────┤
├─/1\─ PUNCH ────────────────────────────────────┤
└─/1\─ SAVE ─────────────────────────────────────┘

<interval>

──┬─<time interval>───────────┬──┤
├─<serial number interval>──┤
└─<relative block interval>─┘

<format specification>

┌◄───┐
──┴─┬─/1\─┬─ ALPHA ──────────────────────────────────┬─┴───────────────┤

│ └─ NOALPHA ────────────────────────────────┤
└─/1\─ LINES ─┬─────┬─<unsigned decimal integer>─┘

└─ = ─┘

Printing, Viewing, and Extracting Audit Information

10–42 8600 0759-622

Section 11
Checking Integrity and Performance

This section describes the Database Certification. Database Certification provides a

means of checking for file and structure integrity.

This section also describes the following DMUTILITY statements: DBDIRECTORY,

DISABLE, ENABLE, LIST, and WRITE.

Note: The tasks identified in this section can be initiated through Database Operations

Center.

Database Certification

Database Certification is a utility program that ensures the integrity of structures in an

Enterprise Database Server database. The alias name is treated the same as a data

structures. The Database Certification utility program is compiled as

SYSTEM/DBCERTIFICATION. The utility can then be used interactively from a remote

terminal or initiated as a batch job. In either case, free-format user input commands are

used to determine the level of certification to be provided for a structure.

Three levels of certification are provided by the utility.

• Physical integrity. This level ensures that a file is physically intact and accessible, and

isolates problems at the data block level.

• Internal (intrastructure). This level verifies that data in a single structure is consistent,

storage control information is valid, and internal control information is valid.

• Crosschecking (interstructure). This level verifies that relationships between data

structures are correct.

Database Certification enables the user to specify the certification tests at the various

levels. Except for the READONLY test from the Physical Integrity level, all certification

request tests are typically performed while a database is not in use. By default, Database

Certification has exclusive use of the database. While certification is in progress, any

program that attempts to access the database is locked out. However, provisions can be

made to allow users to operate Database Certification in a nonexclusive mode.

The following paragraphs contain instructions for operating the Database Certification

program. An output description is included in this section.

8600 0759-622 11–1

Running Database Certification

Database Certification is run interactively from a remote terminal by using the Command

and Edit (CANDE) system, or as a batch job through a Work Flow Language (WFL) file.

The Database Certification program uses the tailored support library

DMSUPPORT/<database name>. When this library is not present, the Database

Certification program is suspended and the following message is displayed on the

terminal screen:

NO FILE DMSUPPORT/<database name>

Interactive Mode

In interactive mode, all input commands are entered at the remote terminal. Each

command is executed as it is entered. Operation of the Database Certification program in

the interactive mode consists of the following steps:

1. Log on to CANDE.

2. Enter the following statements:

RUN $SYSTEM/DBCERTIFICATION;
FILE DASDL(TITLE=DESCRIPTION/<database name>

ON <family name>);

Note: The Data and Structure Definition Language (DASDL) file must be equated to the

current description file for the database, because Database Certification reads and

interprets the DASDL description file.

Database Certification displays a number sign (#) to indicate that the program is ready for

additional input.

Typically, commands are entered on a single line; however, some commands can exceed

the line width of the terminal screen. To enter a multiline command, insert a percent

sign (%) at the end of the line to indicate that more input follows, and then transmit.

Database Certification responds with a number sign and a percent sign (#%). Additional

input can then be entered. The process can be repeated as many times as necessary.

When the command input is completed, the last line is transmitted without a percent sign

and the entire command is executed.

Several commands can be entered in a single input message if each complete command

is terminated by a semicolon (;).

When Database Certification is run interactively, the output is directed to the terminal and

the line printer. The Database Certification program interrupts the output and displays the

word PAGE on the terminal after displaying a full page of output. The program then waits

for the user to transmit one or more blanks before displaying the next page. If a nonblank

character is transmitted, the REMOTEOUT option is assigned the value RESET and the

remaining output is directed to the line printer.

The REMOTEOUT option can be assigned the value RESET at any time with the OPTIONS

command.

Checking Integrity and Performance

11–2 8600 0759-622

Batch Mode

In batch mode, all input commands are entered as a batch job. The Database Certification

output is transferred to a printer file with the internal name LINE.

Operation of the Database Certification program in batch mode consists of creating a card

deck or JOBSYMBOL file. The following WFL statements can be used to run

Database Certification:

? BEGIN JOB DBCERTIFICATION;
RUN SYSTEM/DBCERTIFICATION;
FILE DASDL(TITLE=DESCRIPTION/<database name>

ON <family name>);
DATA CARD

<one or more DBCERTIFICATION input statements>
? END JOB

Note: The DASDL file must be equated to the current description file for the database,

because Database Certification reads and interprets the DASDL description file.

When Database Certification commands are entered from cards or disk, the command

information must not extend beyond the first 72 characters of each record. The remaining

columns are reserved for sequence numbers or comments. A command can extend over

as many records as desired; however, a word must not be split between two records.

Every command must end with a semicolon (;). Several commands can be placed on a

single input record, provided that each command is delimited by a semicolon.

A percent sign (%) in the input record denotes a comment. Anything between the percent

sign and the end of the record is ignored, unless the percent sign is enclosed in quotation

marks. For example, in “ABC%DE” the percent sign is interpreted as part of the quoted

string. The Database Certification program also returns a TASKVALUE indicating whether

there were any warnings or errors reported in the certification process. If there were

errors, the TASKVALUE would be passing the value -1. If there were warnings, the

TASKVALUE would be assigned the value 2. This TASKVALUE can be read by a WFL job.

The following WFL job example certifies a database and checks the result before updating

the database.

? BEGIN JOB CERTIFYBEFOREUPDATE;
TASK T;
RUN SYSTEM/DBCERTIFICATION [T];
FILE DASDL(TITLE=DESCRIPTION/TESTDB ON DMS35);
DATA CARD

CERTIFY ALL;
? %END OF DATA CARD

IF T(TASKVALUE) LESS 1
THEN

BEGIN
DISPLAY "WARNING: CERTIFICATION ERRORS REPORTED.";
GO TO EXITJOB;

END:
ELSE DISPLAY "OK TO UPDATE.";

%UPDATING DATABASE ...

Checking Integrity and Performance

8600 0759-622 11–3

EXITJOB:
? END JOB

Restarting Database Certification

Database Certification can be restarted if it is discontinued, or if a halt/load occurs during a

certification run. To restart the program, reenter the job.

The Database Certification program checks for the presence of

DBCERTIFICATION/RECOVERY/<database name> at the beginning of each run. If the

recovery file is present, then the previous job ended abnormally and the program attempts

to read the recovery file. A valid recovery file indicates where processing is to resume.

Database Certification finishes certifying the structure being processed at the time the

program discontinued or a halt/load occurred. Database Certification then goes to the end

of the task.

An invalid recovery file causes a message to be displayed that instructs you to reenter the

entire job.

The DMUTILITY CANCEL function must be used to unlock the control file if the aborted

run of Database Certification was an exclusive-use run and the program is not going to be

restarted. Unless the control file is unlocked, access to the database is denied to other

users.

Output Description of Database Certification

The output from Database Certification is hardcopy analysis listings. These listings include

appropriate error messages, addresses of detected errors, and a hexadecimal dump of the

blocks where errors were detected.

Users executing the program from a remote terminal receive only the appropriate error

messages at the terminal. The error messages, hexadecimal dumps, and error addresses

are also provided in the hard copy listings generated at the end of the session. If the

Database Certification job discontinues or a halt/load occurs before the end of the session,

the printer file is saved. This printer file is printed only if Database Certification is restarted

and allowed to complete.

The user can assign the value RESET to the DUMPBLOCKS option (refer to “OPTIONS

Command” later in this section) in order to suppress the printing of the hexadecimal dump

output. The option can be used in either batch or interactive mode.

Example

This example shows a partial Database Certification report in which the data set is

sectioned, and the report specifies the section that is being certified.

Checking Integrity and Performance

11–4 8600 0759-622

DBCERTIFICATION SSR 51.1 (51.116.0017)
MONDAY,DECEMBER 8, 2005, 6:18 PM.

DASDL:(NAGEL)DESCRIPTION/FORSDB ON DMTEST
CERTIFICATION FOR DATABASE FORSDB

INPUT SPECIFICATIONS:
CERTIFY ALL;
STRUCTURE D # 4 DISJOINT STANDARD DATA SET
SECTION 0 of D

NO PHYSICAL ERRORS DETECTED
NO STRUCTURE CHECK ERRORS DETECTED
NO AVAILABLE SPACE ERRORS DETECTED
NO CONTENTS ERRORS DETECTED
NO VERIFYSTORE ERRORS DETECTED

ANALYSIS TIMES:
PROCESS 00:00:00.65
IO 00:00:01.42
ELAPSED 00:00:07.10

DBCERTIFICATION SSR 51.1 (51.116.0017)
MONDAY, DECEMBER 8, 2005, 6:18 PM.

DASDL:(NAGEL)DESCRIPTION/FORSDB ON DMTEST
CROSSCHECKING CERTIFICATION FOR DATABASE FORSDB

CROSSCHECKING STRUCTURE E #E5 AND:

D #4 FOR EMBEDDED STRUCTURE TO ITS OWNER CROSSCHECKING

===> NO ERRORS DETECTED

ANALYSIS TIMES:
PROCESS 00:00:00.58
IO 00:00:01.20
ELAPSED 00:00:04.77

DBCERTIFICATION Command

The DBCERTIFICATION command allows you to initiate and control the certification of the

database.

Syntax

──┬──────────────────┬───►
└─<online command>─┘
┌◄───────────────────────────── ; ────────────────────────────┐
│ ┌◄──────────────────────────────────┐ │

►─┴─┴─┬───────────────────────────────┬─┴─┬───────────────────┬─┴──────►
├─<help command>── ; ───────────┤ └─<certify command>─┘
├─<internal files command>── ; ─┤
├─<options command>── ; ────────┤
├─<sort command>── ; ───────────┤
├─<uppercase command>── ; ──────┤
└─<lowercase command>── ; ──────┘

►─<quit command>───┤

Checking Integrity and Performance

8600 0759-622 11–5

Explanation

Following are the syntax and explanation for each command used in operating the

Database Certification program. The applicable syntax options, program examples, and

extent of each command are included in this section. Commands other than the CERTIFY

command, such as the SORT and OPTIONS commands, affects only the CERTIFY

command that they precede in the command input.

ONLINE Command

The ONLINE command allows access to the database by any valid user during the time

that Database Certification is in progress.

Syntax

── ONLINE ───┤

Explanation

The ONLINE command allows access to the database while Database Certification is in

progress. The ONLINE command must be the first Database Certification command

entered when exclusive use of the database is not required during certification. When

ONLINE is not specified, the database is locked and can be accessed only by the

Database Certification program.

ONLINE should be specified only if the structure being certified is not updated while

Database Certification is running. This means, for example, that the following Enterprise

Database Server verbs should not be used: STORE, DELETE, INSERT, REMOVE, and

ASSIGN. If a structure being certified is modified, false certification errors can result.

HELP Command

The HELP command displays the syntax for a specified DBCERTIFICATION input

command.

Syntax

── HELP ─┬─<dbcertification command>─┬─────────────────────────────────┤
└─<command variable>────────┘

Explanation

The following information explains the elements of the HELP command syntax diagram.

Option Explanation

<dbcertification

command>

Composed of the following keywords: CERTIFY, INTERNAL FILES,

OPTIONS, QUIT, UPPERCASE, LOWERCASE, or SORT.

Checking Integrity and Performance

11–6 8600 0759-622

Option Explanation

<command variable> Includes any of the following DBCERTIFICATION command

variables: <certify command>, <internal files command>, <options

command>, <quit command>, and <sort command>.

Examples

• HELP CERTIFY

This command causes Database Certification to display the syntax for the CERTIFY

command.

• HELP <certify command>

This command causes Database Certification to display the syntax for the

<certify command> construct.

INTERNAL FILES Command

The INTERNAL FILES command must precede the CERTIFY command and is in effect

only for the one CERTIFY command that follows.

The INTERNAL FILES command specifies a default family name where the temporary

extracted data files are to be stored. If an INTERNAL FILES specification is not declared,

the family name of the database control file is assumed. An INTERNAL FILES command is

used when a family name is not specified in the SORT command.

Syntax

── INTERNAL FILES(── FAMILYNAME = ─┬─ DISK ────────┬─) ──────────────┤
├─ PACK ────────┤
└─<family name>─┘

Explanation

The INTERNAL FILES command indicates that file-storage specifications follow. The

FAMILYNAME specification indicates that the file-storage family name follows. The DISK

specification indicates that the internal files are to be stored on FAMILYNAME DISK. The

PACK specification indicates that the internal files are to be stored on FAMILYNAME

PACK. The <family name> construct indicates that the internal files are to be stored on

FAMILYNAME <family name>.

An internal file is created for every data set, set, and subset structure that is certified. To

calculate an internal file size, follow the rule that the file might contain four words plus the

key length for every record in the database structure. So, if you have a structure with

4,000,000 records, and the key length is two words, the internal file is about (4 + 2) *

4,000,000 or 24,000,000 words long.

Checking Integrity and Performance

8600 0759-622 11–7

OPTIONS Command

The OPTIONS command specifies whether the output contains error data and whether

the output is displayed on the remote terminal, the line printer, or both.

Syntax

┌◄──────────── , ────────────┐
── OPTIONS = (─┴─┬─ ALL ──────────────────┬─┴─) ─────────────────────┤

├─────────┬─ DUMPBLOCKS ─┤
├─ RESET ─┘ │
├─────────┬─ REMOTEOUT ──┘
└─ RESET ─┘

Explanation

The following information explains the elements of the OPTIONS command syntax

diagram.

Option Explanation

ALL Specifies both the DUMPBLOCKS and REMOTEOUT options.

DUMPBLOCKS Causes hexadecimal dump printing of data blocks where errors have been

detected during the certification process. The DUMPBLOCKS option is set

by default.

REMOTEOUT Causes error messages to be displayed at the terminal as well as printed

on the line printer. The REMOTEOUT option is set by default. When this

option is assigned the value RESET, the REMOTEOUT option restricts the

error output to the line printer. The last active REMOTEOUT setting in the

user input is the request that is used by the Database Certification

program.

RESET Sets DUMPBLOCKS or REMOTEOUT to FALSE.

SORT Command

The Database Certification program uses the SORT intrinsic to place the temporary

extracted data files in the proper order for internal and crosscheck certification. SORT

phrases allow the user to specify the resources (disk, pack, or tape) to be used by the

SORT intrinsic.

If a SORT command is not given, Database Certification uses the following default values:

• The ALLOWEDCORE value is set to 12000.

• The family name is set to DISK.

• The SEGMENT value is set to the physical file size multiplied by 2.25.

• The number of tapes is set to zero (0).

Any user-supplied sort option or options can override each corresponding default sort

option.

Checking Integrity and Performance

11–8 8600 0759-622

Syntax

┌◄───────────────── , ────────────────┐
── SORT USING ─┴─┬─/1\─ ALLOWEDCORE = <integer> ───┬─┴─────────────────┤

├─/1\─ FAMILYNAME = ─┬─ DISK ─────┤
│ ├─ PACK ─────┤
│ └─<packname>─┤
├─/1\─ <integer> SEGMENTS ────────┤
└─/1\─ <integer> TAPES ───────────┘

Explanation

The following information explains the elements of the SORT command syntax diagram.

Option Explanation

SORT USING Initiates the SORT command.

ALLOWEDCORE Specifies the amount of sort core that is to be used by the SORT

intrinsic. If ALLOWEDCORE is not specified, 12000 words is

assumed.

FAMILYNAME Specifies the pack family where the internal sort files are to be

maintained. You can specify DISK, PACK, or a pack name. If

FAMILYNAME is not specified, then the family name declared in the

INTERNAL FILES command is assumed by default. If an INTERNAL

FILES specification is not declared, the family name of the database

control file is assumed.

SEGMENTS Specifies the number of segments to be sorted by the SORT intrinsic.

The default setting is 2.25 multiplied by the physical file size.

TAPES Specifies the number of tapes to be used by the SORT intrinsic. The

default is 0 TAPES.

UPPERCASE Command

The UPPERCASE command allows you to specify translation of message output to

uppercase.

Syntax

── UPPERCASE ──┤

Explanation

By default, the text is lowercase. If uppercase is desired then enter UPPERCASE. To

return to lowercase output, enter LOWERCASE.

LOWERCASE Command

The LOWERCASE command allows you to specify translation of message output to

lowercase.

Checking Integrity and Performance

8600 0759-622 11–9

Syntax

── LOWERCASE ──┤

Explanation

By default, the text is translated to lowercase. If uppercase is desired then enter

UPPERCASE. To return to lowercase output, enter LOWERCASE.

QUIT Command

The QUIT command is used to terminate the Database Certification program.

Syntax

──┬─ QUIT ─┬───┤
├─ BYE ──┤
├─ END ──┤
└─ STOP ─┘

Explanation

QUIT, BYE, END, STOP are keywords that terminate the Database Certification program.

CERTIFY Command

The CERTIFY command specifies the data structures that are to be verified by the

Database Certification program, and the certification options used to test them.

Syntax

── CERTIFY ─┬─ ALL ──────────────┬─┬─────────────────────┬─────────────┤
└─ <structure list> ─┘ └─ <certify options> ─┘

<structure list>

┌◄──────────────────────────── , ────────────────────────────┐
──┴─┬─<structure name>─┬─────────────────────────────────────┬─┴───────┤

│ └─ . <partition ID> ──────────────────┤
├─<structure number>─┬───────────────────────────────────┤
│ └─ . <partition ID> ────────────────┤
└─<structure number>── - (hyphen) ── <structure number> ─┘

<link item name>

──<simple identifier>──┤

<set name>

──<simple identifier>──┤

Checking Integrity and Performance

11–10 8600 0759-622

<certify options>

┌◄───────────────────── , ────────────────────┐
── (OPTIONS = ─┴─┬─ ALL ───────────────────────────────────┬─┴─) ────┤

├─ AVAILABLE SPACE ───────────────────────┤
├─ CONTENTS ──────────────────────────────┤
├─ COUNT ─────────────────────────────────┤
├─ LINK ─┬────────────────────────────────┤
│ │ ┌◄──────── , ────────┐ │
│ └─ (─┴─ <link item name> ─┴─) ─┤
├─ OWNER ─────────────────────────────────┤
├─ READONLY ──────────────────────────────┤
├─ RECORD PLACEMENT ──────────────────────┤
├─ SETS ─┬────────────────────────────────┤
│ │ ┌◄───── , ─────┐ │
│ └─ (─┴─ <set name> ─┴─) ───────┤
├─ STRUCTURE CHECK ───────────────────────┤
└─ VERIFYSTORE ───────────────────────────┘

If a CERTIFY command is not preceded by a SORT command, Database Certification uses

the default SORT command options.

Explanation

The CERTIFY command is a keyword indicating that the CERTIFICATION option is

requested for the structures that follow. Following is a brief description of the CERTIFY

commands and constructs.

Option Explanation

CERTIFY ALL Selects every structure in the database for verification.

<structure name> Represents the name of a structure in the database as specified in

DASDL.

<partition ID> Represents the value of the key that selects a partition of the

database.

<structure number> Represents the integer number of a structure as assigned by the

DASDL compiler.

<certify options> The following options are available with the CERTIFY command. The

syntax is

OPTIONS = <command>

ALL This option selects all certification options as follows:

AVAILABLE SPACE, CONTENTS, RECORD PLACEMENT,

STRUCTURE CHECK and VERIFYSTORE are the internal

(intrastructure) certification options.

COUNT, LINK, OWNER, and SETS are the crosschecking

(interstructure) certification options.

READONLY is the physical integrity certification option.

Checking Integrity and Performance

8600 0759-622 11–11

Option Explanation

AVAILABLE SPACE This is an internal (intrastructure) certification option. It verifies the

available-space control information and DKTABLE consistency in

both standard and standard variable format data sets. The

certification that is performed depends on the structure.

CONTENTS This is an internal (intrastructure) certification option. It verifies that

control items are within acceptable ranges (for example, that link

addresses in a data set do not exceed the bounds of the referenced

structure). The CONTENTS option also checks duplicate resolver

words. The certification that is performed depends on the data

structure.

COUNT This is a cross-checking (interstructure) certification option. It verifies

that the number of counted links in the structure being certified

equals the value stored in the referenced record-count item field.

LINK This is a cross-checking (interstructure) certification option. It initiates

checks for all link items that are declared in the selected structures.

Counted links are not included in the checks. Use the COUNT option

to certify counted links. You can check specific links by entering a

link item name for each link to be tested.

OWNER This is a cross-checking (interstructure) certification option. It

performs checks to ensure that the mapping between an embedded

structure and its owner is correct.

READONLY This is a physical integrity certification option. It provides checking for

checksum and addresscheck words and for DMROWLOCK. This

option must be specified only when the physical integrity checks are

the only checks the user requires.

RECORD PLACEMENT This is an internal (intrastructure) certification option. It performs

checks to ensure that records in the structure are in the proper

location based on key values, hash checks, or record directory

words.

SETS This is a cross-checking (interstructure) certification option. It

performs checks to ensure that the mapping between a set and the

data set it spans is valid. Specific sets are checked by entering a set

name for each set to be tested.

You can specify an alias name for a set name. This means that you

can refer to a set name using 16–bit character structure names

through COBOL85 programs and Enterprise Database Server utility

programs.

For more information about alias names, refer to the Data and

Structure Definition Language (DASDL) Programming Reference

Manual.

Checking Integrity and Performance

11–12 8600 0759-622

Option Explanation

STRUCTURE CHECK This is an internal certification option. It provides internal structure

checking. The checks can vary with the structure and can include:

• Check of control words in block 0

• Data control word checks (for compact data sets) and block

control word checks (for ordered data sets)

• Table control word checks in index sets

• Data block and table block chain checking

• Empty block checking

• Check of control information in the last record of the file

The STRUCTURE CHECK option is implicitly set when an internal

certification option (AVAILABLE SPACE, CONTENTS, RECORD

PLACEMENT, STRUCTURE CHECK, VERIFYSTORE) is specified.

VERIFYSTORE This is an internal (intrastructure) certification option. It ensures that

every valid record satisfies the test conditions.

Examples

• CERTIFY ALL

This statement causes Database Certification to perform all certification checks for all

structures.

• CERTIFY 5–16(OPTIONS=AVAILABLE SPACE,CONTENTS,RECORD PLACEMENT,%

STRUCTURE CHECK,VERIFYSTORE)

This example causes Database Certification to perform all the internal checks for

structures 5 through 16.

• CERTIFY 7(OPTIONS=AVAILABLE SPACE, CONTENTS)

This example causes Database Certification to perform available space checking and

contents checking for structure 7. The structure check and readonly checks are also

provided.

• OPTIONS = (RESET DUMPBLOCKS); SORT USING 30000 SEGMENTS,%

ALLOWEDCORE = 20000; CERTIFY 9(OPTIONS=STRUCTURE CHECK)

This example causes Database Certification to perform the structure check option for

structure 9. Readonly checks are also provided. Hexadecimal dumps are not provided

in the output. Sorting of the extracted files is given 20,000 words of core, and the sort

mode is disk using 30,000 segments.

Restrictions

The following restrictions apply to the use of the CERTIFY command:

• Partitioned structures cannot be cross-checked.

• The crosscheck options that can be selected for disjoint data sets are LINK, COUNT,

and SETS. The options that can be selected for embedded data sets are LINK, COUNT,

Checking Integrity and Performance

8600 0759-622 11–13

SETS, and OWNER. Functions performed by these options are described in “Certify

Options for Structure Types” later in this section.

• The OWNER option is used with embedded structures only when certifying ordered

data sets, index sequential sets, ordered list sets, and unordered list sets.

• For structures using the DATAENCRYPT option, if encrypted data items are used as

key items in a set with logical or physical sections, DBCERTIFICATION will not cross-

check the section number. Currently, DBCERTIFICATION extracts keys from set

entries and uses the keys to search the section table to retrieve a section number.

Since encrypted key items are represented as hashed values, searching the section

table will not work. For this reason, cross-checking is skipped for structures that

contain encrypted key items and logical or physical sections.

CERTIFY Options for Structure Types

The tables on the following pages contain the valid options and certification functions that

can be specified in the CERTIFY command for data sets and sets. Options for data sets

and sets are grouped separately. Alphabetic listings of the Enterprise Database Server

structure types and valid certification keywords for the structures are included in each

section.

The type of valid syntax options and certification functions depend on the structure being

certified. A brief description of the specific checks made for each option is included in

each table.

The function of the various control fields, words, records, and blocks that the

Database Certification program checks in a structure are not described. The Data and

Structure Definition Language (DASDL) Programming Reference Manual provides this

information.

The READONLY option performs the same function on all data structures. This option

verifies the checksum word, the addresscheck word, and performs a DMROWLOCK test.

Data Sets

A data set is a collection of related data records that are stored in a file on a random-access

storage device. A data set is similar to a conventional file in that it contains data items and

has logical and physical properties similar to those of files. However, unlike conventional

files, data sets can contain other data sets, sets, and subsets.

Compact Data Sets

Compact data set records vary in size because the data set items vary in size or in number

of occurrences, or are stored conditionally. Records in compact data sets are not

maintained in logical order. Compact data sets can be disjoint or embedded.

The certification options for compact data sets and the functions that they perform are

described in the following table.

Checking Integrity and Performance

11–14 8600 0759-622

Option Function

AVAILABLE SPACE Ensures that key entries (available space) in fine tables are in

ascending order.

Ensures that available space information in fine tables corresponds

to the available space in the data control word of the data block.

CONTENTS Ensures that absolute address (AA) words in fine tables are valid.

Verifies that link items have valid block-address and word-address

field values (that is, that the reference physical specifications for

the structure are not exceeded).

Verifies that the count item value does not exceed the DASDL

specification.

Verifies that OCCURS DEPENDING ON and SIZE DEPENDING ON

items do not exceed the DASDL specifications.

RECORD PLACEMENT Ensures that record directory words for records that have been

relocated are valid (that is, that the block address and word address

of the moved record do not exceed the physical specifications for

the structure).

STRUCTURE CHECK Verifies that the control words in block 0 (zero) are valid (that is, the

value in the LASTBLOCKADDRESS file is equal to

FILE.LASTRECORD + 1 and the NEXTBLOCKADDRESS word is an

address for an empty block).

Verifies that the second block of a file is a table block.

Ensures that empty blocks are in a one-way linked chain.

Ensures that table control words in table blocks are valid. Ensures

that coarse-table and fine-table entries contain valid information.

Ensures that the data control word in the data block is valid (words

available + slots allocated + 3 LEQ BLOCKSIZE).

Checks each in-use directory entry word to ensure that information

is valid (that is, that the start of each record does not exceed one

BLOCKSIZE of the structure and is in the data record portion of the

data block).

VERIFYSTORE Ensures that every valid record satisfies the VERIFY conditions.

The following table describes crosscheck certification options for compact data sets.

Option Function

COUNT Verifies that the number of counted links pointing to another data

set is equal to the count item value in the referenced data set

record.

LINK <link item name> Verifies that all links in the compact data set point to valid records in

the referenced structure.

Checking Integrity and Performance

8600 0759-622 11–15

Option Function

SETS <set name> Verifies that mappings between the data set and the sets that span

it are valid.

Direct Data Sets

Direct data set records are stored in key value order. One unsigned numeric data item in

the record is designated as the key item. The value of the key item is the file-relative

record address. Direct data sets can only be disjoint.

The certification options for direct data sets and the functions that they perform are

described in the following table.

Option Function

CONTENTS Verifies that link items have valid block-address and word-address

field values (that is, that the referenced physical specifications for

the structure are not exceeded).

Verifies that the count item value does not exceed the DASDL

specification.

RECORD PLACEMENT Verifies that the key field in each valid record is equal to the relative

record number.

VERIFYSTORE Ensures that every valid record satisfies the VERIFY conditions.

The following table describes crosscheck certification options for direct data sets.

Option Function

COUNT Verifies that the number of counted links pointing to another data

set is equal to the count item value in the referenced data set

record.

LINK <link item name> Verifies that all links in the direct data set point to valid records in

the referenced structure.

SET <set name> Verifies that mappings between the data set and the sets that span

it are valid.

Ordered Data Sets

Ordered data set records are kept in a physical sequence based on a user-specified key

without using a set. Ordered data sets can be either disjoint or embedded, but typically are

embedded.

Checking Integrity and Performance

11–16 8600 0759-622

The certification options for ordered data sets and the functions that they perform are

described in the following table.

Option Function

CONTENTS Verifies that link items have valid block-address and word-address

field values (that is, that the reference physical specifications for

the structure are not exceeded).

For AA words in table blocks, verifies that

• The block address does not exceed the number of blocks in

the file.

• The word size is less than the file-block size.

• The four bits between the block address and word address are

0000.

RECORD PLACEMENT Verifies that key items in the data block are in ascending order.

STRUCTURE CHECK For block 0 (zero) control words, verifies that

The block referenced by the left-off block field in block 0 (zero) is a

data block.

The block-address field in the LASTBLOCK field of block 0 (zero) is

1 more than the number of blocks in the file.

Verifies that data blocks are in a two-way linked chain if the

structure is disjoint.

Verifies that empty blocks are in a one-way linked chain.

Verifies that table blocks are in a one-way linked chain.

Checks the block control words in data blocks to ensure that all

fields are valid.

Verifies that the NUMSUBBLOCKS field in the data block equals 1

if the data set is disjoint and the block is data block.

VERIFYSTORE Ensures that every valid record satisfies the VERIFY conditions.

The following table describes crosscheck certification options for ordered data sets.

Option Function

COUNT Verifies that the number of counted links pointing to another data

set is equal to the count item value in the referenced data set

record.

LINK <link item name> Verifies that all links in the ordered data set point to valid records in

the referenced structure.

OWNER Ensures that mapping between the embedded ordered data set

and its owner is valid.

Checking Integrity and Performance

8600 0759-622 11–17

Random Data Sets

Random data set records are not maintained in logical order, but are allocated to particular

blocks based on a hashing function of the record key. Random data sets can only be

disjoint.

The certification options for random data sets and the functions that they perform are

described in the following tables.

Option Function

CONTENTS Verifies that link items have valid block-address and word-address

field values (that is, that the reference physical specifications for

the structure are not exceeded).

Verifies that the count item value does not exceed the DASDL

specification.

RECORD PLACEMENT Verifies that the hash value of an overflow block hashes to the

block address of its basic block.

Verifies that the value obtained by folding the key in a valid record

is equal to the fold word that points to the record.

STRUCTURE CHECK Verifies that the block number stored in block 0 (zero) represents

an empty block. Verifies that the empty block chain is a valid one-

way linked chain.

Verifies that the NUMBEREMPTY field represents the actual

number of available record slots in that block.

VERIFYSTORE Ensures that every valid record satisfies the VERIFY conditions.

The following table describes crosscheck certification options for random data sets.

Option Function

COUNT Verifies that the number of counted links pointing to another data

set is equal to the count item value in the referenced data set

record.

LINK <link item name> Verifies that all links in the random data set point to valid records in

the referenced structure.

SETS <set name> Verifies that mappings between the data set and the sets that

span it are valid.

Restart Data Sets

Restart data sets are similar to disjoint standard data sets with no variable records. Restart

data sets can only be disjoint.

Checking Integrity and Performance

11–18 8600 0759-622

The certification options for restart data sets and the functions that they perform are

described in the following tables.

Option Function

AVAILABLE SPACE Verifies that each AA word in the DKTABLE points to an invalid

record in a data block.

STRUCTURE CHECK Verifies that the last record is valid (that is, that

DKNUMSEGMENTS + DKBASE + 2 = FILE.LASTRECORD).

Verifies that all DKTABLE segments contain valid segments and

valid AA words.

Verifies that the last segment is partially full (contains fewer than

29 entries) if more than one segment is in DKTABLE.

VERIFYSTORE Ensures that every valid record satisfies the VERIFY conditions.

The following table describes the crosscheck certification option for restart data sets.

Option Function

SETS <set name> Verifies that mappings between the data set and the sets that

span it are valid.

Standard (Fixed-Format) Data Sets

All data blocks in a standard (fixed-format) data set contain records of the same type and

size. Records are not maintained in logical order. Standard (fixed-format) data sets can be

disjoint or embedded.

The certification options for standard (fixed-format) data sets and the functions that they

perform are described in the following tables.

Option Function

AVAILABLE SPACE Verifies that each AA word in the DKTABLE points to an invalid

record in a data block.

CONTENTS Verifies that link items have valid block-address and word-address

field values (that is, that the reference physical specifications for

the structure are not exceeded).

Verifies that the count item value does not exceed the DASDL

specification.

Checking Integrity and Performance

8600 0759-622 11–19

Option Function

STRUCTURE CHECK Verifies that the last record is valid (that is, that

DKNUMSEGMENTS + DKBASE + 2 = FILE.LASTRECORD).

Verifies that all DKTABLE segments contain valid segments and

valid AA words.

Verifies that only the last segment is partially full (less than 29

entries) if more than one segment is in the DKTABLE.

VERIFYSTORE Ensures that every valid record satisfies the VERIFY conditions.

The following table describes crosscheck certification options for standard (fixed-format)

data sets.

Option Function

COUNT Verifies that the number of counted links pointing to another data

set is equal to the count item value in the referenced data set

record.

LINK <link item name> Verifies that all links in the standard data set point to valid records in

the referenced structure.

SETS <set name> Verifies that mappings between the data set and the sets that span

it are valid.

Standard (Variable-Format) Data Sets

Data blocks in a standard (variable-format) data set contain records of different types and

sizes. Records are not maintained in logical order. Standard (variable-format) data sets can

be disjoint or embedded.

The certification options for standard (variable-format) data sets and the functions that

they perform are described in the following tables.

Option Function

AVAILABLE SPACE Ensures that AA words in block 0 (zero) point to invalid records.

CONTENTS Verifies that link items have valid block-address and word-address

field values (that is, that the reference physical specifications for the

structure are not exceeded).

Verifies that the count item value does not exceed the DASDL

specification.

Checking Integrity and Performance

11–20 8600 0759-622

Option Function

STRUCTURE CHECK Ensures that block 0 (zero) information is valid. Ensures that empty

blocks are in a one-way linked chain.

Ensures that table blocks are in a one-way linked chain.

Ensures that absolute addresses in the table blocks are valid.

Ensures that data control words are valid (that is, that

LEFTOFFFIELD does not exceed the structure block size).

VERIFYSTORE Ensures that every valid record satisfies the VERIFY conditions.

The following table describes crosscheck certification options for standard (variable-

format) data sets.

Option Function

COUNT Verifies that the number of counted links pointing to another data

set is equal to the count item value in the referenced data set

record.

LINK <link item name> Verifies that all links in the standard data set point to valid records in

the referenced structure.

SETS <set name> Verifies that mappings between the data set and the sets that span

it are valid.

Unordered Data Sets

Unordered data sets have either a fixed format or a variable format. Records are not

maintained in logical order. Unordered data sets can be disjoint or embedded, but typically

are embedded.

The certification options for unordered data sets and the functions that they perform are

described in the following tables.

Option Function

CONTENTS Verifies that link items have valid block-address and word-address

field values (that is, that the reference physical specifications for the

structure are not exceeded).

Verifies that count item value does not exceed the DASDL

specification.

Checking Integrity and Performance

8600 0759-622 11–21

Option Function

STRUCTURE CHECK Ensures that block 0 (zero) control words are valid.

Ensures that the empty blocks are in a one-way linked chain.

Ensures that the data blocks are in a two-way linked chain.

Ensures that the control words in the data blocks are valid.

Ensures that the link word maintained in the available area of a data

block is valid.

VERIFYSTORE Ensures that every valid record satisfies the VERIFY conditions.

The following table describes crosscheck certification options for unordered data sets.

Option Function

COUNT Verifies that the number of counted links pointing to another data

set is equal to the count item value in the referenced data set

record.

LINK <link item name> Verifies that all links in the unordered data set point to valid records

in the referenced structure.

SETS <set name> Verifies that mappings between the data set and the sets that span

it are valid.

Sets and Subsets

A set or subset is a file of indexes that refer to all or some of the records of a single data

set. Sets and automatic subsets are automatically maintained by the system. Sets and

subsets permit access to the records of a data set in some logical sequence. Sets and

subsets are typically used to optimize certain types of retrievals of the data set records.

Bit Vector Sets

One bit exists in a bit vector set for each record in a data set. Each bit has an implicit

positional relationship to one data set record. A bit has a value of 1 if the corresponding

data set record belongs to the set or subset; it has a value of 0 if the corresponding record

is deleted or does not belong to the set or subset. Bit vector sets can only be disjoint and

can only refer to standard (fixed-format) data sets.

The certification options for bit vector sets and the functions that they perform are

described in the following tables.

Checking Integrity and Performance

11–22 8600 0759-622

Option Function

CONTENTS Verifies that the last bit set in the last block of the in-use tables does

not have a positional relationship that exceeds the number of

records in the spanned data set.

STRUCTURE CHECK Verifies that bit 47 of word 0 (zero) of table 0 (zero) is set.

Verifies that the EOFBLOCK absolute address (located in the last

segment of the bit vector) does not exceed the bounds of the

referenced file.

Verifies that the EOFBLOCK does not point inside the in-use tables.

Index Random Sets

Index random set or subset records are not maintained in key order but are allocated to

particular tables based on a hashing function of the key. Index random sets can only be

disjoint.

The certification options for index random sets and the functions that they perform are

described in the following table.

Option Function

CONTENTS Ensures that the AA words are in the range of the data set that

spans them.

RECORD PLACEMENT Verifies that each table key equals the existing fold word when the

table key is folded.

STRUCTURE CHECK Verifies that block 0 (zero) information is valid.

Verifies that table control words in blocks are valid.

Verifies empty blocks are in a one-way linked chain.

Verifies that each block in any given overflow chain hashes to the

block address of the root block of the chain.

Index Sequential Sets

An index sequential set or subset is a collection of tables arranged hierarchically. Fine

tables are at the lowest level of the hierarchy. One entry exists in the fine tables for each

data set record contained in the set or subset. In a table, entries are kept in increasing

binary collating sequence. Fine tables are ordered by another level of tables (coarse

tables). One entry exists in the coarse tables for each fine table. Index sequential sets can

be disjoint or embedded.

The certification options for index sequential sets and the functions that they perform are

described in the following tables.

Checking Integrity and Performance

8600 0759-622 11–23

Option Function

CONTENTS Ensures that each AA word in a fine table is in the range of the

reference data set.

RECORD PLACEMENT Ensures that the coarse table key entries are in ascending order.

Verifies that each coarse table key value for a disjoint structure

references the highest key value in the referenced fine table.

Verifies that all fine table key entries are in ascending order.

STRUCTURE CHECK Verifies that block 0 (zero) information is valid.

Verifies that table control words in blocks are valid.

Verifies that empty blocks are in a one-way linked chain.

If duplicates are allowed, ensures that the duplicate resolver is the

same as the AA word in the key entry of the record.

The following table describes the crosscheck certification option for index sequential sets.

Option Function

OWNER Ensures that mapping between an embedded index sequential set

and its owner is valid.

Ordered List Sets

Ordered list sets are maintained in order by key. Entries reside in tables. One entry exists

in the tables for each data set record in the set or subset. Ordered list sets can be disjoint

or embedded.

The certification options for ordered list sets and the functions that they perform are

described in the following tables.

Option Function

CONTENTS Ensures that the AA words are in the range of the data set that

spans them.

RECORD PLACEMENT Verifies that the table entry keys of ordered lists are in ascending

order.

STRUCTURE CHECK Verifies that block 0 (zero) information is valid.

Verifies that table control words in blocks are valid.

Verifies that empty blocks are in a one-way linked chain.

The following table describes the crosscheck certification option for ordered list sets.

Checking Integrity and Performance

11–24 8600 0759-622

Option Function

OWNER Ensures that mapping between an embedded ordered list set and

its owner is valid.

Unordered List Sets

Unordered list sets retrieve data set records in physical order. No key items are present.

Instead, the AA words that point to the data set records serve as the keys. The unordered

list sets are maintained in order of data set record addresses. Unordered list sets can be

disjoint or embedded.

The certification options for unordered list sets and the functions that they perform are

described in the following tables.

Option Function

CONTENTS Ensures that the AA words are in the range of the data set that

spans them.

RECORD PLACEMENT Verifies that the table entry AA words of unordered lists are in

ascending order.

STRUCTURE CHECK Verifies that block 0 (zero) information is valid.

Verifies that table control words in blocks are valid.

Verifies that empty blocks are in a one-way linked chain.

The following table describes the crosscheck certification option for the unordered list

sets.

Option Function

OWNER Ensures that mapping between an embedded unordered list set

and its owner is valid.

DMUTILITY DBDIRECTORY Statement

The DBDIRECTORY statement produces a report on the status of the files and rows

designated in the <dbdirectory list>. The following diagram illustrates the syntax for the

DBDIRECTORY command.

Syntax

───┬────────────────────────┬── DBDIRECTORY ──<dbdirectory list>────────┤
└─ <dbdirectory option> ─┘

Checking Integrity and Performance

8600 0759-622 11–25

<dbdirectory option>

┌◄─────────────── , ──────────────────────┐
──── OPTIONS ──── (─┴──┬── /1\ VERIFY ──────────────────┬─────┴──) ────┤

└── /1\ VERIFYTASKS = <integer> ─┘

<dbdirectory list>

┌◄─────────────────────── , ──────────────────────┐
──┴─┬─<file name>──────────────┬─┬────────────────┬─┴──────────────────┤

└─ (<dbdirectory list>) ─┘ └─<row selector>─┘

<row selector>

┌◄──────────────────┬── AND ─┬───────────────────┐
│ └◄─ & ───┘ │

── (─┴─┬──┬─┴─) ───────────┤
├─/1\─ FAMILYINDEX ── = ──<range>────────────┤
├─/1\─ ROW ── = ──<range>────────────────────┤
├─/1\─ PACKNAME ── = ──<family name>─────────┤
├─/1\─ SECTION ── = ──<range>────────────────┤
│ ┌◄───────── , ────────┐ │
└─/1\─ ROWLOCK ── = ─┴─┬─/1\─ LOCKEDROW ─┬─┴─┘

└─/1\─ READERROR ─┘

<range>

┌◄───────────── , ─────────────────────────────┐
──┴─<unsigned integer>─┬────────────────────────┬┴─────────────────────┤

└─ - <unsigned integer> ─┘

Explanation

The following table explains the elements of the syntax diagram.

Option Explanation

VERIFY

Controls preverification of the <dbdirectory list> when the specified

database is in a quiesced state. Preverification includes integrity checks for

CHECKSUM and ADDRESSCHECK errors. Integrity errors are identified.

VERIFYTASKS

Specifies the number of tasks allowed to perform a VEFIFY process in

parallel.

The VERIFY process cannot be restarted.

Checking Integrity and Performance

11–26 8600 0759-622

Option Explanation

<dbdirectory list> Identifies the files and rows include in the report. The slash equal sign (/=)

produces a report on the status of all rows in a family of files. The equal

sign (=) alone reports on the status of all rows in the database

<row selector> Specifies the rows of the file to report. If a DBDIRECTORY list is enclosed

in parentheses and a row selector is specified, all database files in the

<dbdirectory list> are restricted by that row selector. Database files in the

<dbdirectory list> that already have a row selector specification have the

outer selection constraints related to the inner selection constraints with

the Boolean construct OR.

FAMILYINDEX If specified in the row selector, only those rows that currently reside on the

specified family indexes are to be listed on the report

ROW If specified, only those rows are listed.

PACKNAME Enables you to limit DMUTILITY to a particular pack family without

enumerating the files that exist on that pack family. PACKNAME is typically

used in conjunction with FAMILYINDEX.

SECTION

If specified, only rows that belong to the sections are specified.

ROWLOCK =

LOCKEDROW

If specified, all locked out rows are reported.

ROWLOCK =

READERROR

If specified, all rows having read operation errors (but not those locked out)

are reported.

Example 1

This command produces a report on the status of all rows in the database.

DBDIRECTORY =

Example 2

This command produces a report of all rows in the database that are locked out or have

read operation errors. Row recovery can be used to restore the damaged rows. Refer to

“DMUTILITY RECOVER Statement” in Section 8, Recovering the Database, for directions

on how to recover rows.

DBDIRECTORY= (ROWLOCK=LOCKEDROW,READERROR)

Example 3

This command performs a verification of a Quiesce database and produces a report of all

rows in the database that have integrity errors.

Checking Integrity and Performance

8600 0759-622 11–27

RUN *SYSTEM/DMUTILITY ("DB=(TEST)LIVEDB on TESTPK OPTIONS
(VERIFY, VERIFYTASKS=10) DBDIRECTORY=")

DMUTILITY DISABLE/ENABLE Statement

The DISABLE/ENABLE statement allows you to disable or enable access to a database.

The DISABLE/ENABLE statement does not serve the same purpose as the DISABLE and

ENABLE options provided in the Remote Database Backup environment. For more

information on the Remote Database Backup options, refer to the Remote Database

Backup Operations Guide.

The following open errors occur for databases that are either disabled or that are in the

process of being disabled:

• Users trying to access a disabled database receive open error 39 and the following

message:

CONTROL FILE LOCKED BY DISABLE

• When a disable is in progress, any new users trying to access the database receive

open error 81.

• If a halt/load occurs while the database is disabled, halt/load recovery fails with open

error 39.

To check on the progress of a disable request, use the Visible DBS command STATUS. A

message similar to the following appears as part of the status information:

DATABASE WILL BE DISABLED IN 7 MINUTES.

The disable task stays in the mix until the database has been disabled.

To make the database available again, you must use the ENABLE command. Following

the enable request, halt/load recovery runs when the database is opened for the first time.

The following diagram illustrates the syntax for the DISABLE/ENABLE statement.

Syntax

──┬─ DISABLE ─┬───────────┬──┤
│ ├─ NOW ─────┤
│ └─<minutes>─┤
└─ ENABLE ──────────────┘

If you use the NOW or <minutes> option, the database stack discontinues and you must

run recovery.

Checking Integrity and Performance

11–28 8600 0759-622

Explanation

The following information explains the elements of the syntax diagram.

Option Explanation

DISABLE Disables the database after all the current database users leave the

mix. After the DISABLE command is issued, DMUTILITY displays

the following message every five minutes until all users leave the

mix:

WAITING FOR ALL USERS TO LEAVE,
DATABASE DISABLE REQUESTED

If you issue a DISABLE request in a Remote Database Backup

environment, Tracker and the database are brought down at the next

restart point.

The disable task stays in the mix until the database has been

disabled.

DISABLE NOW Disables the database immediately. All current user programs are

terminated and system error 18 occurs.

If you issue a DISABLE NOW request in a Remote Database Backup

environment, Tracker as well as the database is brought down

immediately. When the database is opened for the first time

following the enable request, halt/load recovery runs.

DISABLE <minutes> Disables the database in the designated number of minutes. After

the designated time period, all user programs are terminated and

system error 18 occurs.

The value supplied for <minutes> must be an unsigned integer.

Once the disable request has been issued, DMUTILITY periodically

displays messages indicating the amount of time until the disable

request takes effect.

The disable task stays in the mix until the database has been

disabled.

If you use this option in a Remote Database Backup environment,

then Tracker is brought down at the next restart point if a restart

point occurs before the designated time period elapses. If a restart

point does not occur in this timeframe, then Tracker and the

database are brought down after the designated time period

elapses.

ENABLE Cancels the disable request.

If the database is currently disabled, the ENABLE command cancels

the lock on the database control file and makes the database

available.

If the disable is in progress, then the enable request must be

entered from a different session than the disable request currently in

progress. When the enable request is made, the DMUTILITY run

that issued the disable request displays the message

DISABLE REQUEST HAS BEEN CANCELED

Checking Integrity and Performance

8600 0759-622 11–29

Example 1

The following statement immediately disables the database called PI:

R $SYSTEM/DMUTILITY("DB=PI ON ISYS DISABLE NOW")

Example 2

The following statement disables the database ORGDB after 15 minutes:

R $SYSTEM/DMUTILITY("DB=ORGDB ON DMTEST DISABLE 15")

Example 3

The following statement disables the database BANKAPP after all the current users of the

database leave the mix:

R $SYSTEM/DMUTILITY("DB=BANKAPP DISABLE")

Example 4

The following statement enables the database LFMOVE:

R $SYSTEM/DMUTILITY("DB=LFMOVE ON HYBRID ENABLE")

DMUTILITY LIST/WRITE Statement

The LIST/WRITE statement allows you to display the contents of database files. LIST

directs output to the terminal; WRITE directs output to the printer. The syntax for these

statements is illustrated and explained in the following text.

Syntax

┌◄────────────── ; ─────────────┐
──┬─ LIST ──┬─┬─┴─<structure spec>─┬──────────┬─┴─┬─┬────────┬─────────┤
└─ WRITE ─┘ │ └─<format>─┘ │ └─ QUIT ─┘

└─ QUIESCE HISTORY ─────────────────┘

<structure spec>

─┬─<structure name>┬─────────────────┬┬──────────────┬┬────────┬┬─────────────┬─┤►
│ └/<partition name>┘└<section spec>┘└<format>┘└<block range>┤
├─ <database name>/CONTROL ───<format>───────────────────────────────────────┤
├─ ALL ──<format>──┤
└─ = ────<format>──┘

<section spec>

── [SECTION = ──<range>]───┤

Checking Integrity and Performance

11–30 8600 0759-622

<range>

┌◄───────────── , ─────────────────────────────┐
──┴─<unsigned integer>─┬────────────────────────┬┴──────────────────────┤

└─ - <unsigned integer> ─┘

<format>

┌◄────── , ─────┐
── (─┴─┬─ HEX ─────┬─┴─) ──┤

├─ RECORD ──┤
└─ CONTROL ─┘

<block range>

──<hex block address>─┬────────────────────────────────┬───────────────┤
└─ - (hyphen) <hex block addr> ─┘

Explanation

The following information explains the elements of the LIST/WRITE statement syntax

diagrams.

Option Explanation

<structure spec> Identifies the database files to be displayed. If ALL or an equal sign (=)

is specified, the contents of all database files, including the database

control file, are displayed. ALL and the equal sign are synonymous in

every respect.

<section spec>

If specified, indicates that only those records belonging to the

designated sections are listed. The range for a sectioned data set is 0

through 510.

This element is valid only when a structure name is specified

<partition name> Consists of from 1 to 17 letters and digits that identify the partition.

<format> Indicates the format in which database information is displayed. If

HEX is specified, DMUTILITY displays the entire contents of each

block. RECORD causes DMUTILITY to display the records contained

in each block. If CONTROL is specified, only the control information

for each block in the file is displayed.

If <format> is not specified, RECORD format is assumed by default.

<block range> Identifies the block or range of blocks to be displayed. If <block

range> is not specified, all blocks in the file are displayed.

This element is valid only when a structure name is specified.

Checking Integrity and Performance

8600 0759-622 11–31

Option Explanation

<hex block address> Identifies the address of the block in hexadecimal characters. If a

range of blocks is to be displayed, the second hexadecimal block

address must be larger than the first.

The QUIT command is used if DMUTILITY LIST/WRITE was run with

an asterisk (*) parameter. QUIT signifies end of input and terminates

DMUTILITY.

QUIESCE HISTORY

Displays the quiesce history of a database. Refer to “QUIESCE

HISTORY Option of the WRITE Command” in Section 14, Using a

Quiesce Database, for information about the QUIESCE HISTORY

option.

Example 1

The following command displays in RECORD format the contents of all database files:

WRITE =

Example 2

The following command displays only the control information for each block in every

database file:

WRITE = (CONTROL)

Example 3

The following command displays in HEX format the contents of blocks 0 through A for all

database files:

WRITE = (HEX) 0-A

Example 4

The following command displays in RECORD format the contents of D1, and in HEX

format the contents of D2:

WRITE D1;D2 (HEX)

Example 5

The following command displays in RECORD format the contents of the database control

file:

WRITE TESTDB/CONTROL

Checking Integrity and Performance

11–32 8600 0759-622

Example 6

The following command displays in RECORD format the contents of section 0 of

data set D1:

WRITE D1 [SECTION = 0]

Example 7

The following command displays the quiesce history of the database:

WRITE QUIESCE HISTORY

Checking Integrity and Performance

8600 0759-622 11–33

Checking Integrity and Performance

11–34 8600 0759-622

Section 12
Communicating with the Database

The Visible DBS commands allow direct communication with the database. Direct

communication permits dynamic control over system resources on a global or structure-

by-structure basis. This section also discusses database events management.

Using the Visible DBS commands you can perform tasks as follows:

• Interrogate the database status, including the values of ALLOWEDCORE, the amount

of buffer core currently in use, the values of SYNCPOINT and CONTROLPOINT, and

information about the audit file.

• Change the values of ALLOWEDCORE, SYNCPOINT, OVERLAYGOAL, and

CONTROLPOINT.

• Force an audit file switch for audited databases.

• Initiate, terminate, and monitor the status of online garbage collections of sectioned or

nonsectioned disjoint index sequential sets.

• Cause the current statistics to be printed if the STATISTICS option is set in the Data

and Structure Definition Language (DASDL).

• Interrogate the status of individual structures, including the number of random and

serial users, REBLOCK setting, buffer specifications, and REBLOCKFACTOR values.

• Change the values of REBLOCK, REBLOCKFACTOR, and the buffer specifications for

a structure.

• Determine what tasks are currently in transaction state and what tasks are waiting for

locked records or a syncpoint.

• Determine the current values of or change the values of the TRACKERFLUSHDB and

TRACKERQPFACTOR options for databases in a Remote Database Backup

environment.

Entering Visible DBS Commands

You enter commands to the Visible DBS program using the following system command:

<dbs mix number> SM <Visible DBS command>

The <dbs mix number> must be that of a database stack. You can determine the

<dbs mix number> by entering the system command DBS.

You can also enter commands using Database Operations Center.

8600 0759-622 12–1

Visible DBS Commands

The input text of the Visible DBS command can be a maximum of 126 characters, and is

composed of any one of several commands. The syntax for each command is illustrated

and explained on the following pages. The following diagram illustrates the syntax for the

program.

Syntax

─┬─<dbs status command>──────────────────────┬─────────────────────────────┤
├─<dbs change command>──────────────────────┤
├─<audit analyze afn command>───────────────┤
├─<audit processor times command>───────────┤
├─<audit close command>─────────────────────┤
├─<audit scratchpool command>───────────────┤
├─<audit quickcopy maxfilespertape command>─┤
├─<audit quickcopy synctapeset command>─────┤
├─<cpstats command>─────────────────────────┤
├─<garbage collect command>─────────────────┤
├─<lockstatistics command>──────────────────┤
├─<snapshot command>────────────────────────┤
├─<statistics command>──────────────────────┤
├─<status structure command>────────────────┤
├─<structure change command>────────────────┤
├─<status history command>──────────────────┤
├─<status mix command>──────────────────────┤
├─<status rdb command>──────────────────────┤
├─<status reorg command>────────────────────┤
├─<supercp restoredbfiles command>──────────┤
├─<usereorgdb terminate command>────────────┤
├─<usereorgdb discard command>──────────────┤
└─<diagnostics command>─────────────────────┘

Errors and Warnings

If the input to the Visible DBS command contains a syntax error, an error message

prefixed by Syntax is displayed and the input is not processed.

If the input to the Visible DBS command is syntactically correct, but certain specifications

are illegal, a warning message prefixed by WARNING is displayed and the remainder of

the input is processed. For example, if REBLOCK is specified for a structure for which

REBLOCK is FALSE in DASDL, a warning is returned and the remaining input is applied.

DBS STATUS Command

The DBS STATUS command causes the following information to display:

• The current state of the database. One of five possible conditions displays:

- WAITING FOR ABORT

- WAITING FOR RECOVERY

- TERMINATION IN PROGRESS

Communicating with the Database

12–2 8600 0759-622

- OPEN INITIALIZE

- OPEN COUNTS: INQUIRY = <integer>, UPDATE = <integer>

• The current status, SET or RESET, of database events. The current events supported

are:

- DEADLOCK

- ADMIN

- FATALERROR

- SECURITYERROR

- PUBLICIO

For additional information, refer to Section 21, Database Events Management.

• The current value of OVERLAYGOAL and the current overlay rate achieved.

• The current value of MEMORY RESIDENT and the current number of MEMORY

RESIDENT buffers.

If the amount of MEMORY RESIDENT buffer usage is greater than the RESIDENT

LIMIT value, a warning message warns the user that no more MEMORY RESIDENT

buffers can be allocated to the system unless the user takes some action. Such action

includes resetting the MEMORY RESIDENT option for some structures through the

DBS CHANGE command.

• The value of ALLOWEDCORE and the amount of buffer core currently in use.

• The current values of SYNCPOINT and CONTROLPOINT.

• The database status following a QUIESCE command. One of two possible conditions

appears:

- WAITING FOR ALL TRANSACTIONS TO COMPLETE, DATABASE QUIESCE

REQUESTED

- DATABASE IS QUIESCED, WAITING FOR RESUME

There is no QUIESCE status output for the Visible DBS STATUS command

following a successful RESUME command.

• Various information concerning the audit file, including

- AREAS, AREASIZE, and BLOCKSIZE.

- The current audit file number and audit block serial number.

- Information about the relative position of the Accessroutines in the current audit

file.

• Information identifying if audit processor data is being collected.

• Information identifying if statistics are currently being printed.

• Information identifying if capture buffers information is being collected.

• The current value, in minutes, assigned to the TRACKERFLUSHDB option and the

current integer value assigned to the TRACKERQPFACTOR option.

Communicating with the Database

8600 0759-622 12–3

The TRACKERFLUSHDB and TRACKERQPFACTOR options are valid only in a Remote

Database Backup environment. For more information, refer to the Remote Database

Backup Operations Guide. The release level of the Accessroutines being used by the

database.

• Garbage collection status information if an online garbage collection is in progress. For

more information, see the GARBAGE COLLECT command later in this section.

Syntax

── STATUS ───┤

Example

This example displays the current state of the database; the values of ALLOWEDCORE,

SYNCWAIT, and the amount of buffer core currently in use; the values of SYNCPOINT and

CONTROLPOINT; and various information about the audit file.

4637 SM STATUS

A report similar to the following displays on your terminal:

OPEN COUNTS: INQUIRY = 2, UPDATE = 0
FORCED OVERLAYS = 1
SYNC WAIT IS 0 SECONDS
EVENTLOGGING PUBLICIO: RESET
EVENTLOGGING SECURITYERROR: RESET
EVENTLOGGING ADMIN: SET
EVENTLOGGING FATALERROR: SET
EVENTLOGGING DEADLOCK: RESET
OVERLAYGOAL = 5 % ALLOWEDCORE / MINUTE
RESIDENT TOTAL: ALLOWED = 25000, IN USE =22576
CORE TOTAL: ALLOWED = 50000, IN USE = 47974,
OLAYRATE= 18.5490%
CONTROL POINT AGEING AFTER AUDIT SWITCHES = FORCE
SYNCPOINT = 100, CONTROLPOINT = 2
CURRENT AUDIT SECTIONS = 1, CF AUDIT SECTIONS = DEFAULT.
CURRENT AUDIT BUFFERS = 9, CF AUDIT BUFFERS = AUTOMATIC.
AUDIT BLOCKSIZE = 900, AREASIZE = 3000, AREAS = 100
AUDIT PROCESSOR TIMES OFF
STATISTICSLOC = PRINTER.
LAST TRACKED ADDRESS: AFN = 5, ABSN = 6240, OFFSET = 16
PRINT STATISTICS = ON
4637 08:26 DISPLAY:(ALMA)LOCKSTATSDB: LOCK STATISTICS OFF.
TRACKERQPFACTOR = 10
TRACKERFLUSHDB = 10
DMSII ACCESSROUTINES 43.301.109

Communicating with the Database

12–4 8600 0759-622

DBS CHANGE Command

The DBS CHANGE command is used to change the values of ALLOWEDCORE, AUDIT

BLOCKSIZE, AUDIT BUFFERS, AUDIT SECTIONS, AUDIT SETFAMINDEX, AUDIT

RESETFAMINDEX, CONTROLPOINT, MAXUPDATEPERTR, OVERLAYGOAL, RESIDENT

LIMIT, STATISTICSLOC, SYNCPOINT, SYNCWAIT, TRACKERFLUSHDB, and

TRACKERQPFACTOR.

Syntax

┌◄─────────────────────────────── , ──────────────────────────────┐
─┴─┬─ /1\─ ALLOWEDCORE ────────────────┬─ = ──<unsigned integer>─┬─┴──┤

├─/1\─ AUDIT ─┬─/1\─ BLOCKSIZE ─────┤ │
│ ├─/1\─ BUFFERS ───────┤ │
│ ├─/1\─ SECTIONS ──────┤ │
│ ├─/1\─ SETFAMINDEX ───┤ │
│ └─/1\─ RESETFAMINDEX ─┤ │
├─/1\─ CONTROLPOINT ────────────────┤ │
├─/1\─ MAXUPDATEPERTR ──────────────┤ │
├─/1\─ RESIDENT LIMIT ──────────────┤ │
├─/1\─ SYNCPOINT ───────────────────┤ │
├─/1\─ SYNCWAIT ────────────────────┤ │
├─/1\─ TRACKERFLUSHDB ──────────────┤ │
├─/1\─ TRACKERQPFACTOR ─────────────┘ │
├─/1\─ OVERLAYGOAL ── = ──<value> ────┬───────────────────────┤
├─/1\─ STATISTICSLOC ─ = ─┬─PRINTER───┤ │
│ └<packname>─┘ │
└───┘

Explanation

ALLOWEDCORE

ALLOWEDCORE changes the maximum amount of core memory that can be used by the

database buffers. The maximum amount that can be assigned is 2**39–1.

AUDIT BLOCKSIZE

AUDIT BLOCKSIZE changes the audit buffer size. Its value is designated in words. This

option can be used only when no one is updating the database. Otherwise, the following

message is displayed:

Update users active --- blocksize not changed.

In addition, the current audit file must be closed with the AUDIT CLOSE command.

Communicating with the Database

8600 0759-622 12–5

AUDIT BUFFERS

AUDIT BUFFERS changes the number of audit buffers available to XE structures. In

general, a larger number of buffers improves audit throughput and smoothes the

intermittent delays associated with short periods of intense audit generation.

The minimum number of audit buffers allowed is 3 and the maximum number is 256. The

default number of audit buffers is <number of audit sections> * ((blocks per area) – 1).

If you decide to change the value for audit buffers by way of a DASDL update after you

change the value by using the AUDIT BUFFERS command, you must perform a control file

override. Refer to Section 5, Initializing and Maintaining, for additional information about

performing a control file override. The override enables the system to recognize that the

DASDL update value takes precedence over the value you specified using the DBS

CHANGE Visible DBS command with the AUDIT BUFFERS option.

AUDIT SECTIONS

AUDIT SECTIONS changes the number of audit sections that make up the logical

audit file. In general, using sectioned audits improves audit throughput and

smoothes the intermittent delays associated with short periods of intense audit

generation. Sectioned audit files, and therefore the AUDIT SECTIONS command,

are only available to sites that have installed the XE license.

Changes to the number of audit sections take effect when the next audit file is opened.

Refer to the AUDIT CLOSE command later in this section for additional information.

Changing the number of audit sections can change the number of audit buffers. When the

number of audit sections is changed and the specification for audit buffers is automatic,

the number of audit buffers is changed to ensure that the number of audit buffers per

section is less than the number of blocks per area.

If you decide to change the value for audit sections by way of a DASDL update after you

change the value by using the AUDIT SECTIONS command, you must perform a control

file override. Refer to Section 5, Initializing and Maintaining, for additional information

about performing a control file override. The override enables the system to recognize that

the DASDL update value takes precedence over the value you specified using the DBS

CHANGE Visible DBS command with the AUDIT SECTIONS option.

Note: The total size of an audit file is the nonsectioned audit file size multiplied by the

number of audit sections. The minimum number of audit sections allowed is 1 and the

maximum number is 63. The optimal number of audit sections varies with both the audit

trail and application system configuration. In most cases, the optimal number of audit

sections is less than or equal to the number of physical disk drives in the audit pack family.

Be sure there is adequate disk space available when increasing audit sections.

Communicating with the Database

12–6 8600 0759-622

SETFAMINDEX

SETFAMINDEX forces all rows of a sectioned audit file to be assigned to the same family

index.

RESETFAMINDEX

RESETFAMINDEX enables the MCP to assign rows with the criteria used by MCP.

OVERLAYGOAL

The value assigned to OVERLAYGOAL can be any decimal in the range 0 to 100,

inclusively. When you enter this command, the values for the specified parameters are

changed immediately. The new values are retained until the next DBS CHANGE command

is entered to change the values, or until the next control file update.

MAXUPDATEPERTR

MAXUPDATEPERTR allows you to control the maximum number of updates per

transaction. The value of MAXUPDATEPERTR must be greater than 0 and not exceed

50,000. The update value of MAXUPDATEPERTR is affected at the next syncpoint. When

the limit is exceeded, all of the previous updates are backed-out and the program receives

a LIMITERROR 8. This feature can only be turned-off by performing a DASDL update.

RESIDENT LIMIT

RESIDENT LIMIT changes the maximum amount of core memory that can be used by

memory resident buffers. This amount cannot exceed the value assigned to the

ALLOWEDCORE option. If the ALLOWEDCORE setting is changed to a value below that

of the current RESIDENT LIMIT value, the RESIDENT LIMIT value is automatically

adjusted to be the same as the ALLOWEDCORE value.

STATISTICSLOC

The STATISTICSLOC allows the user to designate the location of the statistics report. It

requires the STATISTICS option to be set to TRUE. If you choose to specify the pack name,

the statistics output is reported as:

<dbusercode>DBSTATS/<dbname>/YYYYMMDD/HHMMSS ON <packname>

If it is a permanent directory database, the DBPATH is assumed and stored as

<dbpath>/DBSTATS/<dbname>/YYYYMMDD/HHMMSS ON <packname>

When the statistics are generated, YYYMMDD and HHMMSS represent the day and time

respectfully.

The following example changes the designated location of the Statistics report:

9748 SM STATISTICSLOC = DMTEST

Communicating with the Database

8600 0759-622 12–7

SYNCPOINT

The SYNCPOINT value controls the maximum number of transactions that can occur

between syncpoints. This value limits the amount of recovery time that is required if the

database terminates abnormally. The default is 100, and the maximum number is

16,777,215. When the syncpoint value is set through DASDL, the maximum number is

4095.

When you enter the DBS CHANGE command, the syncpoint value is retained until another

DBS CHANGE command modifies the value, the next DASDL update occurs, or some

type of control file recovery is performed.

Note: Infrequent syncpoints can adversely affect recovery. Large SYNCPOINT values

can increase the number of transactions that must be reprocessed following halt/load or

abort recovery. Large SYNCPOINT values can, therefore, cause long recovery times if not

used wisely.

SYNCWAIT

The value for SYNCWAIT cannot be interchanged between the integer 0 and integers

other than 0. The user must activate or deactivate SYNCWAIT through DASDL. When

SYNCWAIT is not specified in DASDL, the Visible DBS command indicates that the

SYNCWAIT value is 0. The SYNCWAIT command is used to change the SYNCWAIT value

when the parameter has been set to a valid value in DASDL.

TRACKERFLUSHDB

Use the TRACKERFLUSHDB option with a Remote Database Backup database to set, in

minutes, the minimum frequency with which the Tracker flushes the TRACKERINFO file

to disk. The actual time between flushes is dependent upon the TRACKERFLUSHDB value

and the contents of the audit trail. (The flush occurs only at the end of a controlpoint.) The

default value for the TRACKERFLUSHDB option is 10 minutes. Valid values are 1 to 255.

When an abnormal database stack termination occurs on the secondary system, the

frequency with which the TRACKERINFO file is flushed to disk determines the amount of

audit image reapplication work that must be done by the Tracker.

In a Remote Database Backup database using the default TRACKERFLUSHDB option of

10 minutes, many audit records can accumulate and many controlpoints might be

encountered before the 10 minutes elapse and the TRACKERINFO file is flushed.

In general, to minimize the secondary system recovery time, decrease the

TRACKERFLUSHDB value as the audit activity increases. Use the DBS CHANGE

command to alter the TRACKERFLUSHDB value.

TRACKERQPFACTOR

Use the TRACKERQPFACTOR option with a Remote Database Backup database to

regulate the number of quiet points that the Tracker prescans. The default value of

TRACKERQPFACTOR is 1. Valid values are 1 to 255.

Communicating with the Database

12–8 8600 0759-622

When you change the value of TRACKERQPFACTOR, the new value is stored in the

database control file. You can only change the TRACKERQPFACTOR value by using a

Visible DBS CHANGE command. You can determine the current value of

TRACKERQPFACTOR by performing a Visible DBS STATUS command.

Example

This example changes the values of SYNCPOINT, CONTROLPOINT, SYNCWAIT, and

ALLOWEDCORE to the specified values and designates an audit buffer size of 32000

words.

2468 SM SYNCPOINT=100, CONTROLPOINT=10, SYNCWAIT=10,
ALLOWEDCORE=25000, AUDIT BLOCKSIZE = 32000

AUDIT ANALYZE AFN Command

Use the AUDIT ANALYZE AFN command to generate a report of average and peak audit

generation rates. As input, you must supply the number of a closed audit file. The

information in the report is calculated by analyzing the contents of the audit file.

By default, the audit generation rates are calculated over 60 second time intervals.

Consider using a different time interval if any of the following apply:

• The audit files are very large or very small.

• The audit generation rate is very high or very low.

For each time interval from the first audit block timestamp, one line of output is printed

that contains the amount of audit generated (expressed in bits of audit per second) and a

bar line reflecting that amount.

When you use the AUDIT ANALYZE AFN command, a job called ANALYZEAUDIT starts

under the usercode of the database. Once the ANALYZEAUDIT job completes, the report

prints automatically on the default printer for your system.

The analysis report also contains processor information if the Visible DBS AUDIT

PROCESSOR TIMES command was enabled during the time the audit file was open. The

AUDIT PROCESSOR TIMES command is described later in this section.

Use the analysis report to aid any network- or host-sizing work you are performing. The

report can be especially useful when you are sizing your database environment as part of

implementing Remote Database Backup. For more information on network- and

hostsizing for the Remote Database Backup environment, refer to the Remote Database

Backup Operations Guide.

When you are performing host sizing, consider generating reports using several audit files.

By selecting audit files from different time periods, you can obtain a picture of how your

database activity looks over peak, average, and slack time periods.

The following diagram illustrates the syntax of the AUDIT ANALYZE AFN command:

Communicating with the Database

8600 0759-622 12–9

Syntax

── AUDIT ANALYZE AFN = <unsigned integer> ─────────────────────────────►

►─┬─────────────────────────────────┬──────────────────────────────────┤
└─ INTERVAL = <unsigned integer> ─┘

Explanation

The following information describes the elements of the syntax diagram.

Option Explanation

<unsigned integer> (for

AFN)

Designates the audit file number to be analyzed.

INTERVAL

<unsigned integer>

Designates, in seconds, the time interval for the report. The default

is 60 seconds; that is, there is one line of output printed for each

60-second time interval of the audit.

Example

Following is sample output from a report generated using the AUDIT ANALYZE AFN

command, In this example, the time interval is set to 60 seconds, and the AUDIT

PROCESSOR TIMES command was not enabled when the audit file was created.

TIME AUDIT BITS / SECOND (* = 1000)
16:17:19 17034 ******************
16:18:19 1327 *
16:19:19 1356 *
16:20:19 1301 *
16:21:19 1320 *
16:22:19 1372 *
16:23:19 1063 *

AUDIT PROCESSOR TIMES Command

The AUDIT PROCESSOR TIMES command begins or terminates the accumulation of

processor times in Enterprise Database Server audit blocks. Each time the state of the

AUDIT PROCESSOR TIMES option is changed (ON or OFF), an audit file switch occurs.

Therefore, either all blocks in an audit file contain processor times or none of the blocks in

the audit file contain processor times. When the ON option is used, each audit block

contains four time accumulators. These accumulators contain

• The processor time accumulated by Enterprise Database Server applications for

Enterprise Database Server inquiry purposes

• The processor time accumulated by Enterprise Database Server applications for

Enterprise Database Server update purposes

• The processor time accumulated by Enterprise Database Server applications while

outside of the Enterprise Database Server

Communicating with the Database

12–10 8600 0759-622

• The I/O time accumulated by the database stack

Use the time information in the report column DMS UPDATE to size your database and

network requirements. If you are planning to install Remote Database Backup, the

information in the report provides guidelines for host and network sizing. For more

information on planning a Remote Database Backup environment, refer to the Remote

Database Backup Operations Guide.

To print the audit processor information, use the AUDIT ANALYZE AFN command on a

suitable audit file. The default time interval for the report is 60 seconds; that is, there is one

line of output printed for each 60-second time interval of the audit. For more information

on printing the report, refer to “AUDIT ANALYZE AFN Command” earlier in this section.

The following diagram illustrates the syntax for the AUDIT PROCESSOR TIMES

command.

Syntax

── AUDIT PROCESSOR TIMES ─┬─ ON ──┬────────────────────────────────────┤
└─ OFF ─┘

Example

Following is sample output from a report generated using the AUDIT ANALYZE AFN

command. In this instance, processor information was collected while the audit file was in

use. Compare this report with the report shown under “AUDIT ANALYZE AFN Command”

earlier in this section to see the effect of collecting processor information.

Note: The line in the report starting “TIME PROCESSOR...” has been truncated because

of physical width limitations for the document. In the audit analysis report the line reads

TIME PROCESSOR TIME IN SECONDS AND % OF INTERVAL (*=10%) I/O TIME AND %

OF INTERVAL.

TIME PROCESSOR TIME IN SECONDS AND % OF INTERVAL (*=10%) I/O TIME AND
DMS INQUIRY DMS UPDATE NON DMS DMS I/O

12:48:36 0.00 0.00 % 0.28 0.47 % 0.13 0.22 % 1.02 1.71 %
12:49:36 0.00 0.00 % 0.24 0.40 % 0.13 0.21 % 0.24 0.39 %
12:50:36 0.00 0.00 % 0.24 0.40 % 0.13 0.21 % 0.21 0.35 %
12:51:36 0.00 0.00 % 0.23 0.38 % 0.12 0.21 % 0.20 0.34 %
12:52:36 0.00 0.00 % 0.24 0.39 % 0.13 0.21 % 0.15 0.24 %
12:53:36 0.00 0.00 % 0.23 0.39 % 0.12 0.20 % 0.17 0.28 %
12:54:36 0.03 0.06 % 0.36 0.60 % 0.14 0.23 % 0.22 0.37 %
12:55:36 1.90 3.17 % 10.73 17.88 % 3.40 5.67 % 4.85 8.08 %

AUDIT CLOSE Command

The AUDIT CLOSE command forces an audit file switch and is only valid for audited

databases that are currently open for update purposes.

If the AUDIT CLOSE command is used when the database is open for inquiry only, an audit

file switch does not occur.

Communicating with the Database

8600 0759-622 12–11

If the database has been open for update during the current session, but there are no

update users when the AUDIT CLOSE command is issued, the audit file is released and

closed, but an audit file switch does not occur.

The following diagram illustrates the syntax for the AUDIT CLOSE command.

Syntax

── AUDIT CLOSE ─┬───────────────────────────┬──────────────────────────►
└─ PRIMARY = ─┬─ NORMAL ────┤

└─ ALTERNATE ─┘
►─┬─────────────────────────────┬─┬───────────────────────┬────────────┤
└─ SECONDARY = ─┬─ NORMAL ────┤ ├───────┬─┬─ FORCE ─────┤

└─ ALTERNATE ─┘ └─ SET ─┘ └─ DONTFORCE ─┘

Explanation

The following information explains the elements of the AUDIT CLOSE command syntax

diagram.

Option Explanation

PRIMARY = and

SECONDARY =

Designates the location of the next primary or secondary

(duplicated) audit file. If neither PRIMARY = nor SECONDARY = is

specified, the Accessroutines acts as if a normal audit file switch

had occurred.

NORMAL Causes the next audit file to be placed on the normal audit family

specified in DASDL. If the normal audit media specified is disk or

pack, Accessroutines automatically switches to the alternate media

if a SECTORS REQUIRED condition occurs. Automatic switching is

not done in the event of a TIMEOUT condition.

ALTERNATE If the normal audit media specified in DASDL is disk or pack,

designating ALTERNATE causes the next location to be the

alternate audit media specified in DASDL. The Accessroutines is

prevented from switching back to the normal audit location after

every audit file is closed. All subsequent audit files are placed on

the alternate audit file media until another AUDIT CLOSE command

is entered or until the Accessroutines goes away and is invoked

again.

When all updates of a database close the database and inquiry

users remain, the audit files are left in use. However, if release of

the audits is necessary, an SM AUDIT CLOSE message causes the

audit files to be released.

FORCE Forces the closure of the current audit file and sets up the

conditions necessary for two controlpoints to occur as soon as

possible. This allows the zip of COPYAUDIT to take place.

Communicating with the Database

12–12 8600 0759-622

Option Explanation

DONTFORCE Causes the zip of COPYAUDIT to be delayed until the normal

SYNCPOINT/CONTROLPOINT activity forces two controlpoints to

take place. Using this option can improve the overall database

performance, especially if the database uses a large

ALLOWEDCORE setting.

SET Causes the FORCE or DONTFORCE setting to be changed. Using

the SET option retains the setting change across a halt/load.

Note: If this option is included in the command string, an audit

switch does not occur.

Example

Assume the following:

• Audit file 65 is in use.

• There are two update applications running.

• There is one inquiry application running.

If the AUDIT CLOSE command is issued under these circumstances, audit file 65 is closed

and a new audit file 66 is opened.

If the update applications close the database and then the AUDIT CLOSE command is

issued, audit file 65 is no longer marked as in-use, but no audit file switch occurs. The next

time the database is open for update, audit file 65 is used.

AUDIT SCRATCHPOOL Command

The AUDIT SCRATCHPOOL command identifies the name of the scratch pool from which

a tape is selected.

Syntax

── AUDIT SCRATCHPOOL ─┬─────────────┬─┬─────────────┬──────────────────►
├─ PRIMARY ───┤ ├─ AUDIT ─────┤
└─ SECONDARY ─┘ ├─ ALTERNATE ─┤

└─ COPY ──────┘

►─┬──────────────────────────┬───┤
├─ = ──<scratch pool name>─┤
└─ RESET ──────────────────┘

Explanation

The following information describes the elements of the AUDIT SCRATCHPOOL

command syntax diagram.

Communicating with the Database

8600 0759-622 12–13

Option Explanation

PRIMARY or

SECONDARY

Indicates that the scratch pool is selected for use with the primary

or the secondary version of the audit file, the alternate audit file, or

the copy of the audit file.

AUDIT, ALTERNATE, or

COPY

Designates that the scratch pool is selected for the audit file, the

alternate audit file, or the copy of the audit file.

If none of these options are designated, the scratch pool is assigned

to all audit files even if a different scratch pool was previously

defined for a particular audit file. For example, assume the following

command previously assigned the scratch pool for primary audits to

XTEXT:

AUDIT SCRATCHPOOL PRIMARY AUDIT = XTEXT

Then the following command would define the scratch pool names

to YTEST, including the primary audits previously defined to XTEXT:

AUDIT SCRATCHPOOL = YTEST

<scratch pool name> Identifies the scratch pool from which a tape is selected. The

scratch pool name is an identifier of at most 17 characters.

RESET Designates no scratch pool attribute. If a scratch pool name was

previously assigned, that name is deleted.

AUDIT QUICKCOPY MAXFILESPERTAPE Command

Use the AUDIT QUICKCOPY MAXFILESPERTAPE command to change the number of

audit files that can be appended to an audit tape or to view the current setting of the

MAXFILESPERTAPE option. You can use the AUDIT QUICKCOPY MAXFILESPERTAPE

command only when the audit trail specification in the DASDL source file

• Includes the QUICKCOPY APPEND command

• Does not include the NOZIP option

If you use the AUDIT QUICKCOPY MAXFILESPERTAPE command and either or both of

the preceding conditions are not true, an error is returned.

Syntax

── AUDIT QUICKCOPY MAXFILESPERTAPE ─┬─────────────┬─┬───────────────┬──┤
├─ PRIMARY ───┤ └─ = <integer> ─┘
└─ SECONDARY ─┘

Explanation

The following information explains the elements of the AUDIT QUICKCOPY

MAXFILESPERTAPE command syntax diagram.

Communicating with the Database

12–14 8600 0759-622

Option Explanation

PRIMARY, SECONDARY Indicates whether the command applies to the copying of the

primary or the secondary audit files. By default, the command

applies to copying both primary and secondary audit files.

<integer> Designates an integer in the range 1 through 9999. Assigning a

value of 1 restricts the number of audit files on a tape to one.

Assigning a value of 9999 causes audit files to be continuously

appended to the same tape.

A tape can consist of any number of reels.

To check the current setting for the number of audit files that can be

appended to any tape, use the AUDIT QUICKCOPY

MAXFILESPERTAPE command and do not include the = <integer>

clause.

For more information on the MAXFILESPERTAPE option, refer to Section 9, Copying Audit

Files. For more information on using the audit trail specification in the DASDL source file,

refer to the Data and Structure Definition Language (DASDL) Programming Reference

Manual.

AUDIT QUICKCOPY SYNCTAPESET Command

All information regarding the AUDIT QUICKCOPY SYNCTAPESET command pertains

to the XE features.

Use the AUDIT QUICKCOPY SYNCTAPESET command to reset the TAPESET

number used by the Accessroutines when initiating the COPYAUDIT command to

copy closed audit files to tape.

Syntax

── AUDIT QUICKCOPY SYNCTAPESET ───┤

Explanation

When you use the AUDIT QUICKCOPY SYNCTAPESET command, the TAPESET numbers

for both the primary and secondary audit trails are set so that the next time the

Accessroutines initiates a COPYAUDIT command, the TAPESET number used is the same

as the copied audit file.

If you do not specify the TAPESET option in DASDL, the AUDIT QUICKCOPY

SYNCTAPESET command results in the following error message:

AUDIT TAPESET NOT SPECIFIED IN DASDL

Communicating with the Database

8600 0759-622 12–15

CPSTATS Command

The CPSTATS command causes buffer information to be captured between and at control

points. This information includes:

• Number of writeaheads performed between control points

• Number of buffers the writeahead process skipped between control points due to

audit constrained

• Number of buffers the writeahead process skipped between control points due to I/O

pending

• Number of flushed buffers at control points

• Number of modified buffers (not flushed) at control points

To use the CPSTATS command:

• To set CPSTATS ON, the STATISTICS command must be set in the DASDL. Refer to

STATISTICS in the DASDL Programming and Reference Manual for additional

information.

• Use the VDBS command SM CPSTATS ON and CPSTATS OFF.

• By default, CPSTATS is OFF. It should only be turned ON during the representative

timing intervals, and then turned OFF again at the final closing of the database.

• Immediately after turning ON the CPSTATS command, perform a STATISTICS

RESTART. Once this is completed, run the STATISTICS command at the end of the

interval and turn OFF the CPSTATS. Then perform one last STATISTICS RESTART.

• Check the current settings of CPSTATS by using the SM STATUS command.

Syntax

── CPSTATS ─┬── ON ──┬───────────────────────────────┤
└─ OFF ──┘

Explanation

The following information explains the elements of the CPSTATS diagram.

Option Explanation

ON If designated, buffer statistics captured between and at control

points are printed at the final close of the database.

OFF Specifying OFF disables the printing of buffer statistics at the final

closing of the database.

Communicating with the Database

12–16 8600 0759-622

GARBAGE COLLECT Command

Use the GARBAGE COLLECT command to initiate, terminate, and monitor the

status of an online garbage collection of sectioned or nonsectioned disjoint index

sequential sets that exist in a database.

The characteristics of the GARBAGE COLLECT command operation are that it

• Runs online

• Runs up to 10 garbage collections in parallel

• Does not lock out users

• Requires that INDEPENDENTTRANS option be set for the database

• Either succeeds completely or makes no change to the structure

For example, if a halt/load occurs while the garbage collection task is running, the

system discards the results of the operation, making no change to the set.

• Cannot run at the same time as

- An online or offline dump

- A database reorganization

- A reconstruction on any structure in the database

- A Remote Database Backup takeover

For example, if you execute the GARBAGE COLLECT command during a

reorganization, the system does not initiate the garbage collection and displays an

error message.

Heavy user activity on the structure could adversely affect the performance of the garbage

collection. In extreme circumstances, user activity can prevent the Enterprise Database

Server from completing the garbage collection. In these extreme cases, application

program processing takes priority, and the Enterprise Database Server terminates the

garbage collection. If this action occurs, the garbage collection must be restarted.

Every block written to the new structure during the garbage collection is audited. Any

updates that are applied to the new structure during the garbage collection are also

audited. The audit information allows the new structure to be rebuilt or reconstructed if

the new structure is lost or damaged during the period between the removal of the old

structure and a successful dump of the new structure.

For the preceding reasons, it is recommended that garbage collection for index sets be

used only during periods of light user activity on the structure.

If the LOCKEDFILE attribute has been set on the structure outside of DASDL, reset the

attribute before entering the GARBAGE COLLECT command. Otherwise, the garbage

collection displays error messages and terminates without garbage collecting the

structure.

Communicating with the Database

8600 0759-622 12–17

If the LOCKEDFILE attribute is set outside of DASDL on a structure that is part of a

garbage collection process, attempts are made to detect the condition and leave the

structure as it was before the garbage collection started. However, even with these

checks, it might still be possible to manually alter the LOCKEDFILE attribute at a time that

is not detected by the garbage collection process, resulting in a corrupted structure.

Because detection is not always possible, use the LOCKEDFILE option in DASDL if

protection is needed.

Alternative to a Reorganization

The GARBAGE COLLECT command is an advantageous alternative to a reorganization

when you need to

• Consolidate unused space in sets or subsets.

• Rebalance index structures to optimize access through sets.

The benefits are

• The database remains online and available.

• Any failure of the garbage collection has no impact on the database.

Disk Storage Requirements

The online garbage collection creates the files it uses on the same pack as the set being

collected. Therefore, each index set being collected requires at least enough pack space

for the files generated by the GARBAGE COLLECT operation.

How the GARBAGE COLLECT Command Works

The garbage collection process includes the following steps:

1. Create and populate the following two temporary files:

• <set name>/NEW

The set name is the title of the set on which garbage collection is to be performed.

The file possesses the same attributes, such as area size and pack name, as the

set to be collected. During the online garbage collection, the system writes a new

balanced index to this file.

• KEY_UPDATES

KEY_UPDATES is a sequential file in which the system captures all user updates

to the set while the garbage collection is performed.

The KEY_UPDATES file is limited to 10,000,000 entries. The error,

“KEY_UPDATES FILE IS FULL” is returned when the limit is exceeded and the

garbage collect operation is terminated.

2. Apply the updates in the KEY_UPDATES file to the <set name>/NEW file.

When the application is complete, the <set name>/NEW file contains both the

balanced index set and all user updates.

Communicating with the Database

12–18 8600 0759-622

3. Swap the <set name>/NEW file with the original set file.

The system stops access to the original file momentarily. The system changes the

original set file name to <set name>/OLD so that the file is available in case of a

halt/load. The system changes the <set name>/NEW file name to <set name>. User

access to a database resumes, using the new set file.

4. Remove the file <set name>/OLD after the two control points.

A message appears indicating that the garbage collection for the set was successful

and all associated file handling is complete.

By using the two temporary files described in the previous procedure, the Enterprise

Database Server generates the garbage-collected set file while the original set file is in

use. Consequently, uninterrupted user access for both inquiries and updates on the set

continues during garbage collection.

After the GARBAGE COLLECT Operation

After you perform a successful garbage collection,

• You must perform a database dump of the structures on which a garbage collection

process was initiated. If possible, include the entire data set family in the dump. This

dump is useful for performing later rebuild or reconstruct operations.

You can perform a rebuild operation though a garbage collection, but it is

recommended that you perform a database dump after the garbage collection and use

that dump for later rebuild recoveries. This action results in a faster rebuild recovery.

You cannot perform a row recovery (reconstruct operation) of the set that was

garbage collected if you are using a dump that was created prior to the garbage

collection.

• You cannot perform a rollback recovery of the database to a time prior to the time of a

successfully completed garbage collection.

Syntax

Initiating Garbage Collection

───────────────┬─GARBAGE COLLECT─┬────<GC str list> ──────────┤
└──── GC ─────────┘

Terminating Garbage Collection

─────────┬─TERMINATE─┬─┬─GARBAGE COLLECT─┬──<str list> ─────┤
└── DS──────┘ └──── GC ─────────┘

Monitoring Garbage Collection:

─────STATUS────┬─GARBAGE COLLECT─┬────<str list> ───────────┤
└──── GC ─────────┘

Communicating with the Database

8600 0759-622 12–19

<str list>

┌◄─────── , ────────────────────────────────────┐
──────────┴─┬───<set>──────┬──────────────────────────────┴────┤

└──<subset>────┘

<GC str list>

┌◄─────── , ────────────────────────────────────┐
──────────┴─┬───<set>──────┬────┬─────────────────────┬───┴────┤

└──<subset>────┘ └─<loadfactor phrase>─┘

<loadfactor phrase>

───── (───┬─ LOADFACTOR ─┬── = ──<integer>─────────) ──────┤
└─ LF ─────────┘

Explanation

The <GC str list> variable is a list of sectioned or nonsectioned disjoint index sequential

sets and their subsets. The sets must exist and be invoked in the database.

The <str list> variable is a list of sectioned or nonsectioned disjoint index sequential sets

and their subsets that are being garbage collected.

A LOADFACTOR phrase is used with the set or subset names that are specified directly

before it. If there is no LOADFACTOR phrase specified after a set or subset name, the

default load factor is used. For instance, in the following example, a load factor of 75

percent is used for A3 and A4, and the default load factor is used for A6.

SM GC A2 (LF=80), A3, A4 (LF=75), A5 (LF=60), A6

Example

You can use the STATUS GC <GC str list> command to obtain the status of a structure for

which garbage collection has been initiated. The following status information appears

when using the syntax for monitoring garbage collection:

JOB#(<no>), GC/str. name>/string number>
<status>
JOB#(<no>), GC/str. name>/string number>
BLOCKS PROCESSED=(<number>)(%)
JOB#(<no>), GC/str. name>/string number>
UPDATES TO BE APPLIED=(<number>)

The following status message can appear if there is low user activity on a structure:

GC/<SET NAME>/<structure #> COMPLETED OK, WAITING FOR TWO CP’S

If this situation occurs and the previous message appears, perform one of the following

tasks:

• Wait until enough updates have been performed on the database to cause control

points to occur and garbage collection will complete automatically.

• Run a program to force syncpoints/control points to occur.

Communicating with the Database

12–20 8600 0759-622

• Close the database.

LOCKSTATISTICS Command

The LOCKSTATISTICS command causes the current LOCK statistics to be printed.

To use the LOCKSTATISTICS command:

• To set the LOCKSTATISTICS command to ON, the STATISTICS command must be set

in the DASDL. Refer to the STATISTICS option in the DASDL Programming and

Reference Manual for additional information.

• Use the VDBS commands SM LOCKSTATISTICS ON and SM LOCKSTATISTICS OFF

to turn the command on and off.

• By default, LOCKSTATISTICS is set to OFF. It should only be turned ON during the

represented timing intervals, and then turned OFF again at the final closing of the

database.

• Immediately after turning ON the LOCKSTATISTICS command, perform a STATISTICS

RESTART. Once this completes, run the STATISTICS command at the end of the

interval, and turn OFF the LOCKSTATISTICS command. Then perform one last

STATISTICS RESTART.

• Check the current settings of LOCKSTATISTICS by using the SM STATUS command.

Note: Using the ON parameter with the LOCKSTATISTICS command can adversely

impact performance. It is recommended that you use LOCKSTATISTICS ON in short,

controlled time intervals. Use this setting for diagnostic purposes only.

Syntax

── LOCKSTATISTICS ─┬──ON───┬───┤
└─ OFF ─┘

Explanation

The following information explains the elements of the LOCKSTATISTICS command

syntax diagram.

Option Explanation

ON Prints LOCK statistics at the final closing of the database.

OFF By default, LOCKSTATISTICS is OFF. Specifying OFF disables the

printing of statistics at the final closing of the database.

SNAPSHOT Command

The SNAPSHOT command displays information about database applications.

Communicating with the Database

8600 0759-622 12–21

Syntax

── SNAPSHOT ───┤

Explanation

The following information explains the element of the SNAPSHOT command syntax

diagram.

Option Explanation

SNAPSHOT A SNAPSHOT will show database statistics of active applications

that are accessing the database. This option generates cumulative

figures from the point the database was initiated or from when the

STATISTICS option was started or restarted up to the time the

SNAPSHOT command was submitted. This option is only valid

when STATISTICS is set in DASDL. The location for the SNAPSHOT

output is the same as the STATISTICS output.

For example,

DBSTATS/<database>/SNAPSHOT/<date>/<timestamp>

The following is an example output:

SNAPSHOT DATE TIME
STARTED <date> <timestamp>

(1) MIX NUMBER
(2) TRANSACTION COUNT
(3) TRANSACTION DURATION TIME (SECONDS)
(4) USER FIND DATA RECORD
(5) STORE AFTER CREATE/INSERT KEY INTO SET
(6) STORE AFTER LOCK/CHANGE DATA IN KEY
(7) DELETE DATA RECORD/DELETE ENTRY FROM SET
(8) TASK NAME

(1) (2) (3) (4) (5) (6) (7) (8)
4525 1 11.622 0 10000 0 0 (<USERCODE>)CANDE/CODE4290 ON <PACK>

FILES DBSTATS/=:S
DBSTATS/= ON <PACK>

File Name Filekind Records Sectors CreationTime

----------------------------------+------+---------------+----+--------
DBSTATS/TEST/SNAPSHOT/<DATE>/<TIMESTAMP> BACKUPPRINTE 1 10 <DATE>

DBSTATS/TEST/SNAPSHOT/<DATE>/<TIMESTAMP> BACKUPPRINTE 1 10 <DATE>
2 FILES FOUND

UNISYS Unisys e-@ction Enterprise Database Server for ClearPath MCP -
DATABASE STATISTICS ** DATABASE (<USERCODE>)<DATABASE> **

Communicating with the Database

12–22 8600 0759-622

JOB: <JOB> MIX: <MIX> STACK: <STACK>

RELEASE: SSR 59.1 (59.141.0091)
SYSTEM: CS4290 SYSTEM SERIAL NUMBER: 7426

STATISTICS Command

The STATISTICS command causes the current statistics to be printed.

Syntax

── STATISTICS ─┬──────────────────────────────────────┬───────────────────────────────┤
├─ MIX ─ = ── <mixno> ─────────────────┤
├─ ON ─────────────────────────────────┤
├─ OFF ────────────────────────────────┤
├─ RESTART ─┬───────────────────────┬──┤
│ ├ TITLE = "<file title>"┤ │
│ ├──────── <min> ────────┤ │
│ └─────── RESTART ───────┘ │
└─ TIMER ─ = ──────────────────────────┘

Explanation

The following information explains the elements of the STATISTICS command syntax

diagram.

Option Explanation

MIX Prints statistics for a task. The <mixno> variable is the task number.

ON If designated, statistics are printed at the final closing of the

database.

OFF Disables printing of statistics at the final closing. The state of the

option is retained in the control file.

Statistics can still be printed with the STATISTICS or STATISTICS

RESTART commands. This does not affect the state of the option.

RESTART If designated, all internal counters and timers are cleared after

printing, thus statistics are restarted as if the database had just been

opened.

When <file title> is specified with a family name, the file type of the

statistics report will be DATA. If a family name is not specified, the

statistics file will be on the family defined with the system DL

BACKUP command and the file type will be BACKUPPRINTER.

If the STATISTICSLOC database option is also specified, this VDBS

command has precedence.

Communicating with the Database

8600 0759-622 12–23

Option Explanation

TIMER Specifies how long a statistics will be printed. The <min> variable

represents the time in unit of minutes. The range is 0 to 1440. An

entry of 0 indicates no periodic printing. Use the RESTART option to

clear statistic data after the periodic printing.

STATUS STRUCTURE Command

The STATUS STRUCTURE command displays information about individual structures.

The STATUS STRUCTURE command causes the following information to be displayed for

every structure in the physical structure list, or for all physical structures if an asterisk (*) is

specified:

• General information about the structure, including

- Whether the structure is opened or closed.

- The number of random and serial users of the structure.

• Current settings for the structure, including

- Whether REBLOCK is assigned the value SET or RESET for the structure.

- Buffer specifications.

- The number of small or large buffers allocated.

- The current REBLOCKFACTOR.

- The next REBLOCKFACTOR to be used when the structure is closed and

reopened.

- Whether the DUMPENCRYPT option is set for the structure, and the algorithm

used.

• Garbage collection status information if an online garbage collection is in progress. For

more information, see the GARBAGE COLLECT command earlier in this section.

Note: There is no reference to REBLOCK information if REBLOCK is not set in DASDL.

Syntax

── STATUS STRUCTURE ─┬─ * ───────────────────────┬─────────────────────┤
└─<physical structure list>─┘

<physical structure list>

┌◄──────────── , ───────────┐
──┴─<structure specification>─┴──┤

<structure specification>

──┬─<structure number>───┬───┤
│ ┌◄─────── . ───────┐ │
└─┴─<structure name>─┴─┘

Communicating with the Database

12–24 8600 0759-622

Explanation

Only data sets, sets, and subsets can be specified in the <physical structure list>.

Accesses cannot be specified in the physical structure list. When an asterisk (*) is

specified, the command applies to all physical structures in the database.

Qualification of structures in the physical structure list is necessary only when the

structure name is not unique. Qualification is performed by specifying each structure

name in the hierarchy, beginning with the outermost unique structure name and

proceeding to the structure name of the structure being qualified.

You can specify an alias name for a physical structure list. This means that you can refer to

a physical structure list using 16-bit character structure names through COBOL85 same as

a regular structure name.

For more information about alias names, refer to the Data and Structure Definition

Language (DASDL) Programming Reference Manual.

Examples

• The following example displays the current status of PARTSET and PARTDATA:

1234 SM STATUS STRUCTURE PARTSET, PARTDATA

• The following example displays the current status for a hierarchical family of

structures:

2222 SM STATUS STRUCTURE PARTINFO,
PARTINFO.NAMES, PARTINFO.NAMES.SPECS

• The following output example is displayed in response to STATUS STRUCTURE 40.

The number 10 at the end of line 2 of the output represents the REBLOCKFACTOR,

and 0 IN USE at the end of line 3 of the output represents the number of buffers

currently in use.

(#40) DATASET1: (CLOSED)
(#40) REBLOCK SET, REBLOCKFACTOR= 10.
(#40) BUFFERS: (4+1 OR 2) 0 IN USE.

• The following output example is displayed in response to the command STATUS

STRUCTURE S1, DS1, where S1 is a set and DS1 is a data set. Line numbers have

been added for ease of reference

Line 1(#5) USERS=5 (5 UPDATE + 0 INQ,
1 RANDOM + 4 SERIAL).

Line 2(#5) MEMORY RESIDENT = RESET.
Line 3(#5)S1: BUFFERS: (100+100 OR 20) 5 2006.
Line 4(#4) USERS=5 (5 UPDATE + 0 INQ,

5 RANDOM + 0 SERIAL).
Line 5(#4) REBLOCK SET, REBLOCKFACTOR = 4
Line 6(#4) MEMORY RESIDENT = RESET.
Line 7(#4)DS1: BUFFERS: (100+100 OR 20)

3 4002, 0 16062.

Communicating with the Database

8600 0759-622 12–25

The output includes information that differs from the preceding example because there

are update users in this case, whereas the data set was not in use in the previous

example.

The explanation for this example is as follows:

Line 1

Structure #5 (set S1) has five update users and zero inquiry users. Of those users, one is a

random user, and four are serial users.

Line 2

Structure #5 (set S1) has the MEMORY RESIDENT option reset.

Line 3

Structure #5 (set S1) has 100 system buffers and 100 random buffers. Twenty serial

buffers are available. Currently 5 buffers, each consisting of 2006 words, are in use.

Line 4

Structure #4 (data set DS1) has five update users and zero inquiry users. Of those users,

five are random users and none are serial users.

Line 5

Structure #4 (data set DS1) has the REBLOCK option turned on and a REBLOCKFACTOR

value of 4.

Line 6

Structure #4 (data set DS1) has the MEMORY RESIDENT option reset.

Line 7

Structure #4 (data set DS1) has 100 system buffers and 100 random buffers. Twenty serial

buffers are available. Currently three small blocks, each consisting of 4002 words, are in

use. No large blocks are in use.

In the information displayed for data set DS1, note that REBLOCKFACTOR is set at line 5.

The first set of numbers (3 @ 4002) after the buffer specification is the number and size of

small blocks, and the second set of numbers (0 @ 16062) is the number and size of large

blocks.

If the same example is run with the REBLOCK value of RESET in DASDL, then line 5 is

omitted and only the number and size of small blocks appear after the buffer specification

in the last line of output.

Communicating with the Database

12–26 8600 0759-622

STRUCTURE CHANGE Command

The STRUCTURE CHANGE command is used to set the current parameters of a structure.

The parameters specified through this command are stored in the control file and are

maintained on subsequent database stack (DBS) runs. When this command is used with a

physical structure list, a status display for every structure specified results. No status

display occurs if an asterisk (*) is specified.

Syntax

── STRUCTURE ─┬─ * (<parameter list>) ──────────────────────────────┬──┤
│ ┌◄─────────────────────── , ──────────────────────┐ │
└─┴─<physical structure list>── (<parameter list>) ─┴─┘

<parameter list>

┌◄──────────────────────────── , ───────────────────────────┐
──┴─┬─/1\─ LOGACCESS ─┬─────────────────────────────────────┬─┴────────┤

│ ├─ SET ───────────────────────────────┤
│ └─ RESET ─────────────────────────────┤
├─/1\─ REBLOCK ─┬───────────────────────────────────────┤
│ ├─ SET ─────────────────────────────────┤
│ └─ RESET ───────────────────────────────┤
├─/1\─ POPULATIONINCR─┬ = ─<1-100>┬──────────────────┬┬─┤
│ │ └ (┬DISPLAY──┬─) ┘│ │
│ │ └NODISPLAY┘ │ │
│ └──────────── 0 ────────────────┘ │
├─/1\─ POPULATIONWARN─┬ = ─<1-99>─┬──────────────────┬┬─┤
│ │ └ (┬DISPLAY──┬─) ┘│ │
│ │ └NODISPLAY┘ │ │
│ └──────────── 0 ────────────────┘ │
├─/1\─ REBLOCKFACTOR = <unsigned integer> ──────────────┤
├─/1\─ BUFFERS = <integer1> + <integer2> OR <integer3> ─┤
├─/1\─ BUFFERLIMIT = < 0-511> ──────────────────────────┤
└─/1\─ MEMORY RESIDENT = ─┬─ RESET ─────────────────────┤

├─ ALL ───────────────────────┤
└─ COARSE ────────────────────┘

<physical structure list>

┌◄──────────── , ───────────┐
──┴─<structure specification>─┴──┤

<structure specification>

──┬─<structure number>───┬───┤
│ ┌◄─────── . ───────┐ │
└─┴─<structure name>─┴─┘

Explanation

The STRUCTURE CHANGE command is composed of at least one physical structure list,

or an asterisk (*) if the command applies to all physical structures in the database, and a

corresponding parameter list. Each parameter list is applied only to the structures

Communicating with the Database

8600 0759-622 12–27

specified in the immediately preceding physical structure list. If the asterisk is specified,

the corresponding parameter list applies to all physical structures in the database. The

rules for specification of structures in the physical structure list are identical to those given

in the STRUCTURE STATUS command.

LOGACCESS

Provides database access information. It cannot be used for recovery purposes. Refer to

the “Logging Data Access” section later in this guide for additional information.

REBLOCK and REBLOCK SET

Informs the Accessroutines to employ the REBLOCK mechanism for serial users of a

structure. This only takes effect if REBLOCK is TRUE for the structure in DASDL.

REBLOCK can never be SET when the serial buffers specification is less than 2.

REBLOCK RESET

Prevents all reblocking on a structure. Any current serial users discontinue reblocking, and

the large buffers are overlaid.

REBLOCKFACTOR

Allows the user to change the REBLOCKFACTOR for a structure, provided REBLOCK is

TRUE in DASDL. REBLOCKFACTOR does not change until the structure is completely

closed and reopened.

POPULATIONINCR

Use this option to enable the Enterprise Database Server to automatically increase the size

of a structure beyond the limits declared in the database DASDL source file.

Expansion is accomplished by allowing the number of areas in the structure to increase to

the system maximum.

The actual number of records that can be stored within a structure is based upon the

number of areas designated for the structure and the structure type. For instance, the

record calculation for

• Variable-format data sets is based on the maximum allowed record size

• Compact data sets is based on the average record size

Therefore, even if a population is specified, the actual runtime evaluation of the allowed

number of records might differ from the specified number. This effect is particularly

noticeable when the specified population is small compared to the number of records that

can be contained in an area.

The following switches are provided with the POPULATIONINCR option:

Communicating with the Database

12–28 8600 0759-622

• 0. Switches off the option. To explicitly turn off the POPULATIONINCR option, include

the following statement in the database DASDL source file:

POPULATIONINCR = 0

• 1-100. Defines the percentage of the automatic population increase. The percentage

must be an integer. By default, the allowed structure size is increased by 10 percent.

To set the automatic population increase to another value, follow the

POPULATIONINCR keyword with the percentage increase required. For instance, to

set the percentage increase to 20 percent, include the following statement in the

database DASDL source file:

POPULATIONINCR = 20

• (DISPLAY). Updates the control file and enables the delivery of a message when an

automatic population increase has occurred. DISPLAY is the default.

• (NODISPLAY). Updates the control file only. No message is sent.

Two possible side effects of increasing population through the POPULATIONINCR

mechanism (rather than by performing a reorganization to increase the area size) are as

follows:

• The spanning sets for the structures also grow, but without the benefit of table

balancing. Thus, the number of table levels might eventually increase and cause some

performance degradation.

• The container size of the POPULATION item for the structure can overflow. This

causes truncation of the POPULATION item value and might lead to erroneous

application results.

When the POPULATIONINCR option is set for a data set, and that data set reaches the

quantity of records at which an application would normally receive a limit error, the

following actions occur unless system limitations prohibit them:

• The allowed areas for the data set increases by the specified percentage.

• The STORE application of the operation is allowed to proceed.

• A message is sent to the operator display terminal (ODT) in the form of a task that is

placed in the waiting mix.

Use the IB (Instruction Block) system command to display the message text.

• The control file is updated to reflect the new population limit for the structure and the

time that the message was delivered.

This control file information is removed when a DASDL UPDATE is performed that

requires a reorganization of the structure or explicitly increases the AREAS option

setting for the structure to a value greater than the information stored in the control

file.

If the full area increase of the structure can be accommodated, a message similar to the

following is emitted:

Communicating with the Database

8600 0759-622 12–29

MYBD: NOTICE - CUSTOMERS have been granted an automatic
population increase of 10%. The target for its maximum
number of rows has increased from 200 to 220. The structure
can now hold 18324 records; based upon the specified record
size.

Physical file limitations can prevent the full requested increase from occurring. Under

those circumstances, the following additional message is emitted:

MYBD: WARNING - Rows 975 through 1000 have been made available
to CUSTOMERS. 1000 AREAS is the maximum number allowed by the
system. Automatic expansion is no longer available to this
structure until it has been reorganized.

When this warning occurs, avoid limit errors and unplanned database downtime by

reorganizing the structure and increasing the AREASIZE option value as soon as

practicable. Once the area size is increased, the population increase mechanism can again

be used to increase the structure automatically.

Note: The POPULATIONINCR option is set when you generate or update a database,

unless you explicitly disabled the option.

While updating the AREAS value for a data set where the POPULATIONINCR option is set,

note that an automatic population increase might have increased the control file AREAS

value. The DMCONTROL program determines whether to use the old control file value or

the new DASDL value.

If a reorganization of the structure is required, the user-specified value from the DASDL is

inserted into the new control file, regardless of whether the specified value is enough to

hold all records in the data set. The population increment timestamp is reset.

If a reorganization is not required, then the larger of the two values (user-specified DASDL

value or control file value) is used for the new control file AREAS value.

If the user-specified value is used, the timestamp is reset; otherwise, it is retained.

If the user-specified AREAS value is not enough and the population increase mechanism is

enabled, then the REORGANIZATION program itself causes the automatic population

increase mechanism to be invoked, increasing the AREAS specification from the user-

specified value.

If the population increase mechanism is not enabled, then the REORGANIZATION

program receives a fatal limit error.

If the automatic population increase mechanism has never been invoked, the DASDL

AREAS specification is always used.

If you decide to change the POPULATIONINCR value by way of a DASDL update after you

change the value by using the POPULATIONINCR option, you must perform a control file

override. Refer to Section 5, Initializing and Maintaining, for additional information about

performing a control file override. The override enables the system to recognize that the

DASDL update value takes precedence over the value you specified using the

STRUCTURE CHANGE Visible DBS command with the POPULATIONINCR option.

Communicating with the Database

12–30 8600 0759-622

POPULATIONWARN

Use this option to have the Enterprise Database Server issue a notification when a data

set reaches a percentage of its allowed population. (The population calculations are based

on the AREAS value.) Notification is placed in the control file and, by default, is also sent to

the operator display terminal (ODT) in the form of a task that is placed in the waiting mix.

In general, knowing when structures are approaching their population limit enables steps

to be taken to avoid having applications receive limit errors and to avoid the resulting

unplanned database downtime.

The POPULATIONWARN option is off by default. That is, the control file is not updated and

no notifications are issued.

The following switches are provided with the POPULATIONWARN option:

• 0. Switches off the option. To explicitly turn off the POPULATIONWARN option,

include the following statement in the database DASDL source file:

POPULATIONWARN = 0

• 1-99. Specifies the percentage of total structure capacity that triggers a warning

message. The percentage is expressed as an integer. For instance, to trigger a

warning when a structure is 85 percent full, include the following statement in the

database DASDL source file:

POPULATIONWARN = 85

• (DISPLAY). Updates the control file and enables the delivery of a warning message

when a structure reaches its warning level capacity. DISPLAY is the default.

• (NODISPLAY). Updates the control file only. The warning message is not sent.

For instance, if the following statement is included in the database DASDL source

file, the control file is updated, but a warning message is not issued when a

structure becomes 75 percent full:

POPULATIONWARN = 75 (NODISPLAY)

Note: The total structure capacity might be different from that specified in the database

description if automatic limit increases have occurred because of the use of the

POPULATIONINCR option.

You can use the POPULATIONWARN option at both the database and the structure level.

Specifications applied at the structure level take precedence over those at the database

level.

When the designated percentage of total structure capacity is reached, the following

actions occur:

• The control file is updated to reflect the time of the event.

• Unless the NODISPLAY switch is set, a message is sent to the operator display

terminal (ODT) in the form of a task that is placed in the waiting mix.

Use the IB (Instruction Block) system command to display the message text.

Communicating with the Database

8600 0759-622 12–31

Once the warning condition has been met—even if automatic population increases

occur—further warnings are not issued for that structure until the related control file

information has been reset.

To reset the control file information for a structure, perform one of the following actions:

• DASDL UPDATE to increase the allowed number of areas

• Reorganization or garbage collection to reduce the number of in-use areas

(ROWSINUSE) below the target percentage

The actual number of records that can be stored within a structure is based upon the

number of areas designated for the structure and the structure type. For instance, the

record calculation for variable-format data sets is based on the maximum allowed record

size, while the record calculation for the compact data sets is based on the average record

size.

Therefore, even if a population is specified, the actual runtime evaluation of the allowed

number of records might differ from the specified number. This effect is particularly

noticeable when the specified population is small compared to the number of records that

can be contained in an area.

If you decide to change the POPULATIONWARN value by way of a DASDL update after

you change the value by using the POPULATIONWARN option, you must perform a

control file override. Refer to Section 5, Initializing and Maintaining, for additional

information about performing a control file override. The override enables the system to

recognize that the DASDL update value takes precedence over the value you specified

using the STRUCTURE CHANGE Visible DBS command with the POPULATIONWARN

option.

BUFFERS

Allows the user to change the number of buffers allocated and deallocated for the

specified structures. This specification corresponds to the DASDL specification:

BUFFERS = <integer1> + <integer2> PER RANDOM USER
OR <integer3> PER SERIAL USER

The <integer1> must be an integer between 0 and 1048575, inclusive. The <integer2>,

and <integer3> constructs must be integers from 0 to 254, inclusive. The <integer1>

specifies the number of base buffers (small) to allocate for the structure. The <integer2>

specifies the number of additional buffers (small) to allocate for each random user. The

<integer3> specifies the number of additional buffers to allocate for each serial user. If

REBLOCK is assigned the value SET, <integer3> specifies the number of large buffers,

and must be greater than or equal to 2. If REBLOCK is assigned the value RESET and

<integer3> is greater than or equal to 2, the Accessroutines performs readahead

operations (with small blocks) for serial users of the structure. Readahead operations do

not occur if <integer3> is less than 2.

When setting buffers for sectioned structures, you can avoid using excessive amounts of

memory if you take the following information into consideration: the number of buffers

available for the structure is the number of specified buffers multiplied by the number of

sections in the structure

Communicating with the Database

12–32 8600 0759-622

Changing buffer specifications might cause overlays to adjust the number of buffers in the

buffer pool. The number of buffers in the buffer pool can exceed the buffer specifications.

This is especially true of audited databases running well below ALLOWEDCORE.

BUFFERLIMIT

Allows the user to change the limit of the buffers used for each section of an XE

structure. The command is only valid for XE structures. Setting the buffer limit to

zero sets the buffer limit to the default value which is 512.

MEMORY RESIDENT = ALL and MEMORY RESIDENT =
COARSE

Informs the Accessroutines to employ the MEMORY RESIDENT mechanism on a

structure. Setting MEMORY RESIDENT to COARSE is meaningful only for an INDEX

SEQUENTIAL set. With this option, only the coarse tables are kept in memory. For any

other structures, the effect of using this option is the same as setting MEMORY

RESIDENT to ALL.

MEMORY RESIDENT = RESET

Unlocks any buffers currently in memory.

Examples

Example 1

The following example invokes the REBLOCK capability for serial users of the structures

specified in the physical structure list. In this example, the structure number assigned by

the DASDL compiler is used to denote the structures:

7654 SM STRUCTURE 22,25 (REBLOCK)

Example 2

The following example changes the number of buffers allocated and deallocated for the

specified structures. The BUFFERS specification for structures PARTDATA and PARTSET

is altered to two system buffers plus zero buffers for both random and serial users. The

BUFFERS specification for structures assigned the structure number 22 or 25 is altered to

one system buffer, plus one buffer per random user, or three buffers per serial user.

9988 SM STRUCTURE PARTDATA, PARTSET
(REBLOCK RESET, BUFFERS = 2 + 0 OR 0),
22,25 (BUFFERS = 1 + 1 OR 3, REBLOCK)

Communicating with the Database

8600 0759-622 12–33

In addition, the example changes the REBLOCK capability for PARTDATA and PARTSET to

RESET, and sets the REBLOCK capability for structures assigned the structure numbers

22 and 25.

Example 3

The following example invokes the REBLOCK capability and changes the number of

buffers allocated and deallocated for all physical structures in the database:

9182 SM STRUCTURE * (REBLOCK, BUFFERS = 1 + 1 OR 2)

The following example changes the MEMORY RESIDENT option of PARTDATA to RESET

if the MEMORY RESIDENT option was initialized previously. The MEMORY RESIDENT

buffers used by PARTDATA are now available for deallocation. The MEMORY RESIDENT

option of PARTSET is initialized through this command as well. If PARTSET is an INDEX

SEQUENTIAL set, then coarse tables stay in memory.

9123 SM STRUCTURE PARTDATA (MEMORY RESIDENT=RESET),
PARTSET(MEMORY RESIDENT=COARSE)

STATUS HISTORY Command

The STATUS HISTORY command provides the stack history of all active applications

accessing the designated database. The program name is displayed followed by the stack

state and the procedure call history. The procedure call history lists the sequence

numbers, procedure names, and code file names for each procedure that has been

entered but not yet exited at the time of the request.

Syntax

── STATUS HISTORY ─────┬──────────────┬──────────────────────────────┤
├──── ALL ─────┤
├─<mix number>─┤
└──INTRAN──────┘

Explanation

Use the ALL option to display information about all the tasks related to the database. This

information not only includes tasks and libraries that declare the database, but also

includes tasks that do not declare the database but are currently attached to the database

stack through a library or other mechanism.

The <mix number> option displays trace back stack history about only the requested task.

The INTRAN option limits reporting to include only those applications and libraries that are

in transaction state. It also reports the start time of the transaction.

The meaning of each column in the resulting display is as follows:

Communicating with the Database

12–34 8600 0759-622

1. The transaction status of the task as it affects the designated database. The following

status can be displayed:

• T means the task is in transaction state.

• Blank means the task is not in transaction state. L means the task is a library task

and a user is in transaction state through this library.

• R means the task has declared a database and is executing a long transaction, and

the SYNCWAIT option is set for the database.

In this case, a TR start time and perhaps an LTR start time are displayed.

The TR start time is the time the transaction started. This time does not change.

The LTR start time reflects the starting time of a long transaction since the last

implicit begin transaction (BTR). The time can change. Each instance of an implicit

end transaction (ETR) sets the LTR start time to 0 (zero). If another implicit BTR

occurs, the LTR start time is set to the current time. This behavior continues until

the long transaction ends with an actual ETR. So if the LTR start time is recent, it

means the SYNCWAIT option is working and allowing other transactions to

complete while a long transaction continues. If the LTR start time is not recent, it

could mean there is a long transaction preventing other transactions from

completing.

Refer to the description of the SYNCWAIT option in the Data and Structure

Definition Language (DASDL) Programming Reference Manual for information

about an implicit BTR or ETR.

- N means the task is a library task and is in a long transaction, and the

SYNCWAIT option is set for the database.

- A means the task is in the process of a single abort when

INDEPENDENTTRANS is set for the database.

2. The mix number of the task.

3. The access type of the task. The access type identifies the mode in which the

database has been opened by the task. The access type is either update (U) or

inquiry (I).

4. The priority of the task.

5. The title of the task.

6. The waiting status of the task. The waiting status can take any of the following values:

• SYNC means the task is waiting for a syncpoint.

• The meaning of the mix number depends on the transaction status of the task as

follows:

- If L is not displayed in the first column, the task is waiting for a record that is

currently locked by the task identified by the mix number.

- If L is displayed in the first column, the mix number identifies that a task is in

transaction state through this library. The library task is identified in the

second column, and the task that is in transaction is identified in column 6.

• GONE means that the database is still in transaction state even though the task

Communicating with the Database

8600 0759-622 12–35

initiated through the library has completed. A waiting status of GONE can be

displayed only if L or A is displayed in the first column.

• Blank means either that a non-library task is not waiting for locked records or that

a library task does not have any callers in transaction state.

• U means that the user program is running.

Examples

• The following command displays the stack history of all the tasks against the database

identified by the mix number 3277.

3277 SM STATUS HISTORY

The following is the sample output listing:

17:12:52 3277 -> 3277 OPERATOR ENTERED:3277 SM:STATUS HISTORY.
17:12:52 3277 MSRDISP14:DISPLAY: 0003281 U 50

(UC)OBJECT/PROG/LOCK ON DMSII
17:12:52 3277 MSRDISP14:DISPLAY:1021:0485:3

(14088680/14608440) in >> Current MCP <<.
17:12:53 3277 MSRDISP14:DISPLAY:2B:009A:1 (35604000)

BEGINTRANSACTION in (UC)SYSTEM/ACCESSROUTINES.
17:12:53 3277 MSRDISP14:DISPLAY:2F:0306:4 (35876500)

TRANSACTIONBEGIN in (UC)SYSTEM/ACCESSROUTINES.
17:12:53 3277 MSRDISP14:DISPLAY: 3:0020:3 (00005000)

BLOCK#1 in (UC)OBJECT/PROG/LOCK
17:12:53 3277 MSRDISP14:DISPLAY:T0003276 U 50

(UC)OBJECT/PROG/TESTDB/CREATE ON D .
17:12:53 3277 MSRDISP14:DISPLAY:101B:0525:4

(14088680/14384860)
in >> Current MCP <<.

17:12:53 3277 MSRDISP14:DISPLAY:1B:053B:3 (14387100) in
>> Current MCP <<.

17:12:53 3277 MSRDISP14:DISPLAY:76:0337:1 (10470990)
WAITFORAUDITIOCOMPLETE in
(UC)SYSTEM/ACCESSROUTINES.

17:12:53 3277 MSRDISP14:DISPLAY:75:0340:5
(10436700) WRITEAUDITBUFFER in
(UC)SYSTEM/ACCESSROUTINES

17:12:53 3277 MSRDISP14:DISPLAY:FB:019F:4 (41806700)
CREATE in (UC)SYSTEM/

17:12:53 3277 MSRDISP14:DISPLAY:8A:0011:5 (38044000)
CREATE in (UC)SYSTEM/

17:12:53 3277 MSRDISP14:DISPLAY: 3:0026:5 (00013000)
BLOCK#1 in (UC)OBJECT/PROG/TESTDB/CREATE

17:12:53 3277 MSRDISP14:DISPLAY:
----- 2 ACTIVE ENTRIES -----.

• The following command displays the stack history of the task with mix number 3276

with respect to the database identified by mix number 3277. Information about other

inquiry or update tasks against the database is not displayed.

3277 SM STATUS HISTORY 3276

The following is the sample output listing:

17:13:17 -> 3277 OPERATOR ENTERED:3277 SM:STATUS HISTORY

Communicating with the Database

12–36 8600 0759-622

3276.
17:13:18 3277 MSRDISP14:DISPLAY:T0003276 U 50

(UC)OBJECT/PROG/TESTDB/CREATE ON DMSII.
17:13:18 3277 MSRDISP14:DISPLAY:101B:06F6:2

(14088680/14415730) in >> Current MCP <<.
17:13:18 3277 MSRDISP14:DISPLAY:1B:0542:3 (14387520)

in >> Current MCP<<.
17:13:18 3277 MSRDISP14:DISPLAY:76:01C4:4 (10451900)

WAITFORAUDITIOCOMPLETE in
(UC)SYSTEM/ACCESSROUTINES.

17:13:18 3277 MSRDISP14:DISPLAY:90:0062:2 (11530500)
FORCEAUDITAWCP in
(UC)SYSTEM/ACCESSROUTINES .

17:13:18 3277 MSRDISP14:DISPLAY:1B:0083:3 (30807000)
DMSREADP in (UC)SYSTEM/ACCESSROUTINES.

17:13:18 3277 MSRDISP14:DISPLAY:58:05CB:1 (72471500)
PATHFINDER in (UC)SYSTEM/ACCESSROUTINES .

17:13:18 3277 MSRDISP14:DISPLAY:FD:03B7:4 (41815000)
STORE in (UC)SYSTEM/ACCESSROUTINES .

17:13:18 3277 MSRDISP14:DISPLAY:8E:0147:0 (38052900)
STORE in (UC)SYSTEM/ACCESSROUTINES.

17:13:18 3277 MSRDISP14:DISPLAY: 3:0040:5 (00020500)
BLOCK#1 in (UC)OBJECT/PROG/TESTDB/CREATE

• The STATUS HISTORY command displays information about running tasks that have

database declarations within the application or library source code and the stack

history of the tasks. Use the ALL option to display information about all the tasks

related to the database.

3277 SM STATUS HISTORY ALL

The following is the sample output listing:

17:12:58 -> 3277 OPERATOR ENTERED:3277
SM:STATUS HISTORY ALL.

17:12:58 3277 MSRDISP14:DISPLAY: 0003281 U 50
(UC)OBJECT/PROG/LOCK ON DMSII SYNC.

17:12:58 3277 MSRDISP14:DISPLAY:1021:0485:3
(14088680/14608440)
in >> Current MCP<<.

17:12:58 3277 MSRDISP14:DISPLAY:2B:009A:1
(35604000) BEGINTRANSACTION in
(UC)SYSTEM/ACCESSROUTINES.

17:12:58 3277 MSRDISP14:DISPLAY:2F:0306:4
(35876500) TRANSACTIONBEGIN in
(UC)SYSTEM/ACCESSROUTINES.

17:12:58 3277 MSRDISP14:DISPLAY: 3:0020:3
(00005000) BLOCK#1 in
(UC)OBJECT/PROG/LOCK .

17:12:58 3277 MSRDISP14:DISPLAY:T0003276 U 50
(UC)OBJECT/PROG/TESTDB/CREATE ON D .

17:12:58 3277 MSRDISP14:DISPLAY:101B:0525:4
(14088680/14384860)
in >> Current MCP <<.

17:12:58 3277 MSRDISP14:DISPLAY:1B:053B:3
(14387100) in >> Current MCP << .

17:12:58 3277 MSRDISP14:DISPLAY:76:0337:1

Communicating with the Database

8600 0759-622 12–37

(10470990) WAITFORAUDITIOCOMPLETE in
(UC)SYSTEM/ACCESSROUTINES.

17:12:58 3277 MSRDISP14:DISPLAY:90:0062:2
(11530500) FORCEAUDITAWCP in
(UC)SYSTEM/ACCESSROUTINES .

17:12:58 3277 MSRDISP14:DISPLAY:1B:0083:3
(30807000) DMSREADP in
(UC)SYSTEM/ACCESSROUTINES .

17:12:58 3277 MSRDISP14:DISPLAY:58:05CB:1
(72471500) PATHFINDER in
(UC)SYSTEM/ACCESSROUTINES .

17:12:58 3277 MSRDISP14:DISPLAY:FD:03B7:4
(41815000) STORE in
(UC)SYSTEM/ACCESSROUTINES .

17:12:58 3277 MSRDISP14:DISPLAY:8E:0147:0
(38052900) STORE in
(UC)SYSTEM/ACCESSROUTINES .

17:12:58 3277 MSRDISP14:DISPLAY: 3:0040:5
(00020500) BLOCK#1 in
(UC)OBJECT/PROG/TESTDB/CREATE .

17:12:58 3277 MSRDISP14:DISPLAY:
--- 2 ACTIVE ENTRIES ---.

• The following examples demonstrate use of the STATUS HISTORY command with

the INTRAN option. This will provide the stack history of all the tasks that belong to

the declared database currently in transaction state.

3277 SM STATUS HISTORY INTRAN

The following is a sample output listing:

17:13:30 -> 3277 OPERATOR ENTERED:3277
SM:STATUS HISTORY INTRAN.

17:13:30 3277 MSRDISP14:DISPLAY:1021:0485:3
(14088680/14608440) in >> Current MCP <<.

17:13:30 3277 MSRDISP14:DISPLAY:2B:009A:1 (35604000)
BEGINTRANSACTION in (UC)SYSTEM/ACCESSROUTINES.

17:13:30 3277 MSRDISP14:DISPLAY:2F:0306:4 (35876500)
TRANSACTIONBEGIN in (UC)SYSTEM/ACCESSROUTINES.

17:13:30 3277 MSRDISP14:DISPLAY: 3:0020:3 (00005000)
BLOCK#1 in (UC)OBJECT/PROG/LOCK .

17:13:30 3277 MSRDISP14:DISPLAY:T0003276 U 50
(UC)OBJECT/PROG/TESTDB/CREATE ON D .

17:13:30 3277 MSRDISP14:DISPLAY:T0003276
TR start: 1/13/2010 AT 17:12:22.45.

17:13:30 3277 MSRDISP14:DISPLAY:101B:0525:4
(14088680/14384860) in >> Current MCP <<.

17:13:30 3277 MSRDISP14:DISPLAY:1B:053B:3 (14387100)
in >> Current MCP <<.

17:13:30 3277 MSRDISP14:DISPLAY:76:0337:1 (10470990)
WAITFORAUDITIOCOMPLETE in
(UC)SYSTEM/ACCESSROUTINES.

17:13:30 3277 MSRDISP14:DISPLAY:75:0340:5 (10436700)
WRITEAUDITBUFFER in
(UC)SYSTEM/ACCESSROUTINES .

17:13:30 3277 MSRDISP14:DISPLAY:FB:019F:4 (41806700)
CREATE in (UC)SYSTEM/ACCESSROUTINES ,

17:13:30 3277 MSRDISP14:DISPLAY:8A:0011:5 (38044000)

Communicating with the Database

12–38 8600 0759-622

CREATE in (UC)SYSTEM/ACCESSROUTINES .
17:13:30 3277 MSRDISP14:DISPLAY: 3:0026:5 (00013000)

BLOCK#1 in (UC)OBJECT/PROG/TESTDB/CREATE .
17:13:30 3277 MSRDISP14:DISPLAY: 1 OF THE 2 ACTIVE ENTRIES

IS IN TRANSACTION STATE.

STATUS MIX Command

The STATUS MIX command is used to determine the tasks that are currently in transaction

state against the designated database and the tasks that are waiting for locked records or

a syncpoint.

Syntax

── STATUS MIX ─┬──────────────┬──┤
├──── ALL ─────┤
├─<mix number>─┤
├───INTRAN─────┤
└──ALLOPENERS──┘

Explanation

The STATUS MIX command displays information about running tasks that have database

declarations within the application or library source code. The command returns

information on both tasks and libraries that have database declarations but does not

always include tasks that access the database through a library or other mechanism

without declaring the database. For example, if a task is accessing the database through a

library and the library is not in transaction state, the task is not included in the returned

information.

The STATUS MIX command is designed to communicate the status of one database only.

For example, one response to a STATUS MIX command might indicate that a program is

trying to lock a record in another database.

Use the ALL option to display information about all the tasks related to the database. This

information not only includes tasks and libraries that declare the database, but also

includes tasks that do not declare the database but are currently attached to the database

stack through a library or other mechanism.

The INTRAN option limits reporting to include only those applications and libraries that are

in transaction state. It also reports the start time of the transaction.

If you specify the mix number in the command, only information for the requested task is

displayed.

The meaning of each column in the resulting display is as follows:

Communicating with the Database

8600 0759-622 12–39

1. The transaction status of the task as it affects the designated database. The following

status can be displayed:

• T means the task is in transaction state.

• Blank means the task is not in transaction state.

• L means the task is a library task and a user is in transaction state through this

library.

• R means the task has declared a database and is executing a long transaction, and

the SYNCWAIT option is set for the database.

In this case, a TR start time and perhaps an LTR start time are displayed.

The TR start time is the time the transaction started. This time does not change.

The LTR start time reflects the starting time of a long transaction since the last

implicit begin transaction (BTR). The time can change. Each instance of an implicit

end transaction (ETR) sets the LTR start time to 0 (zero). If another implicit BTR

occurs, the LTR start time is set to the current time. This behavior continues until

the long transaction ends with an actual ETR. So if the LTR start time is recent, it

means the SYNCWAIT option is working and allowing other transactions to

complete while a long transaction continues. If the LTR start time is not recent, it

could mean there is a long transaction preventing other transactions from

completing.

Refer to the description of the SYNCWAIT option in the Data and Structure

Definition Language (DASDL) Programming Reference Manual for information

about an implicit BTR or ETR.

• N means the task is a library task and is in a long transaction, and the SYNCWAIT

option is set for the database.

• A means the task is in the process of a single abort when INDEPENDENTTRANS

is set for the database.

2. The mix number of the task.

3. The access type of the task. The access type identifies the mode in which the

database has been opened by the task. The access type is either update (U) or

inquiry (I).

4. The priority of the task.

5. The title of the task.

6. The waiting status of the task. The waiting status can take any of the following values:

• SYNC means the task is waiting for a syncpoint.

• The meaning of the mix number depends on the transaction status of the task as

follows:

- If L is not displayed in the first column, the task is waiting for a record that is

currently locked by the task identified by the mix number.

- If L or N is displayed in the first column, the mix number identifies that a task

is in transaction state through this library. The library task is identified in the

second column, and the task that is in transaction is identified in column 6.

Communicating with the Database

12–40 8600 0759-622

• GONE means that the database is still in transaction state even though the task

initiated through the library has completed. A waiting status of GONE can be

displayed only if L or A is displayed in the first column.

• Blank means either that a non-library task is not waiting for locked records or that

a library task does not have any callers in transaction state.

The ALLOPENERS option displays the status of all database openers. An opener is an

application that has opened the database. For a program that has multiple concurrent

opens of the same database, the ALLOPENERS option displays information on every

open.

Examples

• The following command displays the transaction status of the tasks against the

database identified by the mix number 2313:

2313 SM STATUS MIX

• The following command displays the transaction status of the task with mix number

2134 with respect to the database identified by mix number 2315. Information about

other inquiry or update tasks against the database is not displayed.

2315 SM STATUS MIX 2134

• The STATUS MIX command displays information about running tasks that have

database declarations within the application or library source code. Use the ALL

option to display information about all the tasks related to the database. The

following is a sample STATUS MIX output listing:

--------- ACTIVE ENTRIES ---------
T0001023 U 50 (DMSII)OBJECT/TEST/LOCKING 2135

0001127 I 50 OBJECT/SALES/VOLUME SYNC
L0002135 U 50 TRANSACTION/PROCESSOR

Column: 1 2 3 4 5 6
- - - - - -

• The following examples demonstrate use of the STATUS MIX command with the

INTRAN option:

L0007530 U 50 (ABCD) OBJECT/TEST/DMINQ/STATS ON MYPACK 7535
Transaction start: MM/DD/YYYY AT 13:51:39.90

0007535 U 50 (ABCD) DBUPDATE/0
1 OF THE 2 ACTIVE ENTRIES IS IN TRANSACTION STATE

R0008788 U 50 (ABCD)DBUPDATE/4
R0008788 TR start: MM/DD/YYYY AT 15:25:19.64
R0008788 LTR start: MM/DD/YYYY AT 15:30:33.41
T0008785 U 50 (ABCD)DBUPDATE/2 8788
T0008785 TR start: MM/DD/YYYY AT 15:25:19.64

2 OF THE 4 ACTIVE ENTRIES ARE IN TRANSACTION STATE

• If a task is in the process of aborting, then one extra line following the task entry

lists the reason for the termination, as shown in the following example:

A<task #> ABORT REASON: : STR:<str#> CAT:<cat#>
SUBCAT:<subcat#>

Communicating with the Database

8600 0759-622 12–41

In this example:

- <task#> is the number of the task that is aborting.

- <str#> is the structure number on which the termination is occurring.

- <cat#> is the category of the reason for aborting the task.

- <subcat#> is the subcategory of the error.

• The following examples demonstrate use of the STATUS MIX command with the

ALLOPENERS option. In the example, the line L0000895 OPENER:889 shows the

mix that opens the database through the library. The lines above and below that line

indicate that mix 889 opens the database through the library (mix 895) and is in

transaction state.

% Program opens same database twice,
% one with INQUIRY mode and one
% with the UPDATE mode

0001534 I 50 (DMSII)TEST/ALLOPENERS ON MYPACK
0001534 U 50 (DMSII)TEST/ALLOPENERS ON MYPACK

------ 2 ACTIVE ENTRIES --------.

% Program opens same database twice,
% one with INQUIRY mode and the
% other one open through library with
% UPDATE mode and is in transaction state.

L0000895 U 50 (DMSII)TEST/ALLOPENERS/LIB
ON MYPACK 889.

L0000895 OPENER: 889.
0000889 I 50 (DMSII)TEST/ALLOPENERS/CALL

ON MYPACK
--------- 2 ACTIVE ENTRIES -----.

STATUS RDB Command

The STATUS RDB command displays statistics that are accumulated and reported for port

I/O operations in Remote Database Backup.

Note: These statistics are also reported with the normal Enterprise Database Server

statistics at the database end of job.

Syntax

── STATUS RDB ───┤

Example

The following is an example of the output created when this command is initiated:

Communicating with the Database

12–42 8600 0759-622

TOTAL SEND CALLS: 16
TOTAL AUDIT WORDS GENERATED: 28 K WORDS
TOTAL ACR WAIT TIME: 0: 0:35
AVERAGE BLOCK SIZE: 1771.9 WORDS
AVERAGE ACR WAIT TIME (SEC): 2.2088

SECONDARIES: NUMBER OF WORDS SEND AVERAGE SEND
SENDS SENT TIME (SECONDS)

CS7201: ACTIVE 19 28 KW 0:0:59 3.108

The first set of statistics represents activity in the Accessroutines at the primary server.

TOTAL SEND CALLS Total number of times that the Accessroutines called

RDBSUPPORT to send an audit block to the secondary

database.

TOTAL AUDIT WORDS GENERATED Total number of words of audit generated by the

database.

TOTAL ACR WAIT TIME Total amount of time that the Accessroutines had to

wait for an acknowledgement from the secondary

database. The port I/O and disk I/O of audit blocks are

overlapped.

AVERAGE BLOCK SIZE Average audit block size in words.

AVERAGE ACR WAIT TIME Average wait time in seconds for an Accessroutines

acknowledgment.

Similar statistics are reported for the secondary host. The send time for a secondary host

represents the total port I/O send and acknowledgement time. The difference between

the ACR wait time and the secondary send time represents the overlap of audit disk I/O

and fill time for the next audit block.

STATUS REORG Command

The STATUS REORG command is used to interrogate the progress of a Reorganization of

the database. The mix number used with this command must be the job number of the

database stack.

Syntax

── STATUS REORG ─┬─────────┬───┤
└─ PRINT ─┘

Explanation

While a database is being reorganized, you can use this command to check the progress of

each reorganization task—generate or fixup—associated with the reorganization.

Communicating with the Database

8600 0759-622 12–43

If you are checking the progress of a generate task, the number of records reorganized is

displayed. Where possible, the percent of the total records to be reorganized is displayed.

The total number of records to be reorganized is not known for variable format or for

compact data sets. For a set or subset, the total number of records used for calculating the

percentage is the number of records in the spanned dataset. If you are checking the

progress of a fixup task, the number of blocks fixed up, and a percent of the total blocks to

be fixed up is displayed.

Only one status can be displayed for a structure. Therefore, if there is both a generate task

and a fixup task for one structure, the status of the generate task is displayed, except

during the time the fixup task is in progress. While the fixup task is in progress, the

STATUS REORG command displays the number of blocks fixed up for that structure, and

the generate task does not appear. After the fixup task has completed, the generate task

appears completed, and nothing appears for the fixup task.

If the reorganization process is not currently running, the progress displayed indicates that

the reorganization process has not yet started, or that it is already completed. Entering

PRINT causes the status information to be printed as well as displayed.

Examples

• The following example displays the status of the reorganization that is currently in

process:

2313 SM STATUS REORG

• The following is an example of the displayed and printed output:

2313 14:25 DISPLAY: REORG NOT RUNNING

• The following example displays and prints the status of the reorganization that is

currently in process:

2313 SM STATUS REORG PRINT

• The following is an example of the displayed and printed output:

2313 14:31 DISPLAY: GEN/ELECTORS-1/4 952 RECORDS REORGED
2313 14:31 DISPLAY: FIX/E1BYURID/5 50 BLOCKS FIXED UP (25%)

SUPERCP RESTOREDBFILES Command

The SUPERCP RESTOREDBFILES command enables users to recover database files that

were removed while the database was open.

Syntax

── SUPERCP RESTOREDBFILES ──┤

Explanation

Issuing the SUPERCP RESTOREDBFILES command forces two control points (super

control point) and locks the database files; ACCESSROUTINES then recovers any

removed files, unless the files have been untouched.

Communicating with the Database

12–44 8600 0759-622

USEREORGDB TERMINATE Command

The USEREORGDB TERMINATE command terminates and cleans up from a previously

recessed REORGDB reorganization. The RECESS command is processed by the main

REORGANIZATION program.

Syntax

── USEREORGDB TERMINATE ──┤

Explanation

If the USEREORGDB TERMINATE command is issued during the initial copy phase, the

copy buffers are deallocated, copied files removed, and the reorganization is terminated.

If the command is executed after the copy phase, then all of the reorganization work files

as well as the files belonging to the temporary database are removed.

When the command completes, the control file for the production database is returned to

its normal state and the database status is displayed.

If the USEREORGDB TERMINATE command is executed and a reorganization has not

been recessed, the following message is displayed with the status information:

USEREORGDB IS NOT RECESSED, TERMINATE NOT NEEDED.

When the command completes, all files belonging to the temporary database (such as the

data files, control file, and audit files) as well as all internal files created by the background

offline reorganization and the CAUDIT files are removed.

USEREORGDB DISCARD Command

The USEREORGDB DISCARD command cleans up left over information from a previously

failed REORGDB reorganization.

Syntax

── USEREORGDB DISCARD ──┤

Explanation

The USEREORGDB DISCARD command can be used without bringing down the

database. Using the OVERRIDE USEREORGDB parameter with SYSTEM/DMCONTROL

requires the database to be down.

The USEREORG TERMINATE command cannot be used for failed REORGDB

reorganizations because it requires that the reorganization first be recessed, and a non-

running reorganization cannot be recessed.

Communicating with the Database

8600 0759-622 12–45

DIAGNOSTICS Command

The DIAGNOSTICS command controls what diagnostic information will be collected for

certain unexpected errors.

Syntax

── DIAGNOSTICS ─┬─────────┬─────────────────────────────────┤
├── ON ───┤
└── OFF ──┘

Explanation

The following information explains the elements of the DIAGNOSTICS command syntax

diagram. When you change the setting of the DIAGNOSTICS option, the new value is

stored in the database control file. The default value for the DIAGNOSTICS option is OFF.

Option Explanation

ON If designated, additional diagnostic

information, such as a full memory dump, will

be collected if certain specific errors occur. No

more than one memory dump will be taken

per database instantiation.

OFF Disables the collection of additional diagnostic

information.

Communicating with the Database

12–46 8600 0759-622

Section 13
Maintaining Databases Containing
Large Objects

If a database has internal large objects defined in DASDL, several tank data sets are

established by the software. Those tanks need to be maintained to ensure that

• Large objects are deleted if DASDL changes are made that are associated with the

large objects.

• Disk space of deleted large objects is consolidated.

The location of the tank data sets is identified in DASDL. Refer to DASDL for the database

to determine the location of the files and to the DASDL Programming Reference Manual

to determine the tank names. Knowing this information is important when doing database

backups and using the following commands.

Tank Sizes Available for LOBS

DMSII maintains 3 different tanks for LOBS and determines which tank to use based on

the size of the LOB.

Note the record size for each tank:

• SMALL TANK = 0.6 KB/REC

• MEDIUM TANK = 6.0 KB/REC

• LARGE TANK = 24 KB/REC

A LOB can occupy up to 10 records before it shifts over to the next larger tank.

For example, a 6.0 KB LOB will enter the small tank and will occupy 10 records, whereas a

6.01 KB LOB will enter the medium tank. Similarly, a 60.0 KB LOB will enter the medium

tank and take up 10 records whereas a larger LOB will enter the large tank.

LOB Utility functions can be used while a database is up and running.

LOB Utility functions will not return the normal DMUTILITY task values if an action

requested fails or has warnings.

8600 0759-622 13–1

If the tank is corrupted during a LOBUTILITY run, rebuild recovery can be used to retrieve

the data. It is recommended to use the following syntax to back up only the structures

which contain LOB items prior to running LOBUTILITY:

RUN $SYSTEM/DMUTILITY ("DB=<database name>
ON <pack name> OFFLINE
DUMP <database name>/LOB-STR-DIR/=,
<database name>/SMALL-LOBS/=,
<database name>/MED-LOBS/=,
<database name>/LARGE-LOBS/= TO
<dump file name> ON <pack name>")

Note: The tasks identified in this section can be initiated through Database Operations

Center.

LOBANALYZE Command (DMUTILITY)

Purpose

Use the LOBANALYZE command to produce a report of the disk usage of the large object

(LOB) tank data sets. Based on the report, you can decide when to perform a garbage

collection and the appropriate garbage collection method to use to consolidate LOB tank

data sets.

Refer to “Interpreting the LOBANALYZE Report” for more information.

Syntax

── LOBANALYZE ───┤

Example

The following command initiates an analysis of the large objects of the EMP database on

the DMCP disk drive, which ends with the creation of a report:

SYSTEM/DMUTILITY ("DB=EMP ON DMCP LOBANALYZE")

This command produces a report in the following format:

***** OUTPUT OF LOBANALYZER ******

SMALL TANK MEDIUM TANK LARGE TANK
(0.6 KB/REC) (6 KB/REC) (24 KB/REC)

AVAILABLE FOR REUSE(KB): 292.968 292.968 820.312
> 50 RECORDS : 20.00% 0.00% 0.00%
< 50 RECORDS : 50.00% 59.73% 14.28%
< 10 RECORDS : 30.00% 40.27% 85.71%

IN USE (KB) : 292.968 585.937 1523.437
IN USE/TOTAL CAPACITY : 0.00% 0.00% 0.00%
NUMBER OF DELETED LOBS : 40 12 10
NUMBER OF ADJACENT : 6 2 2

Maintaining Databases Containing Large Objects

13–2 8600 0759-622

ADJACENT/DELETE LOBS : 15.00% 16.66% 20.00%
TOTAL CAPACITY (KB) : 15804492.187 17326406.250 17326406.250

LOBCLEANUP Command (DMUTILITY)

Purpose

Use the LOBCLEANUP command to delete

• Large objects that belonged to a deleted structure

• Large object items that have been deleted from an existing structure

LOBCLEANUP is automatically executed when a program performs an OPEN UPDATE on

a database after a Reorganization. LOBCLEANUP will remove LOBS from the tank only

when a DASDL update was performed that deleted either a structure or a LOB item.

Executing LOBCLEANUP manually is not recommended since it is automatically executed

when necessary.

Syntax

── LOBCLEANUP ───┤

Example

The following command deletes large objects that have been deleted from an existing

structure and deletes any large objects that belonged to a deleted structure of the BLOBS

database on the DMCP disk drive:

SYSTEM/DMUTILITY ("DB=BLOBS ON DMCP LOBCLEANUP")

LOBCOMBINE/LOBSQUASH Command (DMUTILITY)

Purpose

There are two methods of consolidating spaces left when large objects have been

deleted programmatically or when the LOBCLEANUP command has been used:

• Use the LOBCOMBINE command to merge adjacent spaces that have been left after

large objects have been deleted. This consolidation method completes quickly.

• Use the LOBSQUASH command to merge into one location the scattered spaces that

have been left after large objects have been deleted. This consolidation method

might take considerable system resources to accomplish.

Syntax

──┬─ LOBCOMBINE ─┬─┬─<tank spec>─┬─┬────────────┬──────────────────────┤
└─ LOBSQUASH ──┘ └─ ALL ───────┘ └─ PARALLEL ─┘

Maintaining Databases Containing Large Objects

8600 0759-622 13–3

<tank spec>

┌◄───── , ─────┐
──┴─┬─ SMALL ──┬─┴───┤

├─ MEDIUM ─┤
└─ LARGE ──┘

<tank spec>

Use the tank spec to indicate the tank sizes against which to run the consolidation. One to

three of the specifications can be used in a command.

PARALLEL

Use PARALLEL to indicate that multiple tasks are processed on each tank simultaneously.

If only one tank is specified, this option is ignored.

Examples

Example 1

The following command initiates a consolidation of adjacent spaces in the small and large

tanks of the BLOBS database on the DMCP disk drive. Both consolidations occur in

parallel.

SYSTEM/DMUTILITY
("DB=BLOBS ON DMCP LOBCOMBINE SMALL, LARGE PARALLEL")

Example 2

The following command initiates a consolidation of scattered spaces in all the tanks of the

BLOBS database on the DMCP disk drive:

SYSTEM/DMUTILITY ("DB=BLOBS ON DMCP LOBSQUASH ALL")

Interpreting the LOBANALYZE Report

AVAILABLE FOR REUSE (KB)

The total space that once was occupied by LOB records that have since been deleted.

> 50 RECORDS

Percentage of available space consisting of more than 50 adjacent records.

< 50 RECORDS

Percentage of available space consisting of less than 50 but at least 10 adjacent records.

Maintaining Databases Containing Large Objects

13–4 8600 0759-622

< 10 RECORDS

Percentage of available space consisting of less than 10 adjacent records.

Example

There are 100 LOB items of size 0.6 KB in the small tank and the first 20 LOBS are deleted.

(Small tank: 1 Record = 0.6 KB) Prior to LOBCLEANUP, the AVAILABLE FOR REUSE will

be 100 percent for < 10 RECORDS. After running LOBCLEANUP, the AVAILABLE FOR

REUSE value will be 100 percent for < 50 RECORDS.

IN USE (KB)

Total size of records that are occupied by LOBS for each tank.

IN USE/TOTAL CAPACITY

Ratio of IN USE to TOTAL CAPACITY for each tank.

TOTAL CAPACITY (KB)

Overall capacity for each tank.

NUMBER OF DELETED LOBS

This is the number of regions of available space left by deleting LOBS. It can be affected

by LOBCOMBINE and LOBSQUASH.

If this value is high but NUMBER OF ADJACENT is not, then the deleted LOB regions are

scattered throughout the tank and LOBSQUASH can be used to consolidate space.

Example

If NUMBER OF DELETED LOBS is 100 and NUMBER OF ADJACENT is 20, then

LOBSQUASH will be effective because the majority of the deleted LOB regions are

scattered throughout the tank.

NUMBER OF ADJACENT

This is the number of adjacent deleted LOB regions which are now available for reuse.

When this value is high, LOBCOMBINE can be used to consolidate space.

Example

If NUMBER OF DELETED LOBS is 100 and NUMBER OF ADJACENT is 90, then

LOBCOMBINE will be effective because the majority of the deleted LOB regions in the

tank are adjacent.

Maintaining Databases Containing Large Objects

8600 0759-622 13–5

ADJACENT/DELETED LOBS

This is the ratio of ADJACENT to DELETED LOBS.

A higher ratio indicates that LOBCOMBINE will be more effective while a lower ratio

indicates that LOBSQUASH will be more effective in consolidating tank space.

Maintaining Databases Containing Large Objects

13–6 8600 0759-622

Section 14
Using a Quiesce Database

When using the Enterprise Database Server software in a mirrored environment,

you can suspend the updating process of a database using the QUIESCE command

and then continue updating a database by using the RESUME command. While the

database is in the quiesced state, you can do one of the following tasks:

• Move the mirrored disk to another host.

• Create a quiesce database copy on the same host.

If you have created a quiesce database copy on the same host, you can then use that copy

with audit files to recover a database or copy a database.

For information about mirrored disks, refer to the System Operations Guide.

Note: The tasks identified in this section can be initiated through Database Operations

Center.

Tasks Related to Quiesce Databases

Table 14–1 identifies the tasks you can perform in relation to using a quiesce database and

the headings in this section under which these tasks are described.

Table 14–1. Tasks Related to Quiesce Databases or Quiesce Database

Copies

To perform this task . . . Refer to ...

Suspend the updating of a database to

enable the process of creating a physically

consistent copy of an online database.

QUIESCE Command (DMUTILITY)

Resume updating the database. RESUME Command (DMUTILITY)

Start creating a quiesce database copy of

your live database on the same host.

QUIESCE QDC Command (DMUTILITY)

Create a quiesce database copy. CREATE QDC Command (DMUTILITY)

8600 0759-622 14–1

Table 14–1. Tasks Related to Quiesce Databases or Quiesce Database

Copies (cont.)

To perform this task . . . Refer to ...

Restore the original configuration of a

quiesce database copy.

RESTORE FROM QDC Command (DMUTILITY)

Use a quiesce database copy as a recovery

or copy source.

Using a Quiesce Database Copy as a Recovery or

a Copy Source

Display the quiesce history of a database. QUIESCE HISTORY Option of the WRITE

Command

Restore the control file of a live database

from its quiesce database copy.

CFRESTORE Command (DMUTILITY)

QUIESCE Command (DMUTILITY)

Purpose

Use the QUIESCE command to create a physically consistent copy of an online

database. It is recommended that you use the QUIESCE command in a mirrored disk

environment in which the copy can be exported to a different host to offload

activities such as backup, certification, and data warehousing.

Note: The QUIESCE command can be used only with an audited database.

DMUTILITY backups created from an imported database can be used for all forms of

recovery at the source host, provided the original family names are retained when you

import the database copy.

A DMUTILITY DUMP operation on a database copy created with the QUIESCE command

records the time the QUIESCE procedure takes place.

A database copy created with the QUIESCE command is also recognized by an Enterprise

Database Server system as a complete, valid database source to begin audit applications.

For a Remote Database Backup system, a remote database copy at the secondary host is

recognized as a complete, valid database clone source to begin audit application. All

physical disks that comprise a QUIESCE database copy must be brought online by using

MCP operational commands in the same manner that existing physical disks are brought

online.

When you use the QUIESCE command, the results are as follows:

1. The DMUTILITY program waits until all current transactions are complete.

2. All applications in a transaction state complete their current transactions.

Using a Quiesce Database

14–2 8600 0759-622

3. An application attempting to enter transaction state is suspended with the message

“DATABASE IS QUIESCED, WAITING TO RESUME.”

4. All data and audit buffers are flushed to disk during the creation of two audited control

points.

5. The database control file is marked as being in a quiesced state.

6. The control file stores the QUIESCE timestamp.

7. The DMUTILITY program completes with the message “DATABASE QUIESCED.”

8. The database remains in a quiesced state until you use the DMUTILITY RESUME

command.

Notes:

• For a database enabled with the Remote Database Backup capability, use the

DMCONTROL QUIESCERDBRESET command to disable the capability on the

database copy created through the QUIESCE command. This operation must be

performed before the copy can be used for processing. Refer to Section 5, Initializing

and Maintaining, of this guide for syntax information.

• In a Remote Database Backup environment, a quiesced database is in a “resumed”

state after a halt/load recovery process completes.

• Discontinuing an application when the database has been quiesced might not take

effect until the database is resumed. This behavior occurs because the

Accessroutines might need to store the restart information in the restart dataset as

the application closes down. The Accessroutines can store the restart information and

complete the close down only after the database resumes. If you enter a DS

command on the suspended application, the application is discontinued and the

restart information is not saved.

Syntax

──┬────────────────────┬──── QUIESCE ──────────────────────────────────┤
└─<quiesce option >──┘

Quiesce Option

Refer to High Availability QUIESCE in this section for information about the <quiesce

option>.

Example

The following example and figure illustrates the use of the QUIESCE command:

RUN *SYSTEM/DMUTILITY("DB=TESTDB QUIESCE")

The following example illustrates the use of the QUIESCE command for a permanent

directory database:

RUN *SYSTEM/DMUTILITY("DB=TESTDB QUIESCE");
DATAPATH = <path name> ON <family name>

Using a Quiesce Database

8600 0759-622 14–3

Figure 14–1 shows an example of the database system environment and how the

QUIESCE command works in disk subsystems. The database system at Server 1 contains

four applications. Applications 1 and 2 are read/write capable, Application 3 is read-only

capable, and Application 4 is the DMUTILITY program, which performs the QUIESCE

function.

The database system at Server 2 contains three applications, numbered 5 through 7. Each

application is read-only capable.

In the disk subsystem, D1 represents a disk containing data files, and A1 is a disk

containing audit files, both of which are written to and read by the database system at

Server 1. Spare1 and Spare2 are spare disks available to both Server 1 and Server 2. D2 is

a physically mirrored copy of D1 that is read by the database system at Server 2.

Figure 14–1. QUIESCE Command in a Database System Environment

Using a Quiesce Database

14–4 8600 0759-622

RESUME Command (DMUTILITY)

Purpose

Use the RESUME command to return an online database to its normal state

following a QUIESCE command. It is recommended that you use the RESUME

command in a mirrored disk environment in which detaching a mirrored copy can

offload activities such as backup, certification, and data warehousing.

When you use the RESUME command, the results are as follows:

• The quiesced state for the database control file is reset.

• The QUIESCE timestamp is marked with null values.

• The DMUTILITY program completes with the message “DATABASE RESUMED.”

• An application that was suspended with the message “DATABASE IS QUIESCED,

WAITING FOR RESUME” continues.

Note: A quiesce database copy cannot be resumed while it is being used as a recovery

source or a copy source.

Syntax

── RESUME ───┤

Example 1

The following example illustrates the use of the RESUME command:

RUN *SYSTEM/DMUTILITY("DB=TESTDB RESUME")

Example 2

Figure 14–1 illustrates the scenario on which this example is based, where D1 and D2 are

named LIVEPK. To recover the backup database system so that you can initiate

transactional updates, perform the following steps:

1. Quiesce the live database by entering the following command at the live system,

Server 1:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK QUIESCE")

2. Split your mirrored disks that contain all of the database files on the live pack

LIVEPK.

3. Copy the audit files needed for a recovery to the appropriate audit pack as configured

in the database control file at Server 2.

4. Resume the live database at Server 1:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK RESUME")

Using a Quiesce Database

8600 0759-622 14–5

5. Acquire the split mirrored disks as LIVEPK at Server 2.

6. Resume the database at Server 2:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK RESUME")

7. Recover the database at Server 2.

Example 3

The following example illustrates the use of the RESUME command for a permanent

directory database:

RUN *SYSTEM/DMUTILITY ("DB=TESTDB RESUME");
DATAPATH = <path name> ON <family name>

Example 4

The following example illustrates the use of the DMUTILITY RECOVER command to

rebuild a database image that is in a state of QUIESCE:

1. Rename and acquire the split mirrored disks.

2. Run the following DMUTILITY RECOVER command:

RUN $SYSTEM/DMUTILITY ("DB=TESTDB RECOVER
(REBUILD THROUGH AUDIT 1990)FROMQUIESCE DB")

QUIESCE QDC Command (DMUTILITY)

The QUIESCE QDC command is a keyed feature. Refer to the Software Product Catalog

for information about Quiesce Database Copy (QDC)

• For Single Host Systems

• As a Backup Source

• As a Recovery Source

Purpose

Use the QUIESCE QDC command to start creating a quiesce database copy of your

live database on the same host. A quiesce database copy is a mirrored disk copy of

a live database that is in a quiesced state. This command places your live database

in a quiesced state, just as if you had executed a DMUTILITY QUIESCE command.

The QUIESCE QDC command stores the title of the intended quiesce database

copy as a registered quiesce database copy in the control file of the live database.

Note: The QUIESCE QDC command is not supported for databases that contain

partitioned structures.

You can register and create multiple consistent copies of a live database at the same host

by following these steps:

Using a Quiesce Database

14–6 8600 0759-622

1. Run the QUIESCE QDC command using the QDC title clause.

2. Split your mirrored disks containing all of your database files.

3. Run the RESUME command to reactivate your live database.

4. Rename and acquire the split mirrored disks.

5. Run the DMCONTROL CREATE QDC command to create the quiesce database copy

using the same QDC title clause and specifying the new family packs.

Use the DMCONTROL CREATE QDC command to create each consistent copy of your

online database at the same host. These copies of your online database can be used to

offload activities such as backup generation and data warehousing. DMUTILITY dumps

created from a quiesce database copy can be used for all forms of recovery of the live

database that require a dump.

The following important issues pertain to a quiesce database copy:

• It must be configured to use the same level of software that the live database uses.

• It can be configured to use its own database software code files by using the

DMCONTROL statement with the <code file title change> command option and

file-equating CF and CFOLD to the control file of the quiesce database copy.

• Once you have used the RESUME command to reactivate a quiesce database copy, it

is no longer a quiesce database copy and operates as an independent nonrelated

database. Dumps created from this resumed quiesce database copy cannot be used

for recovery of the live database.

• A quiesce database dopy cannot be resumed when being used as a recovery source

or a copy source.

Refer to the DMUTILITY QUIESCE command and the DMCONTROL CREATE QDC

command for a complete explanation of these commands.

Syntax

──┬────────────────────┬──QUIESCE───── QDC (───<QDC title clause>────) ──────┤
└─<quiesce option >──┘

<QDC title clause>

────── TITLE= ──┬─── * ────────┬──<database name>─ ON ──<family name>────┤
├─ <usercode> ─┤
└─ <path name> ┘

<path name>

┌───────── / ──────────┐
─────*DIR/ ──────┴───── /7\ ── <node> ──┴────────────────────────────────┤

Quiesce Option

Refer to High Availability QUIESCE for information about the <quiesce option>.

Using a Quiesce Database

8600 0759-622 14–7

QDC Title Clause

Use the QDC title clause to register a quiesce database copy with the live database

specified in the database statement. Use the DMCONTROL CREATE QDC command and

specify the same QDC title clause to create the actual quiesce database copy.

A quiesce database copy title must use the same database name as the database

statement, but must use a different family name and usercode. For a permanent directory

database, a quiesce database copy title must use the same database name as the

database statement, but must use a different family name and different path name.

The control file of the live database specified by the database statement is updated with

the registration of the quiesce database copy. You can have up to 15 quiesce database

copy registrations at a time.

DMSUPPORT Library for Quiesce Database Copy

The control file for the quiesce database copy has the same specification for the

DMSUPPORT title as in the live database. The following conditions apply:

• If the DMSUPPORT specification includes a usercode and family name, then the

quiesce database copy shares the same DMSUPPORT code file.

• If the DMSUPPORT specification does not contain a usercode or family name, then

the quiesce database copy looks for the DMSUPPORT code file under the usercode

and family name of the quiesce database copy.

The DMSUPPORT title for the quiesce database copy can also be changed using the

DMCONTROL syntax shown in example 2.

Examples

Figure 14–2 illustrates the scenario on which examples 1 and 2 are based.

Using a Quiesce Database

14–8 8600 0759-622

Figure 14–2. Single Server, One Live Database, Two Quiesce Database

Copies

Example 1

To create a quiesce database copy instance of LIVEDB on TESTPK for testing a new

application before bringing it in to the live database environment, perform the following

steps:

1. Enter the following command:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK
QUIESCE QDC(TITLE=(TEST)LIVEDB ON TESTPK)")

2. Split your mirrored disks containing all of your database files.

3. Enter the following command:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK RESUME")

4. Rename and acquire the split mirrored disks.

5. Enter the following command:

RUN *SYSTEM/DMCONTROL("DB=(LIVE)LIVEDB ON
LIVEPK CREATE QDC TITLE=(TEST)LIVEDB ON
TESTPK FAMILY LIVEPK=TESTPK")

The DMCONTROL CREATE QDC command must be executed from a privileged

usercode or the DMCONTROL code file must be marked as a privileged code file.

6. Enter the following command:

RUN *SYSTEM/DMUTILITY ("DB=(TEST)LIVEDB ON TESTPK RESUME")

Using a Quiesce Database

8600 0759-622 14–9

7. Enter the following command:

RUN TEST/APPLICATION;
DATABASE LIVEDB(TITLE=(TEST)LIVEDB ON TESTPK)

The application is database-equated to a quiesce database copy at run time and performs

updates to the resumed quiesce database copy.

Example 2

To create a second quiesce database copy instance of LIVEDB on DEVPK that uses a

DMSUPPORT library specification different from the DMSUPPORT library specification of

the LIVEDB for inquiry processing of the quiesce database copy data, perform the

following steps:

1. Enter the following command:

RUN *SYSTEM/DMUTILITY("DB=LIVE)LIVEDB ON LIVEPK
QUIESCE QDC(TITLE=(DEV)LIVEDB ON DEVPK)")

2. Split your mirrored disks containing all of your database files.

3. Enter the following command:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK RESUME")

4. Rename and acquire the split mirrored disks.

5. Enter the following commands:

RUN *SYSTEM/DMCONTROL("DB=(LIVE)LIVEDB ON LIVEPK CREATE
QDC TITLE=(DEV)LIVEDB ON DEVPK FAMILY LIVEPK=DEVPK")

RUN *SYSTEM/DMCONTROL("DB=(LIVE)LIVEDB ON LIVEPK DMSUPPORT
TITLE=(DEV)DMSUPPORT/LIVEDB ON DEVPK");FILE
CF(TITLE=(DEV)LIVEDB/CONTROL ON DEVPK);FILE
CFOLD(TITLE=(DEV)LIVEDB/CONTROL ON DEVPK)

The DMCONTROL CREATE QDC command must be executed from a privileged usercode

or the DMCONTROL code file must be marked as a privileged code file.

Figure 14–3 illustrates the scenario on which examples 3 through 6 are based.

Using a Quiesce Database

14–10 8600 0759-622

Figure 14–3. Single Server, One Live Database, Two Quiesce Database

Copies, Live Database Backed Up from QDC ON BACKUPPK

Example 3

To create a quiesce database copy instance of LIVEDB on BACKUPPK as a source to

perform an offline backup of LIVEDB, perform the following steps:

1. Enter the following command:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK
QUIESCE QDC(TITLE=(BACKUP)LIVEDB ON BACKUPPK)")

2. Split your mirrored disks containing all of your database files

3. Enter the following command:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK RESUME")

4. Rename and acquire the split mirrored disks.

5. Enter the following command:

RUN *SYSTEM/DMCONTROL(DB=(LIVE)LIVEDB ON LIVEPK
CREATE QDC TITLE=(BACKUP)LIVEDB ON BACKUPPK FAMILY
LIVEPK=BACKUPPK")

This command must be executed from a privileged usercode.

6. Enter the following command:

RUN *SYSTEM/DMUTILITY("DB=(BACKUP)LIVEDB ON
BACKUPPK OFFLINE DUMP=TO LIVEDBBACKUP")

Using a Quiesce Database

8600 0759-622 14–11

Example 4

To use LIVEDBBACKUP to recover (LIVE)LIVEDB, enter the following command:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON
LIVEPK RECOVER(REBUILD THRU AUDIT 1959) FROM
LIVEDBBACKUP")

Example 5

To use LIVEDBBACKUP to rebuild (LIVE)LIVEDB when the control file of the live database

has been lost, enter the following commands:

RUN *SYSTEM/DMCONTROL("DB=(LIVE)LIVEDB
ON LIVEPK INITIALIZE")

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB
ON LIVEPK COPY LIVEDB/CONTROL AS
(LIVE)LIVEDB/CONTROL ON LIVEPK FROM LIVEDBBACKUP")

RUN *SYSTEM/DMCONTROL("DB=(LIVE)LIVEDB ON LIVEPK FAMILY
BACKUPPK=LIVEPK");FILE CF=(LIVE)LIVEDB/CONTROL ON LIVEPK;
FILE CFOLD=(LIVE)LIVEDB/CONTROL ON LIVEPK

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK
RECOVER (REBUILD THRU AUDIT 1959) FROM LIVEDBBACKUP")

Example 6

To use LIVEDBBACKUP to copy (LIVE)LIVEDB, enter the following commands:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK COPY = AS
(LIVE)= ON LIVEPK FROM LIVEDBBACKUP")

RUN *SYSTEM/DMCONTROL("DB=(LIVE)LIVEDB ON LIVEPK FAMILY
BACKUPPK=LIVEPK");FILE CF=(LIVE)LIVEDB/CONTROL ON LIVEPK;
FILE CFOLD=(LIVE)LIVEDB/CONTROL ON LIVEPK

CREATE QDC Command (DMCONTROL)

The CREATE QDC command is a keyed feature. Refer to the Software Product Catalog for

information about Quiesce Database Copy (QDC) for Single Host Systems.

Purpose

Use the DMCONTROL CREATE QDC command to create a quiesce database copy. This

command verifies that the quiesce database copy specified in the QDC title clause is a

registered quiesce database copy of the live database specified in the <db statement>

from a previously performed DMUTILITY QUIESCE QDC command.

The DMCONTROL CREATE QDC command then performs the following tasks:

Using a Quiesce Database

14–12 8600 0759-622

• Creates the quiesce database copy.

• Changes the usercode and pack name in the quiesce database control file. If it is a

permanent directory database, it changes the path name and pack name in the

quiesce database control file

• Performs the specified usercode or path name changes.

The following integrity checks are performed:

• Verification that all database files exist

• Verification that every row of a database file exists and that the control file is present

Notes:

• Before you create your quiesce database copy, refer to the DMUTILITY QUIESCE

QDC command for instructions on how to register your quiesce database copy with

the live database. Also, the DMCONTROL CREATE QDC command must be executed

from a privileged usercode or the DMCONTROL code file must be marked as a

privileged code file.

• Unisys recommends that the usercode and disk attributes of the control file

specification be defined in the DASDL definition of the live database and that a

complete DMSUPPORT title including usercode and disk also be specified in the

schema.

If these recommendations are not followed, the CF and CFOLD titles must be file-

equated when a DMCONTROL CREATE QDC command is initiated using a usercode

that is different than the usercode of the live database. Because the usercode of the

live database is not specified in the schema, DMCONTROL assumes that all data files

of the live database along with the live database control file reside under the usercode

that is specified in the file-equated CF and CFOLD titles. Refer to example 7 later in

this topic for a demonstration of this procedure.

For a live database enabled with the RDB database option, the Remote Database Backup

capability of the quiesce database copy is automatically disabled by the CREATE QDC

command.

For a live database enabled with the DMDUMPDIRECTORY database option, the

DUMPDIR capability of the quiesce database copy is automatically disabled by the

CREATE QDC command.

For a live database enabled with the TPS database option, the TPS capability of the

quiesce database copy is automatically disabled by the CREATE QDC command.

For a live database enabled with the EVENTS subscription, the EVENTS subscriptions of

the quiesce database copy are automatically turned off by the CREATE QDC command.

A quiesce database copy must be configured to use the same level of software that the

live database uses. It cannot be configured for a database containing partitioned

structures.

Using a Quiesce Database

8600 0759-622 14–13

Add the usercode of the quiesce database copy title to the guard file of a security guarded

database. Optionally, create a new guard file for the quiesce database copy and then

initiate a DMCONTROL command to change the name and location of the guard file to

access the newly created file.

For more information about running DMCONTROL, refer to “Running DMCONTROL” in

Section 5, Initializing and Maintaining.

Syntax

┌◄────────────── , ─────────────┐
─ CREATE ── QDC <QDC title clause> ─┴──<data file family change>────┴───────┤

Examples

Figure 14–4 illustrates the scenario on which examples 1 and 2 are based.

Figure 14–4. Single Server, One Live Database, Two Quiesce Database

Copies

Example 1

To create a quiesce database copy instance of LIVEDB on TESTPK for testing a new

application before bringing it in to the live database environment, perform the following

steps:

Using a Quiesce Database

14–14 8600 0759-622

1. Enter the following command:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON
LIVEPK QUIESCE QDC(TITLE=(TEST)LIVEDB ON TESTPK)")

2. Split your mirrored disks containing all of your database files.

3. Enter the following command:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK RESUME")

4. Rename and acquire the split mirrored disks.

5. Enter the following command:

RUN *SYSTEM/DMCONTROL("DB=(LIVE)LIVEDB ON
LIVEPK CREATE QDC TITLE=(TEST)LIVEDB ON
TESTPK FAMILY LIVEPK=TESTPK")

The DMCONTROL CREATE QDC command must be executed from a privileged

usercode or the DMCONTROL code file must be marked as a privileged code file.

6. Enter the following command:

RUN *SYSTEM/DMUTILITY ("DB=(TEST)LIVEDB ON TESTPK RESUME")

7. Enter the following command:

RUN TEST/APPLICATION;
DATABASE LIVEDB(TITLE=(TEST)LIVEDB ON TESTPK)

The application is database-equated to a quiesce database copy at run time and

performs updates to the resumed quiesce database copy.

Example 2

To create a second quiesce database copy instance of LIVEDB on DEVPK that uses a

DMSUPPORT library specification different from the DMSUPPORT library specification of

the LIVEDB for inquiry processing of the quiesce database copy data, perform the

following steps:

1. Enter the following command:

RUN *SYSTEM/DMUTILITY("DB=LIVE)LIVEDB
ON LIVEPK QUIESCE QDC(TITLE=(DEV)LIVEDB ON DEVPK)")

2. Split your mirrored disks containing all of your database files.

3. Enter the following command:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK RESUME")

4. Rename and acquire the split mirrored disks.

5. Enter the following commands:

RUN *SYSTEM/DMCONTROL("DB=(LIVE)LIVEDB ON LIVEPK
CREATE QDC TITLE=(DEV)LIVEDB ON DEVPK FAMILY LIVEPK=DEVPK")

RUN *SYSTEM/DMCONTROL("DB=(LIVE)LIVEDB ON
LIVEPK DMSUPPORT TITLE=(DEV)DMSUPPORT/LIVEDB ON
DEVPK");FILE
CF(TITLE=(DEV)LIVEDB/CONTROL ON DEVPK);FILE

Using a Quiesce Database

8600 0759-622 14–15

CFOLD(TITLE=(DEV)LIVEDB/CONTROL ON DEVPK)

The DMCONTROL CREATE QDC command must be executed from a privileged usercode

or the DMCONTROL code file must be marked as a privileged code file.

Figure 14–5 illustrates the scenario on which examples 3 through 5 are based.

Figure 14–5. Single Server, One Live Database, Two Quiesce Database

Copies, Live Database Backed Up from QDC ON BACKUPPK

Example 3

To create a quiesce database copy instance of LIVEDB on BACKUPPK as a source to

perform an offline backup of LIVEDB, perform the following steps:

1. Enter the following command:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB
ON LIVEPK QUIESCE QDC(TITLE=(BACKUP)LIVEDB ON BACKUPPK)")

2. Split your mirrored disks containing all of your database files.

3. Enter the following command:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK RESUME")

4. Rename and acquire the split mirrored disks.

5. Enter the following command:

RUN *SYSTEM/DMCONTROL(DB=(LIVE)LIVEDB ON LIVEPK

Using a Quiesce Database

14–16 8600 0759-622

CREATE QDC TITLE=(BACKUP)LIVEDB ON BACKUPPK FAMILY
LIVEPK=BACKUPPK")

This command must be executed from a privileged usercode.

6. Enter the following command:

RUN *SYSTEM/DMUTILITY("DB=(BACKUP)LIVEDB
ON BACKUPPK OFFLINE DUMP=TO LIVEDBBACKUP")

Example 4

To use LIVEDBBACKUP to recover (LIVE)LIVEDB, enter the following command:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK
RECOVER(REBUILD THRU AUDIT 1959) FROM LIVEDBBACKUP")

Example 5

To use LIVEDBBACKUP to recover (LIVE)LIVEDB when the control file of the live database

has been lost, enter the following commands:

RUN *SYSTEM/DMCONTROL("DB=(LIVE)LIVEDB ON LIVEPK INITIALIZE")

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK
COPY LIVEDB/CONTROL AS (LIVE)LIVEDB/CONTROL
ON LIVEPK FROM LIVEDBBACKUP")

RUN *SYSTEM/DMCONTROL("DB=(LIVE)LIVEDB ON LIVEPK FAMILY
BACKUPPK=LIVEPK");FILE CF=(LIVEDB) ON LIVEPK;
FILE CFOLD=(LIVE)LIVEDB ON LIVEPK

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB
ON LIVEPK RECOVER (REBUILD THRU AUDIT 1959) FROM LIVEDBBACKUP")

Example 6

This example creates a quiesce database copy instance of LIVEDB. In this example, all the

LIVEDB data files reside on LIVEPK, but LIVEDB/CONTROL resides on a separate family

named CTLPK. The quiesce database copy that is created has data files that reside on

TESTPK and a control file that resides on QDCCTLPK.

1. Enter the following command:

RUN *SYSTEM/DMUTILILTY("DB=(LIVE)LIVEDB ON CTLPK QUIESCE QDC
(TITLE=(TEST)LIVEDB ON QDCCTLPK)")

Note: The DB statement indicates the family on which the LIVEDB control file

resides. The QDC TITLE statement indicates the family on which the copy of the

quiesce database control file resides.

2. Split the mirrored disks that contain all of the database files.

3. Enter the following command to resume the LIVEDB:

RUN SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON CTLPK RESUME")

4. Rename and acquire the split mirrored disks. Make sure that the QDC control file

(TEST) LIVEDB/CONTROL is located on QDCCTLPK pack.

Using a Quiesce Database

8600 0759-622 14–17

5. Enter the following command

RUN *SYSTEM/DMCONTROL("DB=(LIVE)LIVEDB ON CTLPK CREATE QDC
TITLE=(TEST)LIVEDB ON QDCCTLPK FAMILY LIVEPK = TESTPK")

Notes:

• The FAMILY statement indicates that the data files of LIVEDB are located on

LIVEPK and the data files of QDC are located on TESTPK.

• You must have a privileged usercode to execute the DMCONTROL CREATE QDC

command.

Example 7

This example creates a quiesce database copy instance of LIVEDB. In this example, the

DASDL definition does not contain a usercode attribute in the control file specification or

include a usercode attribute for the DMSUPPORT title.

1. Enter the following command:

RUN *SYSTEM/DMUTILITY("DB = (LIVE)LIVEDB ON LIVEPK
QUIESCE QDC (TITLE = (BACKUP)LIVEDB ON BACKUPPK)")

2. Split the mirrored disks that contain all of the database files.

3. Enter the following command:

RUN *SYSTEM/DMUTILITY("DB = (LIVE)LIVEDB ON LIVEPK RESUME")

4. Rename and acquire the split mirrored disks.

5. From a privileged usercode, enter the following command:

RUN *SYSTEM/DMUTILITY("DB = (LIVE)LIVEDB ON LIVEPK
CREATE QDC TITLE = (BACKUP)LIVEDB ON BACKUPPK
FAMILY LIVEPK = BACKUPPK")
FILE CF (TITLE = (LIVE)LIVEDB/CONTROL ON LIVEPK);
FILE CFOLD (TITLE = (LIVE)LIVEDB/CONTROL ON LIVEPK)

Example 8

This example creates a quiesce database copy instance of LIVEDB under a permanent

directory on LIVEPK. In this example, the copy is to a different path name located on

BACKUPPK as a source to perform an offline backup of LIVEDB:

1. Enter the following command:

RUN *SYSTEM/DMUTILITY("DB = LIVEDB QUIESCE
QDC(TITLE=*DIR/BACKUP/LIVEDB ON BACKUPPK)");
DATAPATH = *DIR/LIVE ON LIVEPK

2. Split your mirrored disks containing all of your database files.

3. Enter the following command.

RUN *SYSTEM/DMUTILITY("DB = LIVEDB RESUME");
DATAPATH = *DIR/LIVE ON LIVEPK

4. Rename and acquire the split mirrored disks.

Using a Quiesce Database

14–18 8600 0759-622

5. Enter the following command. This command must be executed from a privileged

usercode:

RUN *SYSTEM/DMCONTROL("DB=LIVEDB
CREATE QDC TITLE = *DIR/BACKUP/LIVEB
ON BACKUPPK FAMILY LIVEPK = BACKUPPK")

6. Enter the following command:

RUN *SYSTEM/DMUTILITY("DB=LIVEDB
OFFLINE DUMP=TO LIVEDBBACKUP");
DATAPATH = *DIR/BACKUP ON BACKUPPK

RESTORE FROM QDC Command (DMCONTROL)

The RESTORE FROM QDC command is a keyed feature. Refer to the Software Product

Catalog for information about Quiesce Database Copy (QDC) as a Recovery Source.

Purpose

Use the RESTORE FROM QDC command to restore the original configuration of a quiesce

database copy. You can use the restored copy as a recovery source for a database

REBUILD operation of the live database. The DMCONTROL RESTORE FROM QDC

command

• Verifies that all database files exist under the quiesce database copy usercode on the

family locations designated in the live database control file.

• Restores the live database control file from the saved copy of the control file.

• Restores the original usercodes of the live database data files or, if it is a permanent

directory database, the command will restore the original path name of the live

database data files.

• Must be used with CF file equation. Refer to the example for additional information.

Note: You must issue the DMCONTROL RESTORE FROM QDC command from a

privileged usercode. Executing the command restores the original settings of the live

database options (Remote Database Backup, DMDUMPDIRECTORY, and TPS) to their

original state at the time of the quiesce database copy creation.

To rebuild your live database using a quiesce database copy, perform the following steps:

1. Take the original live database disks offline.

2. Relabel the quiesce database copy disks.

3. Run the DMCONTROL RESTORE FROM QDC command.

4. Run the DMUTILITY REBUILD FROM QUIESCE DB command.

Note: Disk configuration, disk mirroring, and disk management are external activities to

an Enterprise Database Server system.

Using a Quiesce Database

8600 0759-622 14–19

Syntax

── RESTORE FROM QDC <QDC title clause> ────────────────────────────────┤

Example 1

Figure 14–6 illustrates the results of performing the following procedure.

To rebuild (LIVE)LIVEDB using the quiesce database copy (TEST)LIVEDB, perform the

following steps:

1. Take the LIVEPK disks offline.

2. Relabel the TESTPK disks to the LIVEPK family of disks.

3. Enter the following commands:

RUN $SYSTEM/DMCONTROL("DB=(LIVE)LIVEDB ON
LIVEPK RESTORE FROM QDC TITLE=(TEST)LIVEDB ON TESTPK");
FILE CF(TITLE=(TEST)LIVEDB/CONTROL ON LIVEPK);

RUN $SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK
RECOVER (REBUILD THRU AUDIT 1990) FROM QUIESCE DB")

Example 2

To rebuild *DIR/LIVE/LIVEDB on LIVEPK using the quiesce database copy

*DIR/BACKUP/LIVEDB on BACKUPPK, perform the following steps:

1. Take the LIVEPK disks offline.

2. Relabel the TESTPK disks to the LIVEPK family of disks.

3. Enter the following commands:

RUN $SYSTEM/DMCONTROL("DB=LIVEDB RESTORE FROM QDC
TITLE=*DIR/BACKUP/LIVEDB ON TESTPK");
FILE CF(TITLE=*DIR/BACKUP/LIVEDB/CONTROL ON LIVEPK);

RUN $SYSTEM/DMUTILITY("DB=LIVEDB RECOVER
(REBUILD THRU AUDIT 1990) FROM QUIESCE DB");
DATAPATH = *DIR/LIVE ON LIVEPK

Using a Quiesce Database

14–20 8600 0759-622

Figure 14–6. Rebuild of a Live Database Using a Quiesce Database Copy

Creating Incremental/Accumulated Dumps from a
Quiesce Database

Use the following DMUTILITY QUIESCE options to configure a database image to be used

for incremental and accumulated dumps for recovering the live database:

FOR FULLDUMP
FOR ACUDUMP
FOR INCDUMP

Using a Quiesce Database

8600 0759-622 14–21

Syntax

QUIESCE FOR FULLDUMP
QUIESCE FOR ACUDUMP
QUIESCE FOR INCDUMP
QUIESCE QDC <qdc specification> FOR FULLDUMP
QUIESCE QDC <qdc specification> FOR ACUDUMP
QUIESCE QDC <qdc specification> FOR INCDUMP

Using a Quiesce Database Copy as a Recovery or a
Copy Source

A quiesce database copy can be used as a <recover source> construct in the RECOVER

statement or as a <copy source> construct in the COPY statement. Refer to

Section 8, Recovering the Database, for the syntax of the RECOVER statement or the

COPY statement.

When the (QDC <QDC title clause>) is specified as a recovery source, consider the

following:

• Other applications can be using the quiesce database copy as the recovery is being

performed.

• The RECOVER statement can specify REBUILD or RECONSTRUCT.

• No other recovery source can be used when QDC (<QDC title clause>) is specified.

• Incremental or accumulated backups cannot be used when QDC (<QDC title clause>

) is specified.

• The QDCVERIFY option detects CHECKSUM and ADDRESSCHECK errors on the

selected data during the recovery process.

• The QDCWORKERS option indicates that multiple processes can occur in parallel

during the recovery process.

• The recovery can be restarted.

• A quiesce database copy cannot be resumed when being used as a recovery source

or a copy source.

When the (QDC <QDC title clause>) is specified as a copy source, consider the following:

• No other copy source can be used when QDC (<QDC title clause>) is specified.

• The QDCVERIFY option detects CHECKSUM and ADDRESSCHECK errors on the

selected data during the copy process.

• The QDCWORKERS option indicates that multiple processes can occur in parallel

during the copy process.

• A quiesce database copy cannot be used as a source for copying the control file by

itself. Use the CFRESTORE command to copy a control file.

Note: A quiesce database copy cannot be used in the REPLICATE command.

Figure 14–7 illustrates the scenario on which examples 1 through 8 are based.

Using a Quiesce Database

14–22 8600 0759-622

Figure 14–7. Using a Quiesce Database Copy as a Recovery Source

Example 1

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK OPTIONS
(QDCVERIFY, QDCWORKERS=30)RECOVER (ROWS USING BACKUP)=
(PACKNAME=LIVEPK @ FAMILYINDEX=3)FROM QDC(TITLE=(BACKUP)
LIVEDB ON BACKUPPK)")

Or, if it is a permanent directory database

RUN *SYSTEM/DMUTILITY("DB=LIVEDB OPTIONS(QDCVERIFY,
QDCWORKERS=30)RECOVER (ROWS USING BACKUP)=(PACKNAME=LIVEPK
@ FAMILYINDEX=3)FROM QDC(TITLE=*DIR/BACKUP/LIVEDB
ON BACKUPPK)");DATAPATH=*DIR/LIVE ON LIVEPK

These commands recover all data that resides on FAMILYINDEX 3 of pack family LIVEDB

from quiesce database copy (BACKUP)LIVEDB ON BACKUPPK. During the recovery, 30

parallel tasks are processed and CHECKSUM and ADDRESSCHECK errors are detected.

Example 2

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK
OPTIONS(QDCVERIFY, QDCWORKERS=50)RECOVER(REBUILD
THRU AUDIT 1959) FROM QDC (TITLE=(BACKUP)LIVEDB
ON BACKUPPK)")

Or, if it is a permanent directory database

Using a Quiesce Database

8600 0759-622 14–23

RUN *SYSTEM/DMUTILITY("DB=LIVEDB OPTIONS(QDCVERIFY,
QDCWORKERS=50)RECOVER(REBUILD THRU AUDIT 1959)FROM
QDC(TITLE=*DIR/BACKUP/LIVEDB ON BACKUPPK)");
DATAPATH=*DIR/LIVE ON LIVEPK

These commands recover all the data on (LIVE)LIVEDB ON LIVEPK from quiesce database

copy (BACKUP)LIVEDB ON BACKUPPK. During the recovery, 50 parallel tasks are

processed and CHECKSUM and ADDRESSCHECK errors are detected. In addition, audit

files through 1959 are used to update the data on (LIVE)LIVEDB ON LIVEPK.

Example 3

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK OPTIONS
(QDCVERIFY, QDCWORKERS=50)COPY=AS(LIVE)=ON LIVEPK FROM
QDC(TITLE=(BACKUP)LIVEDB ON BACKUPPK)")

Or, if it is a permanent directory database

RUN *SYSTEM/DMUTILITY("DB=LIVEDB OPTIONS(QDCVERIFY, QDCWORKERS=50)
COPY=AS *DIR/LIVE/= ON LIVEPK FROM QDC (TITLE=*DIR/BACKUP/LIVEDB
ON BACKUPPK)"); DATAPATH=*DIR/LIVE ON LIVEPK

These commands copy all the data from quiesce database copy (BACKUP)LIVEDB ON

BACKUPPK to (LIVE)=ON LIVEPK. During the copy, 50 parallel tasks are processed and

CHECKSUM and ADDRESSCHECK errors are detected.

Example 4

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK
RECOVER (ROWS USING BACKUP)=(ROWLOCK=LOCKEDROW,READERROR)
FROM QDC(TITLE=(BACKUP)LIVEDB ON BACKUPPK)")

Or, if it is a permanent directory database

RUN *SYSTEM/DMUTILITY("DB=LIVEDB RECOVER (ROWS USING BACKUP)
=(ROWLOCK=LOCKEDROW,READERROR)FROM QDC(TITLE=*DIR/BACKUP/LIVEDB
ON BACKUPPK)"); DATAPATH=*DIR/LIVE ON LIVEPK

These commands recover all rows having write operation errors (ROWLOCK =

LOCKEDROW) or read operation errors (ROWLOCK = READERROR), using the data on

the specified quiesce database copy plus the changes recorded in the audit since the time

of the quiesce database copy creation. Because the QDCWORKERS clause is not

specified, one process is assumed.

Example 5

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK RECOVER
(ROWS USING BACKUP)LIVEDB/D/DATA FROM QDC(TITLE=(BACKUP)LIVEDB
ON BACKUPPK)")

Or, if it is a permanent directory database

RUN *SYSTEM/DMUTILITY("DB=LIVEDB RECOVER (ROWS USING BACKUP)
*DIR/LIVE/LIVEDB/D/DATA FROM QDC(TITLE=*DIR/BACKUP/LIVEDB
ON BACKUPPK)");DATAPATH=*DIR/LIVE ON LIVEPK

Using a Quiesce Database

14–24 8600 0759-622

These commands recover only rows in the file LIVEDB/D/DATA that have copies on the

quiesce database copy. Resident rows allocated since the time of the quiesce database

copy was created are also recovered. Because the QDCWORKERS clause is not specified,

one process is assumed.

Example 6

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK RECOVER (ROWS
USING BACKUP WITH FILTERING(WORKERS=3)) = (ROWLOCK=READERROR)
FROM QDC(TITLE=(BACKUP)LIVEDB ON BACKUPPK)")

Or, if it is a permanent directory database

RUN *SYSTEM/DMUTILITY("DB=LIVEDB RECOVER (ROWS USING BACKUP WITH
FILTERING(WORKERS=3)) = (ROWLOCK=READERROR) FROM
QDC(TITLE=*DIR/BACKUP/LIVEDB ON BACKUPPK)");
DATAPATH = *DIR/LIVE ON LIVEPK

This command recovers all rows marked as having read operation errors and invokes the

DMRECONFILTER utility to filter the audit information necessary for the reconstruction.

Three filter workers are used in parallel to filter the audits generated since the quiesce

database copy was created. Because the QDCWORKERS clause is not specified, one

process is assumed.

Example 7

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK RECOVER
(ROWS USING BACKUP) LIVEDB/D/DATA (RESTORE) FROM
QDC(TITLE=(BACKUP)LIVEDB ON BACKUPPK)")

Or, if it is a permanent directory database

RUN *SYSTEM/DMUTILITY("DB=LIVEDB
RECOVER (ROWS USING BACKUP)
LIVEDB/D/DATA (RESTORE)
FROM QDC(TITLE=*DIR/BACKUP/LIVEDB ON BACKUPPK)");
DATAPATH = *DIR/LIVE ON LIVEPK

These commands restore all rows of the file LIVEDB/D/DATA, using the data on the

quiesce database copy, and any changes recorded in the audit through the most current

audit file. Because the QDCWORKERS clause is not specified, one process is assumed.

Example 8

The following commands restore the control file of the live database from its quiesce

database copy and initiate a REBUILD process.

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK CFRESTORE FROM
QDC(TITLE = (BACKUP)LIVEDB ON BACKUPPK)")

Or, if it is a permanent directory database

RUN *SYSTEM/DMUTILITY("DB=LIVEDB CFRESTORE FROM
QDC(TITLE=*DIR/BACKUP/LIVEDB ON BACKUPPK)");
DATAPATH=*DIR/LIVE ON LIVEPK

Using a Quiesce Database

8600 0759-622 14–25

The preceding commands copy the control file of the quiesce database copy to the live

database.

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB
ON LIVEPK RECOVER(REBUILD THRU
AUDIT 1959 FROM QDC(TITLE = (BACKUP)LIVEDB
ON BACKUPPK)")

Or, if it is a permanent directory database

RUN *SYSTEM/DMUTILITY("DB=LIVEDB RECOVER(REBUILD THRU
AUDIT 1959 FROM QDC(TITLE = *DIR/BACKUP/LIVEDB ON BACKUPPK)");
DATAPATH=*DIR/LIVE ON LIVEPK

The preceding commands initiate a whole database recovery using the REBUILD process

and the quiesce database copy is the recovery source.

High Availability QUIESCE

Purpose

Use the high availability QUIESCE methods to minimize the impact of the Quiesce

operation on the transactional activity of the live database. You can use high availability

Quiesce images to offload activities such as backup, recovery, certification and data

warehousing.

Syntax

The following syntax elements are used by DMUTILITY and DMRECOVERY for high

availability Quiesce configuration. All syntax elements are supported for single server and

multiple server Quiesce methods.

DMUTILITY QUIESCE Syntax

────<quiesce option> ── QUIESCE ───────────────────────────────┤

<quiesce option>

┌◄────────────── , ────────────────────┐
────OPTIONS ─(─┴─┬──/1\─ QTYPE= ───┬ CUSTOM ─────┬───┴───)────┤

│ └── SPT ───────│
├──/1\─ QTIMEOUT=<integer>───────┤
└──/1\─ QACTION=┬ FORCE──────────┤

└─── ABORT───────┘

DMRECOVERY Syntax

────<recover command> ───────────────────────────────────────┤

<recover command>

──── FINALIZEQUIESCE ──┤

<quiesce option>

Using a Quiesce Database

14–26 8600 0759-622

The QTYPE = CUSTOM option ensures that the following actions occur:

• A QDCREC audit record is written to store information about the quiesce when this

command is executed.

• Information is stored in the database control file indicating that this is a custom

quiesce and that a recover FINALIZEQUIESCE action is required to complete the

configuration.

• Transactional activity continues uninterrupted during the period of quiesce.

• A QDCREC audit record is written to store information about the RESUME when this

command is executed

• The quiesce image cannot be finalized, rolled back, or rebuilt until the RESUME

command is executed on the live database.

The QTYPE=SPT option ensures that the following actions occur:

• The DMUTILITY program waits until a natural control point occurs based on

SYNCPOINT and CONTROLPOINT specifications.

• When the next control point occurs, the database system recognizes the pending

QUIESCE request and automatically creates two control points to ensure the

externalization of all buffers from memory to disk.

• The QUIESCE timestamp is stored in the database control file.

• The DMUTILITY program completes with the message “DATABASE QUIESCED.”

• The live database remains in a quiesced state until you use the DMUTILITY RESUME

command.

The QTIMEOUT = <integer> option indicates the wait time in seconds. This ensures the

following actions occur:

• When the DMUTILITY program QTIMEOUT value is exceeded for the QTYPE=SPT,

then a specific action is automatically taken based on the QACTION specification.

• QACTION must be specified when QTIMEOUT is specified.

In the QACTION = FORCE or QACTION = ABORT option, specifying FORCE causes the

following to occur:

• After the QTIMEOUT is exceeded and the database has not been quiesced, the

QUIESCE request will force transactional activity to suspend in the manner of a

default quiesce request. Existing transactions will complete while new transaction

requests are queued. After all active transactions are complete, two audited control

points occur and the database becomes quiesced.

Specifying ABORT causes the following to occur:

Using a Quiesce Database

8600 0759-622 14–27

• Automatic termination of the DMUTILITY QUIESCE request occurs, and database

activity proceeds.

DMRECOVERY <recover command>

The FINALIZEQUIESCE command uses the audit file(s) to synchronize the quiesce

database copy resulting in a database image that is both logically and physically

consistent. The finalized image represents a point in time that is the most recent control

point that occurred prior to the execution of the QUIESCE command.

Note: The recovery process attempts to read audit files that are stored under the

usercode of the running recovery program. If this usercode is different from the usercode

of the live database, then perform one of the following

• Copy audit files to the desired usercode and family. If the family is different from the

live database audit family, then the DMCONTROL AUDITFAMILY command should be

issued for the QUIESCE database control file to record the new family.

• Respond to the NO FILE waiting entry of the recovery process with an FA redirection

to the live database copy of the audit file.

Example 1[QTYPE = CUSTOM, 2-Servers]

In this example, the live database is (LIVE)LIVEDB ON LIVEPK at Server 1 and a Quiesce

snapshot is created as (LIVE)LIVEDB ON LIVEPK at Server 2. The point of QUIESCE will be

determined by the DMRECOVERY FINALZEQUIESCE function. A list of steps required for

this configuration is:

1. Quiesce the live database by entering the following command at the live system:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB
ON LIVEPK OPTIONS(QTYPE=CUSTOM)QUIESCE")

2. Split your mirrored disks that contain all of the database files on the live pack,

LIVEPK.

3. Resume the live database at Server 1:

RUN *SYSTEM/DMUTILITY ("DB=(LIVE)LIVEDB ON LIVEPK RESUME")

4. Copy or mirror the audit files needed for a recovery to the appropriate pack as

configured in the database control file at Server 2.

5. Acquire the split mirrored disks as LIVEPK at Server 2.

6. Finalize the configuration at Server 2:

RUN *SYSTEM/DMRECOVERY (“DB=(LIVE)LIVEDB
ON LIVEPK FINALIZEQUIESCE”)

Example 2 [QTYPE = CUSTOM, 1 Server]

In this example, the live database is (LIVE)LIVEDB ON LIVEPK and a quiesce database

copy is created as (TEST)LIVEDB ON TESTPK. The point of quiesce is determined by the

DMRECOVERY FINALIZEQUIESCE function. A list of steps required for this configuration

is:

Using a Quiesce Database

14–28 8600 0759-622

1. Quiesce the live database by entering the following command:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK
OPTIONS(QTYPE=CUSTOM)QUIESCE QDC(TITLE=(TEST)
LIVEDB ON TESTPK)")

2. Split your mirrored disks that contain all of the database files on the live pack,

LIVEPK.

3. Resume the live database:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB
ON LIVEPK RESUME")

4. SM AUDIT CLOSE the live audit.

5. Copy the audit files needed for a recovery as

(TEST)LIVEDB/= on the QDC audit pack.

6. Enter the following command:

RUN *SYSTEM/DMCONTROL("DB=(LIVE)LIVEDB
ON LIVEPK CREATE QDC TITLE=(TEST)LIVEDB
ON TESTPK FAMILY LIVEPK=TESTPK")

The DMCONTROL CREATE QDC command must be executed from a privileged

usercode or the DMCONTROL code file must be marked as a privileged code file.

7. Finalize the configuration. From the TEST usercode:

RUN *SYSTEM/DMRECOVERY ("DB=(TEST)LIVEDB
ON TESTPK FINALIZEQUIESCE")

Example 3 [QTYPE = SPT; 2-Servers]

In this example, the live database is (LIVE)LIVEDB ON LIVEPK at Server 1 and a Quiesce

snapshot is created as (LIVE)LIVEDB ON LIVEPK at Server 2. The point of quiesce will be

determined by the next SYNCPOINT that occurs following the execution of the QUIESCE

command. A list of steps required for this configuration is:

1. Quiesce the live database by entering the following command at the live system:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON
LIVEPK OPTIONS(QTYPE=SPT) QUIESCE")

2. Split your mirrored disks that contain all of the database files on the live pack,

LIVEPK.

3. Resume the live database at Server 1:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB
ON LIVEPK RESUME")

4. Copy or mirror the audit files needed for a recovery to the appropriate pack as

configured in the database control file at Server 2.

5. Acquire the split mirrored disks as LIVEPK at Server 2.

Using a Quiesce Database

8600 0759-622 14–29

Example 4 [QTYPE =SPT,QTIMEOUT=5,QACTION=FORCE; 2 Servers]

In this example, the live database is (LIVE)LIVEDB ON LIVEPK at Server 1 and a Quiesce

snapshot is created as (LIVE)LIVEDB ON LIVEPK at Server 2. The point of quiesce is

determined by the next natural SYNCPOINT that occurs following the execution of the

QUIESCE command and after all active transactions have completed. If the quiesce does

not complete in less than 5 sections, the quiesce begins suspending transactions while

allowing existing transactions to complete prior to the creation of the quiesce point. A list

of steps required for this configuration is as follows:

1. Quiesce the live database by entering the following command at the live system.

Note that if 5 seconds is exceeded and all transactions have not completed, then

DMUTILITY continues with step 2:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB
ON LIVEPK OPTIONS(QTYPE=SPT,QTIMEOUT=5,
QACTION=FORCE) QUIESCE")

2. After the database is quiesced, split the mirrored disks that contain all of the

database files on the live pack.

3. Resume the live database at Server 1:

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK RESUME")

4. Acquire the split mirrored disks as LIVEPK at Server 2.

QUIESCE HISTORY Option of the WRITE Command

Purpose

Use the QUIESCE HISTORY option of the WRITE command to display the quiesce history

information for a database. Each history record reflects information that was gathered

between the execution of the QUIESCE command on the database and the execution of

the RESUME command on the same database. The nine most recent history records are

displayed with the following information:

• The title of the database

• The creation timestamp of the database

• The transaction wait time, reported in microseconds. This time reflects the amount of

wait time until all of the active transactions are completed prior to the flush of data.

• The flush wait time, reported in microseconds. This time reflects the amount of time

that was taken to flush the data from memory to disk.

• The resume wait time, reported in seconds. This time reflects the amount of time

between the completion of the QUIESCE operation and the completion of the

RESUME operation. This includes the time required to split mirrors.

Syntax

──┬─ WRITE ─┬─ QUIESCE HISTORY ──┤
└─ LIST ──┘

Using a Quiesce Database

14–30 8600 0759-622

Example

This example illustrates the use of the QUIESCE HISTORY command.

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB
ON LIVEPK WRITE QUIESCE HISTORY")

CFRESTORE Command (DMUTILITY)

Purpose

Use the CFRESTORE command to restore the control file of a live database from its

quiesce database copy.

Syntax

── CFRESTORE ── FROM ── QDC ── (<QDC title clause>) ─────────────────┤

Example

This example illustrates the use of the CFRESTORE command.

RUN *SYSTEM/DMUTILITY("DB=(LIVE)LIVEDB ON LIVEPK CFRESTORE FROM
QDC(TITLE = (BACKUP)LIVEDB ON BACKUPPK)")

Quick-Reference Information

Introduction

The information presented here is for quick-reference purposes only. For an explanation of

any element of a syntax diagram, refer to the appropriate information presented earlier in

this section.

QUIESCE Command

──QUIESCE ───┤

RESUME Command

── RESUME ───┤

QUIESCE QDC Command

──QUIESCE─────── QDC (───<QDC title clause>───────) ─────────────────────┤

Using a Quiesce Database

8600 0759-622 14–31

<QDC title clause>

────── TITLE= ──┬─── * ────────┬──<database name>─ ON ──<family name>────┤
├─ <usercode> ─┤
└─ <path name> ┘

CREATE QDC Command

┌◄────────────── , ─────────────┐
─ CREATE ── QDC <QDC title clause> ─┴──<data file family change>────┴───────┤

RECOVER (ROWS USING BACKUP) Command

Use the following for the <recover source> construct:

── QDC ── (── <QDC title clause> ──) ────────────────────────────────┤

RECOVER REBUILD Command

Use the following for the <recover source> construct:

── QDC ── (── <QDC title clause> ──) ────────────────────────────────┤

COPY Command

Use the following for the <copy source> construct:

── QDC ── (── <QDC title clause> ──) ────────────────────────────────┤

RESTORE FROM QDC Command

── RESTORE FROM QDC <QDC title clause> ────────────────────────────────┤

QUIESCE HISTORY Option of the Write Command

──┬─ WRITE ─┬─ QUIESCE HISTORY ──┤
└─ LIST ──┘

CFRESTORE Command

── CFRESTORE ── FROM ── QDC ── (<QDC title clause>) ─────────────────┤

Using a Quiesce Database

14–32 8600 0759-622

Section 15
Using Database Tape Encryption

Enterprise Database Server dump files and audit files can be encrypted using database

tape encryption. Data files can be encrypted when they are copied from disk to tape or

from disk to disk as a part of a DMUTILITY DUMP operation. Audit files can be encrypted

when they are copied from disk to tape as part of a COPYAUDIT QUICKCOPY operation.

Before you can use database tape encryption, your security administrator must establish

server encryption keys by using the Security Center MMC snap-in on his or her

workstation. Such a workstation can be a separate Windows-based PC or the Windows

side of a ClearPath MCP server. Security Center refers to these keys as tape encryption

keys. Refer to the Security Overview and Implementation Guide and the Security Center

Help for additional information about configuring, exporting, and importing tape encryption

keys.

Software encryption and decryption affect the total time to transfer data and result in

increased processor usage. Performance is affected by tape or disk drive throughput, the

performance level of the MCP system, the performance level of the hardware doing the

encryption, and competing workloads. Unisys recommends that you incrementally

introduce encryption to your database environment to ensure that adequate resources are

available to prevent encryption and decryption from having an adverse effect on your

existing processes.

Encrypted files are automatically decrypted when copied to disk as part of DMUTILITY

RECOVER, RESTORE, COPY, CLONE, and STRUCTURECLONE operations, and as part of

COPYAUDIT QUICKCOPY operations.

Architecture

The following diagram shows a ClearPath MCP server environment that uses Microsoft

CryptoProxy running in the Windows environment to encrypt and decrypt data needed by

the DMUTILITY and COPYAUDIT software components. The MCPAPI library is the

system library named MCAPISUPPORT. The code file for this library is named

*SYSTEM/MCPCRYPTOAPI/SUPPORT.

8600 0759-622 15–1

Encryption Algorithms

The DMUTILITY and COPYAUDIT software components support the following encryption

algorithms:

• Advanced Encryption Standard (AES), also known as AES256

• A variant of the Data Encryption Standard (DES) known as Triple DES (3DES or TDES)

The following table shows the Windows operating systems required to use each

encryption algorithm.

Encryption Algorithm Required Windows Operating System

AES256 Windows Server 2003

TDES Windows Server 2003

AESGCM Windows Server 2008 or Embedded Windows 7

Using Database Tape Encryption

15–2 8600 0759-622

DASDL Syntax

The following DASDL syntax options can be used for automatic encryption during a dump

operation.

Option Explanation

DUMPENCRYPT This option can be set to TRUE or FALSE.

The DUMPENCRYPT option can be set at the default global level for

all data sets or for all sets, or the option can be specified at the

structure level. The structure-level setting overrides the global-level

setting.

ENCRYPTTYPE This option controls the encryption algorithm to be used: TDES,

AES256, or AESGCM. If no encryption algorithm is specified, TDES

is used for encryption.

The following DASDL syntax option can be used for automatic encryption of audit files

during a COPYAUDIT QUICKCOPY operation when COPYAUDIT is automatically zipped by

an active database. The following option is available.

Option Explanation

AUDITENCRYPT This option controls the encryption algorithm to be used: TDES,

AES256, or AESGCM. If no encryption algorithm is specified, TDES

is used for encryption.

Refer to Data Structure Definition Language (DASDL) Programming Reference Manual for

information about these options.

DMUTILITY Syntax

The following DMUTILITY syntax options can be used to override DASDL encryption

options during a dump operation.

Option Explanation

NOENCRYPT This option can be set to TRUE or FALSE.

The NOENCRYPT option has a global default value of FALSE. When

the option is set to TRUE, the DASDL encryption specifications are

overridden.

ENCRYPTTYPE This option controls the encryption algorithm to be used and can be

set to AES256, AESGCM, or TDES.

TDES is used if no algorithm is defined in DMUTILITY or in DASDL.

DUMPENCRYPT This option overrides the DUMPENCRYPT specification in DASDL.

Using Database Tape Encryption

8600 0759-622 15–3

You can specify DMUTILITY encryption options only for entire structure files.

The following dump types are not allowed:

• COPYDUMP

• DUPLICATE_DUMP

• Multidump tapes

The following syntax is not allowed:

• FAMILYINDEX=

• ROW=

• PACKNAME=

• SECTION=

Refer to Section 6, Backing Up a Database, for syntax diagrams that support DMUTILITY

encryption options.

COPYAUDIT Syntax

The following COPYAUDIT syntax option provides dynamic encryption during a

COPYAUDIT QUICKCOPY operation.

Option Explanation

AUDITENCRYPT This option controls the encryption algorithm to be used:

TDES, AES256 or AESGCM. If no encryption algorithm is

specified, TDES is used for encryption.

Audit files that are encrypted to tape must be copied back to disk by the COPYAUDIT

software before they can be processed by MCP and Enterprise Database Server software,

such as DMRECOVERY, PRINTAUDIT, and others. In the process, files are automatically

decrypted by the COPYAUDIT software.

Refer to Section 9, Copying Audit Files, for syntax diagrams that support COPYAUDIT

encryption options.

DASDL Example

The following example includes bolded encryption options. This example is used in

“DMUTILITY Examples” later in this section.

OPTIONS
(

AUDIT
,INDEPENDENTTRANS
,REAPPLYCOMPLETED

);

Using Database Tape Encryption

15–4 8600 0759-622

PARAMETERS
(

SYNCWAIT=2
,ENCRYPTTYPE=AES256

);
DEFAULTS
(

DUMPENCRYPT=FALSE
,PACK=DBPK
,DATA SET(DUMPENCRYPT=FALSE)
,SET(DUMPENCRYPT=FALSE)

);

AUDIT TRAIL
(

PACKNAME=AUDITPK
ALTERNATE IS TAPE
,QUICKCOPY MAXFILESPERTAPE=5 TO
TAPE
(

,AUDITENCRYPT
)AND REMOVE
,BLOCKSIZE=300 WORDS
,AREASIZE=40
,AREAS=10
,UPDATE EOF=200
CHECKSUM=TRUE

);

CUSTOMER DATASET%encrypt
(

CUST-IDNUMBER(12);
FIRSTNAMEALPHA(20);
MIDDLENAMEALPHA(20);
LASTNAMEALPHA(20);
SS-NUMNUMBER(9);

)CHECKSUM=TRUE,DUMPENCRYPT=TRUE;
CID SET OF CUSTOMER KEY IS CUST-ID% no encrypt

NO DUPLICATESDUMPENCRYPT=FALSE;

PRODUCT DATASET% no encrypt
(

PROD-IDNUMBER(12);
PRODNAMEALPHA(20);

)CHECKSUM=TRUE;
PID SET OF PRODUCT KEY IS PROD-ID% no encrypt

NO DUPLICATES;

DMUTILITY Examples

The following examples use the DASDL example described earlier.

Using Database Tape Encryption

8600 0759-622 15–5

Example 1

The following command dumps the entire database and encrypts only those structures in

the DASDL specification that have the DUMPENCRYPT option set to TRUE:

DUMP=TO SUNDAYDUMP

Example 2

The following command dumps the entire database, encrypts only those structures in the

DASDL specification that have the DUMPENCRYPT option set to TRUE, and overrides the

ENCRYPTTYPE value of the DASDL specification:

OPTIONS(ENCRYPTTYPE=TDES)DUMP=TO SUNDAYDUMP

Example 3

The following command dumps the entire database and encrypts every structure using

the ENCRYPTTYPE value of the DASDL specification:

DUMP=(DUMPENCRYPT=TRUE) TO SUNDAYDUMP

Example 4

The following command dumps the entire database without encrypting structures and

overrides all of the encryption values in the DASDL specification:

OPTIONS(NOENCRYPT)DUMP=TO SUNDAYDUMP

Example 5

The following command dumps the CUSTOMER and CID structures, encrypts both

structures, and uses the ENCRYPTTYPE value in the DASDL specification:

DUMP PRODUCTIONDB/CUSTOMER/=(DUMPENCRYPT=TRUE) TO SUNDAYDUMP

Example 6

The following command dumps the PRODUCT structure and overrides the ENCRYPTTYPE

value in the DASDL specification:

OPTIONS(ENCRYPTTYPE=TDES)DUMP
PRODUCTIONSDB/PRODUCT/DATA(DUMPENCRYPT=TRUE) TO SUNDAYDUMP

Example 7

The following command dumps the entire database by family index, encrypts all the

structures, and uses the ENCRYPTTYPE value in the DASDL specification:

DUMP=(DUMPENCRYPT=TRUE) BY FAMILYINDEX TO SUNDAYDUMP

Example 8

The following command dumps the entire database to a disk file and encrypts every

structure using the ENCRYPTTYPE value in the DASDL specification:

Using Database Tape Encryption

15–6 8600 0759-622

DUMP=(DUMPENCRYPT=TRUE) TO DISKDUMP ON DBPACK

Example 9

The following command verifies the encrypted dump created in example 7:

VERIFYDUMP SUNDAYDUMP

COPYAUDIT Examples

Example 1

The following command copies and encrypts audit files 1 through 3 on pack AUDITPK to a

tape and uses the TDES encryption algorithm. In addition, after each audit file is encrypted

and copied, the tape is repositioned and the audit file is read in the forward direction to

check for correctness.

QUICKCOPY PRODUCTIONDB/AUDIT1 THRU
PRODUCTIONDB/AUDIT3 ALL FROM PACK=AUDITPK
TO TAPE (AUDITENCRYPT=TDES)
CHECK FORWARD COMPARE

Example 2

The following command appends and encrypts audit files 4 and 5 to the tape created in

example 1:

QUICKCOPY APPEND PRODUCTIONDB/AUDIT4-
PRODUCTIONDB/AUDIT5 ALL FROM PACK=AUDITPK
TO TAPE (DENSITY=FMTST9840, AUDITENCRYPT=TDES)
CHECK

Example 3

The following command copies and encrypts audit file 1 to a tape drive with Locate Fast

Access capability:

QUICKCOPY PRODUCTIONDB/AUDIT1 ALL FROM PACK=
AUDITPK TO TAPESET (AUDITENCRYPT=AES256)

Example 4

The following command appends and encrypts audit file 2 to the tape set created in

example 3:

QUICKCOPY PRODUCTIONDB/AUDIT2 FROM PACK=
AUDITPK TO TAPESET 1 (AUDITENCRYPT=AES26)

Example 5

The following command copies and encrypts audit file 1 on pack AUDITPK to a tape. The

audit is encrypted using the TDES encryption algorithm, which is the default algorithm.

QUICKCOPY PRODUCTIONDB/AUDIT1 ALL FROM PACK=AUDITPK TO TAPE
(DENSITY=FMTST9840,AUDITENCRYPT)

Using Database Tape Encryption

8600 0759-622 15–7

Using Database Tape Encryption

15–8 8600 0759-622

Section 16
Using Permanent Directory Databases

Permanent directory databases provide a common database access without having to use

common usercodes or chargecodes and provide security and control at both the macro

and micro levels.

Permanent directory databases do not affect existing databases. The functionality is

similar to the following directory structures:

• UNIX

• MS-DOS

• Windows

Permanent directory database names are prefixed with *DIR and can contain multiple

nodes ahead of the node that identifies the database. For example, the database named

MAIN-DB would have file names as follows:

*DIR/NODE1/NODE2/MAIN-DB/<data set name>/DATA
*DIR/NODE1/NODE2/MAIN-DB/<data set name>/<set name>

All DMUTILITY commands that need to locate a permanent directory database must be

followed with a DATAPATH task attribute. This statement defines the location of the

permanent directory database. For information on how the DB clause interacts with a

permanent directory database, refer to Appendix A, Common Syntactic Items. In the

following example, the command indicates that the permanent directory database named

SIMPLEDB is found in *DIR/DEMO/TESTENV1 on MYPK:

RUN $SYSTEM/DMUTILITY("DB=SIMPLEDB DUMP=TO MYUTILDUMP ON MYPK");
DATAPATH=(MYUSERCODE)ON MYPK,*DIR/DEMO/TESTENV1 ON MYPK

When the DMDUMPDIR program is used, the dump directory files are placed under the

usercode that initiated the task.

Creating a Permanent Directory Database

To create a permanent directory database, perform the following steps:

1. Determine whether a *DIR directory already exists on the disk on which the

permanent directory is to reside.

2. If a *DIR directory does not exist, use the WFL MKDIR statement with a privileged

usercode to explicitly create the *DIR directory on that disk. Otherwise, go to step 3.

8600 0759-622 16–1

3. Use the WFL MKDIR statement with a privileged usercode to explicitly create an

MCP permanent directory as the permanent directory. The directory can start at any

node level. However, each higher level must either already exist or be created.

Note: A directory cannot contain both a file and a subdirectory with the same name.

4. Use the WFL ALTER statement to set the file attributes as follows:

• PROPAGATESECURITYTODIRS file attribute to PROPAGATE

• PROPAGATESECURITYTOFILES file attribute to PROPAGATE

• ALTERNATEGROUPS file attribute to the appropriate R, W, and X values if you

want to provide access for multiple group codes

• GROUP file attribute to the appropriate R (read), W (write), and X

(execute/traverse) values

Access to a file within the permanent directory namespace requires that X

(traverse) permission be granted by each of the permanent directories containing

the file. If the traverse permissions are granted by all containing permanent

directories, then the actual file access permissions are determined by the file

attributes in the same manner as for files that are not in the permanent directory

namespace. If any of the traverse permissions are not granted, no access is

permitted to the file.

5. Designate a datapath specification in DASDL. Refer to the control file attributes in the

Data and Structure Definition Language (DASDL) Programming Reference Manual for

the exact syntax.

6. Compile or recompile all tailored Enterprise Database Server components.

7. For existing databases, manually copy the database structures and tailored software

to the newly created permanent directory.

Examples

The following example shows how to create a permanent directory database with the

GROUPS file attribute set:

BEGIN JOB SETUPDIR (STRING UNIQUE);
STRING

PATHNAME;

PATHNAME:="*DIR/MEGAMART/" UNIQUE ON "MYDBPACK";
MYJOB(DATAPATH=(#PATHNAME));

MKDIR *DIR/MEGAMART;
ALTER *DIR/MEGAMART (

PROPAGATESECURITYTODIRS =PROPAGATE,
PROPAGATESECURITYTOFILES =PROPAGATE,
GROUP=SALES,

OWNERRWX =RWX,
GROUPRWX =RWX

);
END JOB;

Using Permanent Directory Databases

16–2 8600 0759-622

The following example shows how to create a permanent directory database with the

GROUP and ALTERNATEGROUPS file attributes set:

BEGIN JOB SETUPDIR (STRING UNIQUE);
STRING

PATHNAME;

PATHNAME:="*DIR/MEGAMART/" UNIQUE ON "MYDBPACK";
MYJOB(DATAPATH=(#PATHNAME));

MKDIR *DIR/MEGAMART;
ALTER *DIR/MEGAMART (

PROPAGATESECURITYTODIRS=PROPAGATE,
PROPAGATESECURITYTOFILES=PROPAGATE,
GROUP=SALESMANAGEMENT,

OWNERRWX =RWX,
GROUPRWX =RWX,

ALTERNATEGROUPS=
"SALESMEN:X, SALESDISTRICT:R, SALESSUPPORT=RWX"

);
END JOB;

Reorganizing a Permanent Directory Database

When preparing to reorganize a permanent directory database, consider the following

information:

• SYSTEM/BUILDREORG must be run to create the file

DESCRIPTION/REORGANIZATION/<database name>.

This file and the REORGANIZATION program are not created in the permanent

directory.

Unless the ZIP option is reset in the BUILDREORG specifications, the reorganization is

compiled automatically when the BUILDREORG process is completed.

• When using the structure copy option, you must create the necessary permanent

directories on the specified pack before running the reorganization.

• Do not use the INTERNAL FILES specification because the temporary files of the

reorganization process for a permanent directory database are placed in the same

permanent directory as the data structures. If the INTERNAL FILES specification is

used, it is ignored.

• The RUN statement must include the correct DATAPATH as a task attribute. For

example:

RUN REORGANIZATION/<database name>;
DATAPATH=*DIR/<node-1>/node-n> ON <packname>

Because the DMSUPPORT code files for a permanent directory database reside in the

permanent directory and their titles include the update level, no migration of the

DMSUPPORT titles occur during a reorganization of the permanent directory database. In

addition, the administrator must create a node for the temporary database prior to running

the reorganization.

Using Permanent Directory Databases

8600 0759-622 16–3

Caution

Enterprise Database Server software puts an updated or copied description file

under the usercode of the task initiator. If you copy the description file to the

permanent directory for easy access, be extremely cautious when doing

DASDL updates and subsequent reorganizations. When you perform DASDL

updates, Unisys recommends that you remove copies of the description file

from the permanent directory, and that only the description files under the

usercode of the database administrator be used.

By using file equation, DASDL can read the description file in the permanent

directory, but the new description file is always created under the usercode of

the initiator of the DASDL compilation. You can also request that the

BUILDREORG utility read the description file in the permanent directory, but

the DESCRIPTION/REORGANIZATION/<database name> file is still created

under the usercode of the initiator. Unless the ZIP option is reset, the

BUILDREORG utility also compiles the REORGANIZATION program under the

usercode of the initiator.

When a reorganization is run, if there is a description file in the permanent

directory as well as one under the usercode of the initiator, the reorganization

process uses the description file in the permanent directory. However, the

copies that the reorganization process makes of the description file and the

reorganization code file are under the usercode of the initiator.

This condition also means that you cannot have a traditional database and a

permanent directory database with the same database name created by the

same usercode because both description files have the same title.

Working with Dumps

When using the DUMP command with a disk destination, the dump is always directed to a

usercoded file. The destination cannot be a permanent directory.

Example

The following example indicates that the dump of the SIMPLEDB database is to be found

in the permanent directory location *DIR/DEMO/TESTENV1 on the family named MYPK

and placed in MYUTILDUMP on MYPK using the usercode associated with the initiating

task:

RUN $SYSTEM/DMUTILITY("DB=SIMPLEDB DUMP=TO MYUTILDUMP ON MYPK");
DATAPATH=(MYUSERCODE)ON MYPK,*DIR/DEMO/TESTENV1 ON MYPK

When using the COPYDUMP and DUPLICATEDUMP commands, the copied or duplicated

dump cannot be placed in a permanent directory.

Using Permanent Directory Databases

16–4 8600 0759-622

Using a Quiesce Database Under a Permanent Directory

The following issues pertain to a quiesce database copy:

• A quiesce database copy must be configured to use the same level of software that

the live database uses.

• A quiesce database copy can be configured to use its own database software code

files by using the DMCONTROL statement with the <code file title change>

command option and file-equating CF and CFOLD to the control file of the quiesce

database copy.

• Once you have used the RESUME command to reactivate a quiesce database copy, it

is no longer a quiesce database copy and operates as an independent non-related

database. Dumps created from this resumed quiesce database copy cannot be used

for recovery of the live database.

• A quiesce database copy cannot be resumed when being used as a recovery source

or a copy source.

• Use the QDC title clause to register a quiesce database copy with the live database

specified in the database statement. Use the DMCONTROL CREATE QDC command

and specify the same QDC title clause to create the actual quiesce database copy.

• A quiesce database copy title must use the same database name as the database

statement, but must use a different family name and different path name.

• The control file of the live database specified by the database statement is updated

with the registration of the quiesce database copy. You can have up to 15 quiesce

database copy registrations at a time.

Refer to Section 14, Using a Quiesce Database, for additional information.

Using Permanent Directory Databases

8600 0759-622 16–5

Using Permanent Directory Databases

16–6 8600 0759-622

Section 17
Loading and Dumping Conventional
Files

SYSTEM/LOADDUMP generates programs that load a data set from a conventional file or

dump a data set to a conventional file. SYSTEM/LOADDUMP requires the data set name

and a file description name. Given this information, SYSTEM/LOADDUMP automatically

generates and compiles COBOL74 or COBOL85 programs to perform the LOAD or DUMP.

Only one copy of SYSTEM/LOADDUMP per usercode is permitted to be running at a time.

The conventional file is described using a COBOL74 or COBOL85 file description (FD).

When performing a LOAD, FD items are transferred to the same named data set items.

When performing a DUMP, data set items are transferred to the same named FD items.

If the names of the items in the data set and file description are not identical, they can be

equated using the EQUATE statement.

The components of SYSTEM/LOADDUMP and the interrelationships among these

components are illustrated in Figure 17–1.

8600 0759-622 17–1

Figure 17–1. LOADDUMP Components

Steps for Using LOADDUMP

Each run of SYSTEM/LOADDUMP generates LOAD and DUMP programs for one disjoint

data set and a COBOL74 or COBOL85 FD. The user must do the following steps to create

these programs:

1. SYSTEM/LOADDUMP must be run specifying the data set and corresponding FD. The

FD must be contained in an external COBOL74 or COBOL85 symbolic or in the

LOADDUMP specifications. Also, the user can specify a mapping of items that

determines which data elements are transferred back and forth between the data set

and the conventional file in loading and dumping.

If the LOADDUMP run is error-free, LOAD and/or DUMP symbolics are created.

2. The symbolics resulting from LOADDUMP can be compiled with the COBOL74 or

COBOL85 compiler. Optionally, this compilation can be automatically initiated from

Loading and Dumping Conventional Files

17–2 8600 0759-622

LOADDUMP. Syntax errors can result from these compilations, because LOADDUMP

does not check the syntax of the COBOL74 or COBOL85 file description or the

COBOL74 or COBOL85 MOVE statements resulting from the item mapping.

3. The user can edit the LOAD and/or DUMP symbolics to correct any syntax errors or

add any desired features.

4. Once the LOAD and/or DUMP symbolics have been compiled, they can be run against

the database. Various run-time errors, such as DATAERROR or DUPLICATES, can

occur. LOADDUMP has no way of predicting such errors; however, the user can

modify the generated source program and rerun it.

LOADDUMP

The code file for the LOADDUMP program is SYSTEM/LOADDUMP, and the symbol file is

DATABASE/LOADDUMP. LOADDUMP generates programs that load a data set from a

conventional file or dump a data set to a conventional file. The user provides the name of

the data set and description of the conventional file. Given this information,

SYSTEM/LOADDUMP automatically generates and compiles COBOL74 or COBOL85

programs to perform the load and dump.

LOADDUMP is not a tailored program, but instead reads and interprets the Data and

Structure Definition Language (DASDL) description file at run time. The general format to

run the LOADDUMP program is as follows:

? BEGIN JOB LOADDUMPRUN;
RUN SYSTEM/LOADDUMP;
DATA CARD

.

. <load dump specifications>

.
? END JOB

The syntax for SYSTEM/LOADDUMP is illustrated and explained on the following pages.

Syntax

<load dump specifications>

──<database specification>──<file specification>───────────────────────►

►─┬──────────────────────────┬─<load dump>─────────────────────────────┤
└─<equation specification>─┘

<database specification>

── DB ─┬─<database name>──────────────────────────────┬─ ; ────────────►
└─ <logical database name> OF <database name> ─┘

►─ DATASET ─┬─<data set name>─┬─ ; ────────────────────────────────────►
├─<database name>─┤
└─<remap name>────┘

►─┬────────────────────────────────────┬───────────────────────────────┤

Loading and Dumping Conventional Files

8600 0759-622 17–3

│ ┌◄─────── , ───────┐ │
└─ EXCLUDE ─┴─<data item name>─┴─ ; ─┘

<file specification>

──┬──────────┬─ FILE ──<FD name>─┬────────────────────────┬─ ; ─────────────────►
├─COBOL74──┤ └─ TITLE = <file title> ─┘
└─COBOL85──┘

►───────────────── RECORD── <record name>── ; ─────────────────────►

►─ SOURCE ─┬─ FOLLOWS; ──<COBOL74 OR COBOL85 text>── END SOURCE ─┬─ ;─┤
├─<source file title>─────────────────────────────────┤
└─────DATASET───┘

<equation specification>

┌◄───────────────── , ────────────────┐
── EQUATE ─┴─┬─<group item equation>───────────┬─┴─ ; ─────────────────┤

└─<elementary data item equation>─┘

<group item equation>

──<file group item>── = ──<data set group item name>───────────────────►

►─┬───┬──────────────────┤
│ ┌◄───────────────── , ────────────────┐ │
└─ (─┴─┬─<group item equation>───────────┬─┴─) ─┘

└─<elementary data item equation>─┘

<elementary data item equation>

──<file data item>── = ──<data set data item name>─────────────────────┤

<load dump>

┌◄───┐
──┴─┬─/1\─ LOAD ───────────────────────────┬─ ; ─┴─────────────────────┤

└─/1\─ DUMP ─┬─────────────────────────┤
└─ VIA <index structure> ─┘

Explanation

The conventional file used during the LOADDUMP run is described using a COBOL74 or

COBOL85 FD. This file description can be supplied in one of three ways:

• It can be included in card form with the LOADDUMP specifications.

• It can be extracted from an existing COBOL74 or COBOL85 symbol file.

• It can be generated automatically by LOADDUMP from the database description file.

LOADDUMP can vary depending on the source of the file description.

For easier access of information, the explanation of LOADDUMP syntax is divided into the

following four subjects:

• Database specification clause

• File specification clause

Loading and Dumping Conventional Files

17–4 8600 0759-622

• Equation specification clause

• Load dump constant

Database Specification Clause

The following information explains the elements of the database specification clause.

Option Explanation

<database specification> Identifies the database and data set on which to use LOADDUMP.

DB Identifies the database or logical database that contains the data set

or remap to be loaded or dumped.

The description file associated with the database is assumed to

• Be in the same location as the database control file

• Have the name DESCRIPTION/<database name>

If your description file is in another location or titled differently,

when you run LOADDUMP, file-equate the description file title to

the internal file name DASDL.

DATASET Specifies the name of the disjoint data set, global data, or remap for

which LOADDUMP generates utilities. The data set, global data, or

remap must be contained in the database or logical database

specified in the DB clause. The RESTART data set or variable format

data sets must not be specified.

EXCLUDE Informs the LOADDUMP program that the LOAD and/or DUMP

programs must not transfer data into or out of the specified items.

All data items listed in the EXCLUDE clause must be contained in

the data set, global data, or remap specified by the DATASET clause.

Only data items, virtual items, and group items can be specified in

the EXCLUDE clause. Items other than data items, virtual items, or

group items are implicitly excluded.

File Specification Clause

The following information explains the elements of the file specification clause.

Option Explanation

<file specification> Defines the COBOL74 or COBOL85 description used during the

LOADDUMP run.

Loading and Dumping Conventional Files

8600 0759-622 17–5

Option Explanation

COBOL74 Indicates COBOL74 as the compiler of choice for the compilation of

code generated by the LOADDUMP utility. COBOL74 is the default

compiler.

Note: COBOL74 does not support DATE and TIME items. If DATE

and/or TIME items are included in the LOADDUMP operations,

COBOL85 must be specified for the compilation of code generated

by the LOADDUMP utility.

COBOL85 Indicates COBOL85 as the compiler of choice for the compilation of

code generated by the LOADDUMP utility.

This option is required if DATE and/or TIME items are included in the

LOADDUMP operations.

<FD name> Specifies the name of the COBOL74 or COBOL85 file description. If

the file description is to be extracted from COBOL74 or COBOL85

text, either included in card form with the LOADDUMP

specifications or extracted from an existing COBOL74 or COBOL85

symbolic, there must be a valid file description with the specified

<FD name>. If the file description is generated by LOADDUMP

from the database description file, LOADDUMP assigns an <FD

name> to the extracted file description.

TITLE = <file title> Specifies the title of the external file to which the COBOL74 and

COBOL85 programs write and read. This file title is placed in the file

description program. The file title must be in control card format. If

this option is specified, it overrides any title specifications in the

original COBOL74 or COBOL85 text.

RECORD Specifies the name of the 01 record name contained in the file

description. The record contains the items that are transferred from

the data set to the file and vice versa. If the file description is to be

extracted from COBOL74 or COBOL85 text, either included in card

form with the LOADDUMP specifications or extracted from an

existing COBOL74 or COBOL85 symbol file, the record name must

be a valid record name in that file description. If extraction is from

the data set, LOADDUMP assigns a record name to the file

description.

SOURCE Specifies the location of the COBOL74 or COBOL85 text containing

the file description for the specified <FD name>.

LOADDUMP does not recognize or process COBOL74 or COBOL85

COPY statements; therefore, the user should always specify a

SOURCE clause that contains the total file description.

Loading and Dumping Conventional Files

17–6 8600 0759-622

Option Explanation

<COBOL74 text>

<COBOL85 text>

Consists of any COBOL74 or COBOL85 text that contains the FD

and the SELECT statement for the file description to be extracted.

Although COBOL74 or COBOL85 text can contain optional

COBOL74 or COBOL85 source code, only the FD and the SELECT

statement for the FD are extracted from the COBOL74 or COBOL85

text by LOADDUMP.

LOADDUMP might skip certain clauses in these statements or add

certain values needed for the resulting programs. In particular,

clauses containing data names (instead of literals) must be deleted

because LOADDUMP cannot determine what those values should

be at run time. The user should verify that the resulting COBOL74 or

COBOL85 declarations in the LOAD and DUMP symbolics are

correct.

SOURCE FOLLOWS Indicates the COBOL74 or COBOL85 source containing the FD

must be specified directly in the LOADDUMP specifications as

COBOL74 or COBOL85 text. LOADDUMP assumes that colums 1

through 72 contain COBOL74 or COBOL85 text until the END

SOURCE statement is reached. The COBOL74 or COBOL85 text

can be in free-field format using all of the colums. COBOL74 or

COBOL85 sequence numbers should not be used, because they are

assumed to be COBOL74 or COBOL85 format.

SOURCE <source file

title>

Indicates the FD is contained in the external COBOL74 or COBOL85

symbolic titled <source file title>. This symbolic must contain the

COBOL74 or COBOL85 text previously described and be in

legitimate COBOL74 or COBOL85 format.

SOURCE DATASET Informs LOADDUMP to extract a COBOL74 or COBOL85 FD from

the specifications of the data set. No COBOL74 or COBOL85 text is

used with this option. All data items, virtual items, and group items

excluded from the data set with the EXCLUDE clause are excluded

from the FD. The remaining items are included as follows:

The order and identifiers of the items remain the same as in the

DASDL specifications.

The items are translated from DASDL item types to COBOL74 or

COBOL85 item types with traditional syntax, except Boolean items,

which are translated to X(1).

Equation Specification Clause

The following information explains the elements of the equation specification clause.

Loading and Dumping Conventional Files

8600 0759-622 17–7

Option Explanation

<equation specification> Establishes a correspondence between the items of the file and the

items of the data set that do not have the same symbolic names.

An equation specification can be specified only if the COBOL74 or

COBOL85 file description is to be extracted from COBOL74 or

COBOL85 text either included in card form with the LOADDUMP

specifications or extracted from an existing COBOL74 or COBOL85

symbol file. An equation specification cannot be specified if the file

description is generated from the data set.

Rules for Equation Specification

You must follow the following rules when performing an equation specification:

• Occurring items cannot be equated to nonoccurring items, and vice versa.

• Group items cannot be equated to elementary data items, and vice versa.

• The record name and data set name cannot be equated; their equation is implied.

• The <group item equation> construct must be specified to equate items contained in

groups.

• The use of subscripts and COBOL74 or COBOL85 qualification is not allowed.

• Data set items excluded with the EXCLUDE clause cannot be equated.

• An Enterprise Database Server field of Boolean values is considered a group with the

individual items subordinate to it.

• Items can be equated only one time.

Items can be explicitly equated using the equation specification, or implicitly equated by

LOADDUMP. The LOAD and DUMP programs only move data between equated items.

LOADDUMP uses the following algorithm to equate items:

• All equations specified in the equation specification are performed first.

• Implicit equation of all items not already equated is performed second.

Equation Criteria

A file item is implicitly equated to a data set item if it meets the following criteria:

• The items must have the same symbolic name.

• The items must not be equated with an equation specification.

• The data set items must not be excluded with the EXCLUDE clause.

• The following items can be equated only to items of the same type (for example,

occurring items can be equated only to other occurring items):

- Occurring items

- Nonoccurring items

Loading and Dumping Conventional Files

17–8 8600 0759-622

- Group items

- Elementary data items

• Both items must reside at the same level with respect to groups.

• If the items reside in groups, all possible corresponding qualifiers of the items must be

either identical or equated using the EQUATE clause.

Examples of Equation Specification

Assume that the following COBOL74 or COBOL85 file description (FD) and Enterprise

Database Server data set are to be used during a LOADDUMP run:

COBOL74 or COBOL85 FD DMSII DATA SET
------- -- ----- ---- ---

FD F-D.
01 REC-NAME. D-S DATA SET (

03 A PIC X(10). A ALPHA (10);
03 B-Y ... B ...;
03 C. C GROUP (

06 C-1 ... C-1 ...;
06 C-2 ... C-2 ...;

);
03 D ... D ...;
03 E. E GROUP (

06 E-1 ... E-1-X ...;
06 E-2 ... E-2-X ...;

);
03 F OCCURS ... F GROUP OCCURS ... (

06 F-1 ... F-1 ...;
06 F-2 ... F-2 ...;

);
03 G. G GROUP OCCURS ... (

06 G-1 ... G-1 ...;
06 G-2 ... G-2 ...;

);
03 H. H GROUP (

06 H-1 ... H-1 ...;
06 H-2. H-2 GROUP (

09 H-2-1 ... H-2-1 ...;
09 H-2-2 ... H-2-2 ...;

);
06 H-3-Y ... H-3 ...;

);
03 I PIC 9(6) OCCURS ... I REAL OCCURS ...;
03 J-Y. J FIELD (

06 J-1 PIC X(2). J-1;
06 J-2 PIC X(6). J-2;

);
);

• If no equation specification is declared, the following implicit correspondence is

assumed:

COBOL FD DATA SET
----- -- ---- ---

Loading and Dumping Conventional Files

8600 0759-622 17–9

A A
C C
C-1 C-1
C-2 C-2
D D
E E
F F
-1 F-1
F-2 F-2

H H
H-1 H-1
H-2 H-2
H-2-1 H-2-1
H-2-2 H-2-2
I I

The following associations are not made:

COBOL FD DATA SET EQUATE CRITERIA VIOLATED
----- -- ---- --- ------ -------- --------

B-Y B DIFFERENT SYMBOLIC NAMES
E-1 E-1-X DIFFERENT SYMBOLIC NAMES
E-2 E-2-X DIFFERENT SYMBOLIC NAMES
G G BOTH ITEMS DO NOT OCCUR
G-1 G-1 QUALIFIERS NOT IDENTICAL OR EQUATED
G-2 G-2 QUALIFIERS NOT IDENTICAL OR EQUATED
H-3-Y H-3 DIFFERENT SYMBOLIC NAMES
J-Y J DIFFERENT SYMBOLIC NAMES
J-1 J-1 QUALIFIERS NOT IDENTICAL OR EQUATED
J-2 J-2 QUALIFIERS NOT IDENTICAL OR EQUATED

• In addition to the implicit equations shown in the previous example, the following

equation specification can be specified:

EQUATE
B-Y = B,
E = E (

E-1 = E-1-X,
E-2 = E-2-X

),
H = H (

H-3-Y = H-3
),

J-Y = J;

• The following equation specification illustrates additional features and restrictions of

the EQUATE clause:

EQUATE
A = A, % LEGAL BUT UNNECESSARY
B-Y = B, % NECESSARY TO MAKE THIS ASSOCIATION
C = D, % ILLEGAL - GROUP ITEM CANNOT BE

EQUATED TO ELEMENTARY ITEM
E = E (% NECESSARY TO EQUATE SUBORDINATES

E-1 = E-1-X,
E-2 = E-2-X

),
F = F, % LEGAL BUT UNNECESSARY

Loading and Dumping Conventional Files

17–10 8600 0759-622

G = G, % ILLEGAL - OCCURRING ITEMS CANNOT BE
EQUATEDTO NONOCCURRING
ITEMS

H = H (% NECESSARY TO EQUATE H-3-Y = H-3
H-3-Y = H-3

),
I = D, % ILLEGAL - OCCURRING ITEMS CANNOT BE

EQUATED TO NONOCCURRING
ITEMS

J-Y = J (% NECESSARY TO EQUATE GROUP
J-1 = J-1,
J-2 = J-2

);

LOADDUMP Construct

The following information explains the elements of the LOADDUMP construct.

Option Explanation

<load dump> Specifies which symbolics are to be created. The LOAD and DUMP

symbolics are produced only if the LOADDUMP run has been error-

free.

LOAD Specifies a COBOL74 or COBOL85 symbolic that can be compiled

into a program to load a data set from a conventional file is

generated. This program performs an OPEN UPDATE on the

database.

If INDEPENDENTTRANS has been set for a database,

SYSTEM/LOADDUMP generates a load program that performs a

LOCK STRUCTURE on the data set to be loaded prior to entering

transaction state. LOCK STRUCTURE is required to avoid a

DEADLOCK exception if more than 50,000 records must be loaded

into the data set during a single program run.

DUMP Specifies a COBOL74 or COBOL85 symbolic that can be compiled

into a program to dump a data set to a conventional file is generated.

If INDEPENDENTTRANS has been set for a database,

SYSTEM/LOADDUMP generates a dump program that performs a

LOCK STRUCTURE on the data set to be dumped.

VIA <index structure> Causes the resultant program to dump records according to the

order and WHERE condition of the <index structure> as specified in

DASDL. The <index structure> construct must be a disjoint set or

subset against the data set.

If VIA <index structure> is not specified, records are dumped in data

set physical order.

Compilation of the LOAD and DUMP symbolics is automatically initiated by default. (See

“Compiler Control Options for LOADDUMP” described later in this section.)

Loading and Dumping Conventional Files

8600 0759-622 17–11

COBOL74 or COBOL85 MOVE Algorithm

LOADDUMP is generally insensitive to item types and COBOL74 or COBOL85 MOVE

rules. The resulting MOVE code should always be checked by the user.

With the possible exception of occurring items, MOVE code is generated for all equated

items, whether equated implicitly or explicitly.

Data management Boolean items are dumped from a data set to a conventional file

according to the following algorithm:

• If the Boolean item is TRUE, a value of 1 is stored in the corresponding file item.

• If the Boolean item is FALSE, a value of 0 is stored in the corresponding file item.

Data management Boolean items are loaded to a data set from a conventional file

according to the following algorithm:

• If the file item has a value of 1, the Boolean item in the data set is set to TRUE.

• If the file item has a value other than 1, the Boolean item in the data set is set to

FALSE.

Data management number items are dumped from a data set to a conventional file

according to the following algorithm:

• If the number item contains null values (all F), then the corresponding BINARY item

(default) in the file is given a value of 0 because no move operation is performed.

• If the number item contains any other value, then that value is moved to the

corresponding file item.

Only corresponding occurrences of OCCURRING items are moved.

Example

DASDL COBOL74 or COBOL85

A ... OCCURS 3 ... 01 A ... OCCURS 2 TO 4 ...

B ... OCCURS 10 ... 01 B ... OCCURS 5 ...

Only three occurrences of A can be moved to prevent an INVALID INDEX on the

DASDL item A. Only five occurrences of B can be moved to prevent an INVALID INDEX on

the COBOL74 or COBOL85 item B.

Compiler Control Options for LOADDUMP

SYSTEM/LOADDUMP has the following compiler control options that are initialized:

Loading and Dumping Conventional Files

17–12 8600 0759-622

• LIST

When LIST is set, LOADDUMP produces a listing of the user input deck.

• ZIP

When ZIP is set, compilation of the LOAD and/or DUMP programs is automatically

begun. You can assign the value RESET to ZIP and compile the LOAD and/or DUMP

programs separately. The compilation deck for the LOAD and DUMP programs is as

follows:

BEGIN JOB LOADDUMPCOMPILE;
COMPILE LOAD/<database name>/<data set name>

WITH <compiler name> LIBRARY;
COMPILER FILE TAPE SOURCE =

SYMBOL/LOAD/<database name>/<data set name>;
COMPILER DATA CARD

000000$ MERGE

? COMPILE DUMP/<database name>/<data set name>
WITH <compiler name> LIBRARY;

COMPILER FILE TAPE SOURCE =
SYMBOL/DUMP/<database name>/<data set name>;

COMPILER DATA CARD
000000$ MERGE

? END JOB

Columns 73 through 80 are ignored by SYSTEM/LOADDUMP.

• LISTSYM

When LISTSYM is set, a listing of the symbolics for the LOAD and/or DUMP

programs is produced by the COBOL74 or COBOL85 compiler after compilation.

Loading and Dumping Conventional Files

8600 0759-622 17–13

Loading and Dumping Conventional Files

17–14 8600 0759-622

Section 18
Compiling Software

When you need to compile Enterprise Database Server software, you can use the two

Work Flow Language (WFL) job decks specified and described in the following text. It is

recommended that you use the following WFL job when you are compiling the software

manually:

DATABASE/WFL/COMPILEACR

The string parameter for the above WFL job cannot exceed 256 characters. If you need to

exceed this character limit, use the following WFL job:

DATABASE/WFL/COMPILEDB

These two jobs function in the same way. The only difference is that you use four

parameter strings in DATABASE/WFL/COMPILEDB. The first string in both statements is

the same except that DATABASE/WFL/COMPILEACR can add the Enterprise Database

Server software titles. The second through fourth strings in DATABASE/WFL/COMPILEDB

are used to specify Enterprise Database Server software titles, one title per parameter. A

null string (“ ”) is required for each software that is not being compiled. Currently, the

software titles that can be specified are Accessroutines, DMSUPPORT, and

RECONSTRUCT.

If the Data and Structure Definition Language (DASDL) ZIP option is assigned the value

SET and no syntax errors are detected, the DASDL compiler automatically begins a WFL

file titled DATABASE/WFL/COMPILEDB to compile the DMSUPPORT library. For audited

databases, RECONSTRUCT is also compiled. No compilations are initiated when ZIP is

reset.

Compilation WFL Job Parameters

The WFL job files can be started any time to compile the tailored database software. This

job file takes as input a string parameter consisting of <keyword> = <value> pairs that

specifies the actions to be taken. Table 18–1 gives the keywords, their default values, and

their meanings. The capitalized portion of each keyword is an acceptable abbreviation for

it.

8600 0759-622 18–1

Table 18–1. Compilation WFL Job Parameter Keywords

Keyword Default Value

DB DEFAULTDB

SOurce DISK

OBJECT DISK

DESCription DISK

AUDIT RESET

INITialize RESET

ACR SYSTEM/ ACCESSROUTINES

COMPILE All software

Examples

START DATABASE/WFL/COMPILEACR("DB=TESTDB
OB=DEVELPK C=RECON INIT=SET")

START DATABASE/WFL/COMPILEDB
("DB=TESTDB OB=DEVELPK C=DMSUPPORT,RECON

INIT=SET","","","","","");

Either of the preceding examples causes the compilation of the RECONSTRUCT program

for the database TESTDB, whose description file is DESCRIPTION/TESTDB. The created

code files are placed on DEVELPK. All the database files are initialized using DMUTILITY.

If the database has more than 8000 structures and the WFL job

DATABASE/WFL/COMPILEDB is initiated manually, then a value of TRUE is required for

the ninth parameter. For example:

START DATABASE/WFL/COMPILEDB
("DB=TESTDB OB=DEVELPK C=DMSUPPORT,RECON

INIT=SET","","","","","",,,TRUE);

WFL Job Attribute Specifications

DATABASE/WFL/COMPILEACR and DATABASE/WFL/COMPILEDB do not provide any job

attribute specifications. These WFL decks can be modified to add the user-specific

specifications. These specifications are

• CLASS specification

• FAMILY specification

• USERCODE specification

• FETCH specification

• JOB ATTRIBUTE assignment

Compiling Software

18–2 8600 0759-622

In addition, the SECURITY statement can also be added after a successful compilation to

change the security of the compiled code.

For detailed information about JOB ATTRIBUTE assignment specifications and the

SECURITY statement, refer to the WFL Reference Manual.

If the database software is to be compiled for a different TARGET, then a value of

″LEVEL5″ or ″LEVEL6″ may be passed for the tenth parameter. For example:

START DATABASE/WFL/COMPILEDB
("DB=TESTDB OB=DEVELPK C=DMSUPPORT,RECON",

"","","","","",,,,"LEVEL6");

DMSUPPORT

The DMSUPPORT library is generative software. A separate library code file must be

compiled for each database. Because the library is shared by all, there is never more than

one library stack in the mix for each database.

The library symbolic is contained in the file DATABASE/DMSUPPORT, and the default

code file title is DMSUPPORT/<database>.

The library is automatically compiled by the standard compilation deck,

DATABASE/WFL/COMPILEDB, when the DASDL compiler control option ZIP is set. The

following WFL statement causes the compilation deck to compile the library only:

STARTJOB DATABASE/WFL/COMPILEACR("DB=EXAMPLEDB COMPILE DMSUPPORT")

Alternatively, the following WFL job shows how the DMSUPPORT library can be compiled

for a database called EXAMPLEDB:

?BEGIN JOB COMPILE/DMSUPPORT;
TASK T;
COMPILE DMSUPPORT/EXAMPLEDB WITH DMALGOL [T] LIBRARY;
COMPILER FILE CARD (KIND = PACK, FAMILYNAME = DISK,

TITLE = DATABASE/DMSUPPORT);
COMPILER FILE DASDL (TITLE = DESCRIPTION/EXAMPLEDB);
IF T ISNT COMPILEDOK THEN

ABORT "DMSUPPORT COMPILE FAILED";
?END JOB

RECONSTRUCT

The RECONSTRUCT program is generative software. A separate code file, named

RECONSTRUCT/<database name> by default, must be compiled for each audited

database. This program is used if a row reconstruction is necessary. (Refer to

“DMUTILITY RECOVER Statement” in Section 8, Recovering the Database, for

instructions on how to reconstruct rows.) The following WFL statement causes the

compilation deck to compile the RECONSTRUCT program only:

STARTJOB DATABASE/WFL/COMPILEACR
("DB=EXAMPLEDB COMPILE=RECONSTRUCT")

Compiling Software

8600 0759-622 18–3

EXAMPLEDB must be an audited database. The RECONSTRUCT program is compiled

automatically by the standard compilation deck, DATABASE/WFL/COMPILEDB, if the

DASDL compiler control option ZIP is set and the database is audited.

DMINTERPRETER

For information on compiling the software DMINTERPRETER, refer to the Enterprise

Database Server Interpretive Interface Programming Manual.

RMSUPPORT

The RMSUPPORT library is software that must be specially compiled for each database

and for each database model.

The library symbolic is contained in the file DATABASE/RMSUPPORT, and the default code

file title is RMSUPPORT/<database name>.

The library is automatically compiled by the standard compilation deck,

DATABASE/WFL/COMPILEDB, when both of the following options are set:

• The DASDL compiler control option ZIP

• The DASDL option OPENOLTP

The following WFL statement causes the compilation deck to compile the RMSUPPORT

library only:

STARTJOB DATABASE/WFL/COMPILEACR("DB=EXAMPLEDB COMPILE RMSUPPORT")

Alternatively, the following WFL job shows how the RMSUPPORT library can be compiled

for a database called EXAMPLEDB:

?BEGIN JOB COMPILE/RMSUPPORT;
TASK T;
COMPILE RMSUPPORT/EXAMPLEDB WITH DMALGOL [T] LIBRARY;
COMPILER FILE CARD (KIND = PACK, FAMILYNAME = DISK,

TITLE = DATABASE/RMSUPPORT);
COMPILER FILE DASDL (TITLE = DESCRIPTION/EXAMPLEDB);
IF T ISNT COMPILEDOK THEN

ABORT "RMSUPPORT COMPILE FAILED";
?END JOB

Compiling Software

18–4 8600 0759-622

Section 19
Controlling Partitioned Records

Normally all records within a structure reside in a single file. This file must be present on

disk or pack whenever the structure is in use. The records of a partitioned structure do not

all reside in a single file. Instead, the records are divided, or partitioned, among several

files. Only those files required for the current application need be present on disk or pack,

while the remaining files can be stored on some backup medium. Partitioning is used for

structures that would otherwise require very large files. It reduces the amount of disk or

pack space required when only a small portion of the file is used at any single time.

Only embedded structures can be partitioned. The embedded structure is partitioned

based upon the value of an item in the disjoint data set that contains the embedded

structure. The data item that controls the partitioning is the partition key. The partition key

serves as the key of the partitioning set. The disjoint data set that contains the partition

key and the partitioned structure is the partition master.

Embedded structures at any level can be partitioned. No matter how deeply embedded

the partitioned structure might be, the partition master is always the disjoint data set that

contains the structure.

There can be as many partitions as there are unique values of the partition key. The

system automatically keeps track of the partitions that currently exist using a structure

called the Partition Directory. There is a record in the Partition Directory for each partition in

the database.

Partition Directory Overview

A database containing at least one partitioned structure contains one extra structure not

defined by the user in the Data and Structure Definition Language (DASDL) source. This

extra structure is an ORDERED data set, named PARTITIONINFO. The PARTITIONINFO

data set has an access declared against it, named PARTITIONLIST. The DASDL source for

this structure is contained in DATABASE/PROPERTIES, and is automatically included by

the DASDL compiler for databases containing partitions. If the source text for the

PARTITIONINFO data set is not found in the PROPERTIES file, an appropriate syntax error

results. This situation could occur when an incorrect version of DATABASE/PROPERTIES

is read.

The PARTITIONINFO data set is the Partition Directory. Although it is accessible in a

normal manner by the user, it is intended to be created and maintained by the system.

There is a record in the Partition Directory for each partition file belonging to the database.

8600 0759-622 19–1

This record contains three items:

• The structure number

• The partition identifier, which is the value of the partition key

• The partition number, which uniquely identifies the partition

The first time a record in a partitioned structure is referenced after the value of the

partition key has changed, the system automatically looks in the Partition Directory to

determine if the partition exists. If it does, the file is opened and accessed in the normal

manner. If it does not, the proper file is created, and a record for it is created in the Partition

Directory. Subsequent references to the same partition cause the system to seek records

in the same partition file, thereby incurring very little overhead beyond that of a

nonpartitioned structure. The Partition Directory is a normal database structure, and not a

special data file, for the following reasons:

• The mechanism for creating, maintaining, and searching the file already exists.

• The file can be easily examined by the user; for example, through INQUIRY or

userwritten programs.

Note: Do not modify the file unless absolutely necessary because incorrect

modification might completely defeat the purpose of the Partition Directory.

• The file can be modified by the user if necessary. Because incorrect modification

might completely defeat the purpose of the Partition Directory, this procedure is

strongly discouraged.

• For audited databases, the file is fully protected by normal audit and recovery

procedures.

Partition Directory Details

The DASDL source for the Partition Directory, contained in DATABASE/PROPERTIES, is as

follows:

PARTITIONINFO % SYSTEM DATA SET
ORDERED DATA SET "PARTITION DIRECTORY FOR SYSTEM USE"
(% SYSTEM DATA SET

STRUCTURENUM FIELD(16); % SYSTEM DATA SET
PARTITIONID ALPHA(17); % SYSTEM DATA SET
PARTITIONNUM FIELD(20); % SYSTEM DATA SET

) % SYSTEM DATA SET
POPULATION = 1000, % SYSTEM DATA SET
BLOCKSIZE = 110, % SYSTEM DATA SET
CHECKSUM = TRUE; % SYSTEM DATA SET

PARTITIONLIST % SYSTEM DATA SET
ACCESS TO PARTITIONINFO % SYSTEM DATA SET

KEY IS (STRUCTURENUM, PARTITIONID); % SYSTEM DATA SET

You can alter the physical options of the PARTITIONINFO data set by including a

DEFAULTS statement in the DASDL source, or by modifying its declaration in

DATABASE/PROPERTIES. Changing DATABASE/PROPERTIES affects all users of the

DATABASE/PROPERTIES file.

Controlling Partitioned Records

19–2 8600 0759-622

PARTITIONINFO is an ORDERED data set so that it can be searched easily and efficiently

without an index set.

The keys of the access (STRUCTURENUM and PARTITIONID) are the primary structure

number and a string created from the value of the partition key. These values are known by

the system when a partition is required.

PARTITIONNUM is an unique integer assigned to each partition when it is created.

PARTITIONNUM is used to locate a partition timestamp entry in the database control file.

(Refer to Section 2, Control File, for further details.) The value is assigned by incrementing

a variable called PARTITIONNUMBER, which is maintained in the control file.

All references to the PARTITIONINFO data set or its access are made with the normal

Accessroutines code. There is no special code to handle Partition Directory structures.

A new partition (and new entries in the PARTITIONINFO data set and control file) is not

created if changes are not allowed at the time of the first reference. For example, a new

partition is not created if the database is OPEN INQUIRY, or while outside transaction

state for audited databases. In addition, an error exception (NOTFOUND 7) is returned to

the user program. This is the same exception returned for a normal embedded structure if

it has never been created.

There are occasions when a portion of the database must be initialized; for example,

when new structures are added to an existing database. On these occasions, the

PARTITIONINFO data set can be automatically invoked and implicitly reinitialized along

with the structures that must be initialized. When this occurs, the PARTITIONINFO data

set is created from the partition entries in the control file. Although it is not encouraged,

reinitialization of existing structures containing partitioned structures will also work

properly as far as the Partition Directory is concerned. In this case, all partitions belonging

to the reinitialized master structures are purged from the Partition Directory. When the

PARTITIONINFO data set is recreated from the control file, it reflects the current state of

the partitions.

Audit and Recovery Considerations

The following three components of the Partition Directory require recovery after a failure:

• The PARTITIONINFO data set

• The partition timestamps in the control file

• The PARTITIONNUMBER value in the control file

These components can all be recovered properly if the database is audited.

All changes to the PARTITIONINFO data set are audited in the normal manner. Recovery of

the PARTITIONINFO data set is completely standard.

The Accessroutines performs the following steps when a new partition file is created:

Controlling Partitioned Records

8600 0759-622 19–3

• Increment and update PARTITIONNUMBER in the control file.

• Write a create partition audit record that contains the partition identifier and the new

value of PARTITIONNUMBER.

• Create a new record in the PARTITIONINFO data set.

• Create a null partition file with the proper title and file attributes.

• Audit all changes to the partition file, which creates the initial structure (not audited for

creation of nonpartitioned structures).

It is possible to back out the creation of a partition during a recovery process. It is

necessary to return the partition number to the control file, and purge the corresponding

partition timestamp record. The partition file itself is purged and eliminated from the

system.

If the creation of a partition is repeated by the application of afterimages such as during

REBUILD, it is necessary only to create a null file with the proper name and file attributes;

successive afterimages will create the proper initial structure of the file.

Controlling Partitioned Records

19–4 8600 0759-622

Section 20
Using the Audit Reader Library Interface

This section describes how to use the interface provided by the audit reader library, called

DMAuditLib, to enable utility and user programs to access Enterprise Database Server

audit files . This section includes the following topics:

• Audit reader library overview

• Using the ALGOL interface

• Entry points

• Error results

Audit Reader Library Overview

contains entry points The DMAuditLib library is the recommended means for accessing

the Enterprise Database Server audit files for utility and user programs. Prior to the

introduction of the DMAuditLib library in SSR 44.2, programs needing to access the audit

trail did so by using the Direct I/O interface against the audit files.

The DMAuditLib library contains entry points that return audit records in addition to

returning audit blocks. This feature enables utility and user programs either to decode the

audit blocks or request the DMAuditLib library to return only audit records extracted from

the audit blocks. Using the older Direct I/O interface to access the audit records within the

audit file, a program performs a read operation against a physical file block of data, extracts

the audit block, and then returns the information from the individual audit records within

the block.

With the introduction of sectioned audit files in the XE features, all programs that directly

access an audit file must be recoded to account for the following issues:

• Multiple physical files will exist where there was previously only one file.

• The number of physical files that must be read can vary between logical audit files.

• The programs must recognize the scheme used to write records and blocks into the

physical files.

User programs could, of course, be modified to accommodate sectioned audit files, but

changing the programs to access the audit by way of a library interface that recognizes

sectioned audit files is much more efficient. Knowledge of the number of audit sections

needed, the allocation of audit records and blocks within those files, and other issues are

isolated and handled within the library. This approach makes converting existing programs

8600 0759-622 20–1

easier for customers. In addition, use of the library reduces the impact on user programs

should it be necessary to make changes in the implementation of the audit file (naming

conventions, record and block allocation schemes, file locations, section limits, and so

forth).

You must convert existing programs to use the DMAuditLib library by completing the

following actions:

• Direct the calling programs to include the necessary entry point and other interface

declarations from the DATABASE/PROPERTIES file.

• Discard all code related to physical reads of the audit files.

• Convert all calls to the discarded code so that the call is made to the appropriate

DMAuditLib library entry point.

The DMAuditLib library is declared in the SYMBOL/DMAUDITLIB file as follows:

• SHARING=PRIVATE

• LIBACCESS=BYFUNCTION

• FREEZE(TEMPORARY)

The library FUNCTIONNAME attribute is DMSIIAUDITSUPPORT.

For ALGOL applications, the transfer of information from the library to the application is

optimized through the use of arrays exported by the DMAuditLib library. The Audit_Buffers

and AUDIT_INFO arrays return information common to all the library procedures. These

procedure calls include by-name parameters, which the library uses to indicate where in

the exported AUDIT_BUFFERS array the requested data can be found. Detailed status

information is available in the exported AUDIT_INFO array. Specific information on

procedure parameters is included later in this section under “Entry Points.”

Using the ALGOL Interfaces

The ALGOL interfaces are exported from the DMAuditLib library and the ALGOL data

arrays transfer the audit data from the library to the calling program.

To include the full text of the ALGOL interfaces into a calling program, use the $INCLUDE

command as shown in the following example:

$INCLUDE "DATABASE/PROPERTIES" 38000000 - 38999999

These ALGOL data arrays are exported to the calling program as part of the library

declaration, for example:

LIBRARY AUDITLIB (
LIBACCESS=BYFUNCTION

, FUNCTIONNAME="DMSIIAUDITSUPPORT."
)

[ARRAY AUDIT_INFO [0] ;
ARRAY AUDIT_BUFFERS [0, 0] (READWRITE) ;

] ;

Using the Audit Reader Library Interface

20–2 8600 0759-622

ALGOL Array Reference AUDIT_INFO [0]

The single-dimension ALGOL array AUDIT_INFO is used to return static and dynamic

control information about the open audit file. The following types of information are

included:

• Linkage and operational

• Logical audit file

• Internal buffer

• Audit section

• Block list

You can use this information to determine

• Logical and physical file information

• Information from block 0 of the audit file

• A summary of the most recent call to the library procedures

• An interpretation of information contained within the most recent audit block or

record, beyond the minimal information that is returned directly into the output

parameters

The Audit_Info array is marked as “read only” within the calling program. If the calling

program attempts to modify any information within the Audit_Info array, the program is

terminated with faults.

The contents of this array are valid when an audit file is open. If no audit file is open, the

Audit_Info array should not be used.

Three groups of information are repetitive:

• The internal buffer group includes one set of information for each internal buffer.

(Refer to “ALGOL Array Reference AUDIT_BUFFERS [0, 0]” later in this section.)

• The audit section group includes one set of information for each audit section,

including a copy of block 0 for each section.

• The block list group can include multiple sets of information.

To simplify the ALGOL interface for these groups of information, real variables are

exported from the DMAuditLib library and are used by the accessing defines, which make

the Audit_Info array look like a number of independent structures. Only the informational

view as presented by these accessing defines is documented in this section. You can view

the internal details in the Database/Properties file.

Linkage and Operational Information

The following ALI_xxx words describe linkage information and constantly changing

operational information. These words are at fixed locations in the Audit_Info array for

quick access.

Using the Audit Reader Library Interface

8600 0759-622 20–3

Accessing Example

ALI_INFO[ALI_VERSION]

ALI_xxx Words

Word Description

ALI_VERSION Indicates the version of the information being returned by the

DMAuditLib library. If the value in this word does not match the

value of the AUDITLIB_VERSION with which the calling program is

compiled, the program should not attempt to access the library until

the program has been recompiled with the correct

DATABASE/PROPERTIES file. The value in this word is available

immediately after the library has been linked to the calling program.

Note: This item is always available for the calling program to use,

even when no audit file was opened by the library.

The Boolean NEW_LIB_AVAILABLE flag is a means to notify a caller

that the DMAuditLib code file has been exchanged while the library

and caller were still linked. The status of NEW_LIB_AVAILABLE can

be checked whenever an audit has been closed either implicitly

because of an audit file switch or explicitly by calling AUDIT_CLOSE.

In general, programs that do not require notification about the latest

edition of the DMAuditLib library can safely ignore

NEW_LIB_AVAILABLE. It is intended as a convenience for those

applications that hold audit files open for lengthy periods of time,

which might span an Enterprise Database Server software update.

When changing to a new copy of DMAuditLib, be sure to save any

relevant information from the exported arrays and to recheck

AUDIT_VERSION after linking to the new library copy.

The following words in the ALI_INFO group represent linkage information that allows the

rest of the information within the AUDIT_INFO array to be found:

Word Description

ALI_BUFFER_COUNT Indicates the number of rows in the AUDIT_BUFFERS array. This

value can change when internally switching from one audit file to

the next (if the FILE_SWITCH_OK parameter is TRUE) as the

number of audit sections changes. The current buffer allocation

scheme always allocates two buffers to each section, plus an

additional two buffers.

Note: This information is always available for the calling program

to use, even when no audit file was opened by the library.

Using the Audit Reader Library Interface

20–4 8600 0759-622

Word Description

ALI_SECTION_COUNT Indicates the number of audit sections in the current audit file. This

value can change when internally switching from one audit file to

the next (if the FILE_SWITCH_OK parameter is TRUE).

Notes:

• This information is always available for the calling program to

use, even when no audit file was opened by the library.

• For SSR 44.2 and earlier releases, audit files contain only one

section.

The following words in the ALI_INFO group represent error summary information from the

most recent procedure call to the DMAuditLib library:

Word Description

ALI_FILE_IS_OPEN The word value is 1 (or TRUE) when the DMAuditLib library

has an audit file open. Otherwise, the word value is 0 (or

FALSE).

Note: This information is always available for the calling

program to use, even when no audit file was opened by the

library.

ALI_ERROR_RESULT A copy of the most recent result word returned by a call to any

of the DMAuditLib library procedures.

ALI_ERROR_LINENUMBER The internal symbolic line number indicating where the most

recently reported error stored in the ALI_ERROR_RESULT

word was detected. This line number is useful for debugging

the DMAuditLib library.

Note: This information is always available for the calling

program to use, even when no audit file was opened by the

library.

ALI_IORESULT A copy of the most recent I/O result word that was returned

by the MCP to the DMAuditLib library at the completion of the

most recent read from the audit file.

Note: This information is always available for the calling

program to use, even when no audit file was opened by the

library.

Using the Audit Reader Library Interface

8600 0759-622 20–5

Word Description

ALI_IORD_SECTION The audit section that corresponds to the ALI_IORESULT word

described previously.

Notes:

• This information is always available for the calling program

to use, even when no audit file was opened by the library.

• For SSR 44.2 and earlier releases, audit files contain only

one section.

ALI_IORD_ADDRESS The disk record number (segment) from which the most

recent buffer was read. This value is 0 (zero) if the read

operation was performed from a tape.

Note: This information is always available for the calling

program to use, even when no audit file was opened by the

library.

The following words in the ALI_INFO group represent summary information from the

most recent call to the AUDIT_NEXT_RECORD procedure:

Word Description

ALI_REC_ABSN The audit block serial number (ABSN) of the audit in which the

most recently retrieved audit record started. This ABSN is the

same value returned in the ABSN output parameter of the

AUDIT_NEXT_RECORD entry point.

ALI_REC_LENGTH The length, in words, of the most recently retrieved audit record.

This information is a duplicate of the value returned in the

RECORD_LENGTH output parameter of AUDIT_NEXT_RECORD.

ALI_REC_TYPE The record type of the most recently returned record. This

information duplicates the value returned in the RECORD_TYPE

output parameter of AUDIT_NEXT_RECORD.

ALI_REC_STRUCTNUM The structure number referenced by the most recently returned

record. This information duplicates the value returned in the

STRUCTURE_NO output parameter of AUDIT_NEXT_RECORD.

ALI_REC_PROCESSID The process ID (stack number) of the most recent audit record.

ALI_REC_LINENUMBER The SYMBOL/ACCESSROUTINES line number indicating where

the most recent audit record was produced (if the Accessroutines

was compiled with the $SET AUDITDEBUG option).

ALI_REC_BUFFER The row index into the AUDIT_BUFFERS array where the most

recent audit record can be found. This row index duplicates the

value returned in the BUFFER_INX output parameter of

AUDIT_NEXT_RECORD.

Using the Audit Reader Library Interface

20–6 8600 0759-622

Word Description

ALI_REC_OFFSET The word offset within the appropriate AUDIT_BUFFERS row

where the most recent audit record can be found. This word offset

duplicates the value returned in the RECORD_OFFSET output

parameter of AUDIT_NEXT_RECORD.

ALI_REC_SHORTBY The number of audit record words that were not retrieved from a

split audit record by the AUDIT_NEXT_RECORD procedure.

Normally this value is 0.

The following words in the ALI_INFO group represent summary information from the

most recent call to the AUDIT_NEXT_ABSN procedure. This most recent call could have

been an internal call made from within the AUDIT_RANDOM_ABSN or

AUDIT_NEXT_RECORD procedure.

Word Description

ALI_BLK_ABSN The ABSN of the most recently read audit block.

ALI_BLK_LENGTH The length, in words, of the most recently read audit block.

ALI_BLK_FLAGS The flag word from the latest audit block.

ALI_BLK_DATESTAMP The date stamp, in TIME (6) format, of the most recent audit

block.

ALI_BLK_TIMESTAMP The time stamp, in TIME (11) format, of the most recent audit

block.

ALI_BLK_PREV_TIMESTAMP The previous time stamp stored in the most recent audit block.

ALI_BLK_RECORDNUM The number of the audit block, as counted from the beginning

of the audit file. This value has no relation to the ABSN or the

location of the block; it is simply a counter from the beginning

of the file. The first block is numbered 1.

ALI_BLK_BUFFER The row index into the AUDIT_BUFFERS array where the most

recent audit block can be found. This row index duplicates the

value returned in the BUFFER_INX output parameter of the

AUDIT_NEXT_ABSN entry point.

ALI_BLK_OFFSET The word index at the beginning of the most recent audit block

within the selected row of the AUDIT_BUFFERS array.

If the PTIMES option is enabled with the Accessroutines, the following four values are

captured during the construction of each audit block, are stored within that audit block,

and are made available there. (See the ALF_PTIMES_ENABLED word, described later in

this section.)

Word Description

ALI_BLK_DMS_IOTIME The Enterprise Database Server I/O time.

Using the Audit Reader Library Interface

8600 0759-622 20–7

Word Description

ALI_BLK_NONDMS_PTIME The non-Enterprise Database Server processor time.

ALI_BLK_UPDATE_PTIME The Enterprise Database Server processor time related to update

operations.

ALI_BLK_INQURY_PTIME The Enterprise Database Server processor time related to inquiry

operations.

The following words in the ALI_INFO group represent linkage information regarding the

disk record location–or disk segment–of the previous, current and next audit block. For all

level-6 audit files and for level-7 audit files with only one section, the xxx_SECTION words

always have the value of 1

Word Description

ALI_PREV_SECTION The section where the previous audit block can be found.

ALI_PREV_ADDRESS The disk location where the previous audit block can be found.

ALI_CURR_SECTION The section where the current audit block is found.

ALI_CURR_ADDRESS The disk location where the current audit block is found.

ALI_NEXT_SECTION The section where the next audit block can be found.

ALI_NEXT_ADDRESS The disk location where the next audit block can be found.

Logical Audit File Information

The following ALF_xxx words describe the logical nature of the audit file. Most

information is derived directly from block 0 of the audit file, although some is from the

MCP file attributes.

Accessing Examples

ALF_INFO[ALF_FILENUMBER]

ALF_BLOCK0[ISDUPLICATED]

Pointer Description

ALF_TITLE_PTR for ALF_TITLE_LEN The pointer to and length of the audit file title.

ALF_USER_PTR for ALF_USER_LEN The pointer to and length of the usercode portion

of the audit file title.

ALF_DBNAME_PTR for

ALF_DBNAME_LEN

The pointer to and length of the database name

portion of the audit file title.

Using the Audit Reader Library Interface

20–8 8600 0759-622

Pointer Description

ALF_PACK_PTR for ALF_PACK_LEN The pointer to and length of the pack name portion

of the audit file title.

ALF_xxx Words

Word Description

ALF_FILENUMBER The audit file number (AFN) of the open audit file.

ALF_AUDITLEVEL The level of the open audit file. For audit files created

before SSR 44.2, this value is 6. For audit files created in

SSR 44.2 or a later release, this value is 7.

ALF_BLOCKSIZE The maximum size, in words, of audit blocks within the

current audit file.

ALF_AREASIZE The AREASIZE file attribute for all sections of current audit

file.

ALF_FIRST_ABSN The first ABSN in the current audit file, excluding the

ABSN of block 0.

ALF_LAST_ABSN The last known ABSN in the current audit file.

ALF_AUDIT_TIMESTAMP The time stamp from block 0 of the current audit file.

ALF_DB_TIMESTAMP The database time stamp from block 0.

ALF_DB_UPDATELEVEL The database update level from block 0.

ALF_ISATAPE The value is 1 if the audit file is on tape; otherwise the

value is 0.

ALF_FIRSTAW The index within all audit blocks of where the first word of

the audit record information begins. For level-6 audit files,

this value is 5. For level-7 audit files, this value is 10.

ALF_PTIMES_ENABLED The value is 1 if the PTIMES capability was enabled in the

Accessroutines when this audit file was created;

otherwise the value is 0.

ALF_UNKNOWN_EOF The value is 0 if ALF_LAST_ABSN is known to be the last

actual audit block in the file.

The value is 1 if the last ABSN is unknown. This could

occur if there is a halt/load or database failure.

The value is always 1 for audit files on tape.

ALF_TAPE_UNITNO The tape unit number, if the audit file is being read from

tape.

Using the Audit Reader Library Interface

8600 0759-622 20–9

Internal Buffer Information

The ALB_xxx words describe the current state of each row in the AUDIT_BUFFERS array

being used by the DMAuditLib library. There is one set of these words for each buffer. The

first set of words is for AUDIT_BUFFERS [0, *]. These words are used to debug the

DMAuditLib library.

Accessing Example

ALB_INFO [BUFX, ALI_IO_SECTION]

ALB_xxx Words

Word Description

ALB_IO_SECTION The section from which the buffer was read.

ALB_IO_ADDRESS The disk record number (segment) from which the buffer

was read. This value is 0 if the buffer was read from tape.

ALB_IO_SIZE The size, in words, of the last buffer read operation.

ALB_IO_IORD The MCP I/O result word for the last read operation.

ALB_BLK_OFFSET The current offset in the buffer that the

AUDIT_NEXT_RECORD procedure is using to sequentially

retrieve audit blocks.

Audit Section Information

The following ALS_xxx words describe the physical and logical nature of each audit

section. The physical nature is derived from the MCP file attribute interrogation. The

logical nature is derived from block 0 for that section. To imitate the numbering

conventions for audit sections, the first set of words is for the true audit file using the

index of 1, if only one section exists, or for the master section if there are multiple audit

sections.

Accessing Example

ALS_INFO[1, ALS_BLOCK0_EOF]

ALS_BLOCK0 [1, ISDUPLICATED]

ALS_xxx Words

Word Description

ALS_BLOCK0_EOF The end-of-file (EOF) value for the audit section as

determined from block 0.

Using the Audit Reader Library Interface

20–10 8600 0759-622

Word Description

ALS_FILEATT_LASTRECORD The EOF value as determined by the LASTRECORD

file.

ALS_FILEATT_CREATIONDATE The CREATIONDATE file attribute.

ALS_FILEATT_CREATIONTIME The CREATIONTIME file attribute.

ALS_FILEATT_VERSION The VERSION file attribute (tape files only).

ALS_FILEATT_CYCLE The CYCLE file attribute (tape files only).

ALS_FILEATT_DENSITY The DENSITY file attribute (tape files only).

ALS_FILEATT_READREVERSECAPABLE The READREVERSECAPABLE file attribute (tape files

only).

ALS_FILEATT_AREAS The AREAS file attribute (disk files only).

ALS_IO_BUFFER The buffer index into the AUDIT_BUFFERS array of

the most recent buffer that was read for this audit

section.

ALS_IO_IORD The MCP I/O result word for the most recent I/O

operation completed for this audit section.

ALS_IOWAIT_CLOCKS A summation of the elapsed I/O waiting time for this

audit section.

ALS_IOWAIT_COUNT The number of read operations for this audit section.

Block List Information

The following ALK_xxx words summarize information about audit blocks that are read

while the AUDIT_NEXT_RECORD procedure is in the process of assembling a split audit

record. These blocks are never directly seen by the calling program therefore, this

information is retained so that the calling program can summarize it if desired. The number

of entries is stored in the ALI_INFO ALI_BLKLIST_COUNT word. This value is 0 unless the

most recent record read by the Audit_Next_Record procedure was split across multiple

audit blocks.

Accessing Example

ALK_INFO[1, ALK_FILENUMBER]

ALK_xxx Words

Word Description

ALK_FILENUMBER The AFN from which this block came.

ALK_ABSN The ABSN of the block.

ALK_LENGTH The length, in words, of the block.

Using the Audit Reader Library Interface

8600 0759-622 20–11

Word Description

ALK_FLAGS The flag word from the block.

ALK_DATESTAMP The date stamp of the block.

ALK_TIMESTAMP The time stamp of the block.

ALK_PREV_TIMESTAMP The previous time stamp of the block.

ALK_RECORDNUM The ordinal record number of the block.

ALK_SECTION The section from which the block came.

ALK_ADDRESS The location, or segment, of the block.

For nonsectioned audits or systems upon which the XE features are not installed,

ALK_SECTION is always zero.

ALGOL Array Reference AUDIT_BUFFERS [0, 0]

The two-dimensional ALGOL array AUDIT_BUFFERS [0, 0] is used to return audit block

and audit record information from the open audit file. Because of ALGOL limitations, the

individual rows of the AUDIT_BUFFERS array are not marked as “read only” within the

calling program. If the calling program modifies any information within the Audit_Buffers

array, errors or invalid information could be returned to the calling program. Nonetheless,

the audit file being read by the DMAuditLib library is opened for input only and cannot be

damaged by the library.

Calls to the Audit_Next_ABSN, Audit_Random_ABSN, and Audit_Next_Record entry

points return the index in the output parameter Buffer_Inx. The index indicates the array

row containing the requested information. The Audit_Next_ABSN and

Audit_Random_ABSN entry points return the index within the specified row in the output

parameter Block_Offset, which further indicates where the first word of the returned

audit block is located.

In the Audit_Next_Record entry point, the output parameter Record_Offset indicates the

offset in the row where the first word of the audit record is located. The explicit purpose

of this “index and offset” scheme is to provide high-speed access to audit information

without having to copy the data from the DMAuditLib library to the calling program.

Row 0 of the AUDIT_BUFFERS array is reserved for returning split audit records that are

not fully contained within a single audit block and must be reassembled before being

returned to the calling program. Row 1 of the array is reserved for assembling audit blocks

that might be split because of the large block read operations performed by the

DMAuditLib library.

Entry Points

The DMAuditLib library provides entry points that interface with ALGOL programs to

perform the following procedures:

Using the Audit Reader Library Interface

20–12 8600 0759-622

• The AUDIT_OPEN entry point opens the audit file.

• The AUDIT_CLOSE entry point closes the audit file.

• The AUDIT_NEXT_ABSN entry point performs sequential retrieval of audit blocks.

• The AUDIT_RANDOM_ABSN entry point performs random retrieval of audit blocks.

• The AUDIT_NEXT_RECORD entry point performs sequential retrieval of audit records.

The entry points in the DMAuditLib library also enable you to obtain error codes. These

error codes provide the error type, error message, and structure on which the error

occurred. For more information about these error codes, refer to “Error Results” later in

this section.

AUDIT_OPEN Entry Point Parameters

This entry point runs a procedure that constructs the file title and opens the specified audit

file based on the parameters passed. The calling program can indicate whether the

desired file is the primary audit file, secondary audit file, or a filtered audit file, and can

indicate the action to take if the specified file cannot be found. This entry point procedure

automatically opens sectioned or nonsectioned audit files as appropriate.

The title of the audit file is constructed by using the DB_NAME, DB_PACK, AFN, and

AF_TYPE parameters. If no such file is found, the title is assumed to be the logical name of

a sectioned audit file. This procedure attempts to open all sections of the audit file.

If the audit file can be found under the specified name, the DONT_WAIT parameter is used

to determine if the library waits on a No File condition or returns a No File result to the

calling program.

When an audit file is successfully opened, the parameter values are saved within the

library. These values can be reused by the AUDIT_NEXT_ABSN, AUDIT_RANDOM_ABSN,

and the AUDIT_NEXT_RECORD entry points if they must switch audit files because the

FILE_SWITCH_OK parameter is TRUE.

The ALGOL interface for this procedure has the following specifications:

Boolean Procedure AUDIT_OPEN (DB_NAME,
DB_PACK,
AFN,
AF_TYPE,
DONT_WAIT) ;

Value DB_NAME,
DB_PACK,
AFN,
AF_TYPE,
DONT_WAIT;

String DB_NAME,
DB_PACK;

Integer AFN,
AF_TYPE;

Boolean DONT_WAIT;

Using the Audit Reader Library Interface

8600 0759-622 20–13

Input

• DB_NAME

The name of the database whose audit file is to be opened.

• DB_PACK

The pack name on which the audit files reside.

• AFN

The audit file number (AFN) to be opened.

• AF_TYPE

The type of file to be opened.

• DONT_WAIT

The action to take if the specified file cannot be found.

Output

The global array AUDIT_INFO is updated.

Results

This procedure returns one of the following values:

• FALSE

Indicates the audit file was opened successfully.

• TRUE

Indicates that the file was not opened. Error values are described later in this section

under “Error Results.”

The AF_TYPE parameter has the following possible values:

Parameter Description

AL_AFTYP_PRIMARY (1) Identifies the file as a primary audit file with the title

<DB_NAME>/AUDIT<nnnn>ON<DB_PACK>.

AL_AFTYP_SECONDARY (2) Identifies the file as a secondary audit file with the title

<DB_NAME>/2AUDIT<nnnn>ON<DB_PACK>.

AL_AFTYP_FILTERED (4) Identifies the file as a filtered audit file with the title

<DB_NAME>/FILTEREDAUDIT<nnnn>ON<DB_PACK>.

AL_AFTYP_USEINTNAME (16) Designates that the name and location of the audit file

is found by using the INTNAME attribute equation. To

open the audit file, use the string value in the

DB_NAME parameter as the INTNAME of the audit file.

AL_AFTYP_ONTAPE (32) Specifies that the audit file is on tape.

Using the Audit Reader Library Interface

20–14 8600 0759-622

Note: AL_AFTYP_PRIMARY, AL_AFTYP_SECONDARY, and AL_AFTYP_FILTERED are

mutually exclusive values. This means that you can only set one of these values.

Otherwise, the values are added together to form the parameter value. For example, the

value formed by AL_AFTYP_SECONDARY + AL_AFTYP_ONTAPE requests that the

DMAuditLib library open a secondary audit file on a tape.

The Dont_Wait parameter has the following possible values:

• FALSE

Indicates that the library is to wait on a No File condition if the requested file cannot

be found.

• TRUE

Indicates that the library is to return a AEAUDITNOTFOUNDV result immediately if the

requested audit file cannot be found.

This AUDIT_OPEN procedure returns one of the following values:

• FALSE

Indicates that the file was opened successfully.

• TRUE

Indicates that the file was not opened. Error values are described later in this section

under “Error Results.”

When the audit file is opened successfully, the exported array AUDIT_INFO contains

information describing the audit file. If an error occurs and the audit file is not opened, the

contents of the AUDIT_INFO array are undefined and invalid. For more information about

the AUDIT_INFO array, refer to “ALGOL Array Reference Audit_Info [0]” earlier in this

section.

AUDIT_CLOSE Entry Point Parameters

This entry point runs a procedure that closes the open audit file. If the open audit file is

sectioned, all audit file sections are closed.

The ALGOL interface for this procedure has the following specifications:

Boolean Procedure AUDIT_CLOSE;

Input

None.

Output

The global array AUDIT_INFO is updated.

Results

The AUDIT_CLOSE procedure returns one of the following values:

Using the Audit Reader Library Interface

8600 0759-622 20–15

• FALSE

Indicates that the audit file was closed successfully.

• TRUE

Indicates that an error occurred while attempting to close the audit file. Error values

are described later in this section under “Error Results.”

After this procedure returns a value, the contents of exported arrays are undefined.

AUDIT_NEXT_ABSN Entry Point Parameters

This entry point runs a procedure that retrieves the next audit block from the open audit

file. If no read operations have been performed on the file, the first call to the

Audit_Next_ABSN entry point attempts to return data for the first audit block in the file.

When the audit block is successfully read, the contents of the block are placed into the

exported Audit_Buffers array. The index in which the information was placed is indicated

by the value of the BUFFER_INX and Block_Offset parameters. The first word of the read

audit block is at Audit_Buffers[BUFFER_INX, Block_Offset].

The ALGOL interface for this procedure has the following specifications:

Boolean Procedure AUDIT_NEXT_ABSN (FILE_SWITCH_OK,
BLOCK_LENGTH,
BUFFER_INX,
BLOCK_OFFSET) ;

Value FILE_SWITCH_OK;
Boolean FILE_SWITCH_OK;
Integer BLOCK_LENGTH,

BUFFER_INX;
Block_OFFSET;

Input

• FILE_SWITCH_OK

Specifies whether it is permissible to open the next audit file, if necessary, to read the

audit block.

Output

The global array AUDIT_INFO is updated. The first word of the audit block just read is at

AUDIT_BUFFERS[BUFFER_INX, BLOCK_OFFSET].

• BLOCK_LENGTH

Indicates the amount of data, in words, in the data buffer.

• BUFFER_INX

Indicates the first index in the exported array AUDIT_BUFFERS into which the audit

block has been placed. This value indicates the row of the AUDIT_BUFFERS array to

be used.

• BLOCK_OFFSET

Using the Audit Reader Library Interface

20–16 8600 0759-622

Indicates the second index in the exported array AUDIT_BUFFERS into which the

audit block has been placed. This value indicates the offset into the selected row

where the beginning of the audit block can be found.

Results

While it is not recommended to do so, you can call Audit_Next_ABSN following a call upon

AUDIT_NEXT_RECORD. This action defines the next audit block read to be the block

following the one in which the previously read record ends, and any remaining records in

the current block will be ignored, however, the calling program cannot determine which

audit block will be read. If you must perform a block-level operation following a call upon

Audit_Next_Record, you should use the Audit_Random_ABSN procedure discussed later

in this section.

The Audit_Next_ABSN procedure returns one of the following values:

• FALSE

Indicates that the next block was read successfully.

• TRUE

Indicates that an error occurred during the read operation. Error values are described

later in this section under “Error Results.”

AUDIT_RANDOM_ABSN Entry Point Parameters

This entry point runs a procedure that retrieves information from a specific block of the

open audit file.

When the audit block is successfully read, the contents of the block are placed into the

exported Audit_Buffers array. The index in which the information was placed is indicated

by the value of the Buffer_INX and Block_Offset parameters. The first word of the read

audit block is at Audit_Buffers[Buffer_INX, Block_Offset].

Performing consecutive calls to the Audit_Random_ABSN entry point in which the value

passed in the ABSN parameter is always one greater than the previous call to

Audit_Random_ABSN achieves the same result as performing consecutive calls to the

Audit_Next_ABSN entry point.

The ALGOL interface for this procedure has the following specifications:

Boolean Procedure AUDIT_RANDOM_ABSN (FILE_SWITCH_OK,
ABSN,
BLOCK_LENGTH,
BUFFER_INX,
BLOCK_OFFSET);

Value File_SWITCH_OK,
ABSN;

Boolean FILE_SWITCH_OK;
Integer BLOCK_LENGTH,

BUFFER_INX,
BLOCK_OFFSET;

Using the Audit Reader Library Interface

8600 0759-622 20–17

Input

• FILE_SWITCH_OK

Specifies whether it is permissible to open the next audit file, if necessary, to read the

audit block.

• ABSN

Indicates the audit block serial number of the desired audit block.

Output

The global array AUDIT_INFO is updated. The first word of the audit block just read is at

AUDIT_BUFFERS[BUFFER_INX, BLOCK_OFFSET].

• BLOCK_LENGTH

Indicates the amount of data, in words, in the data buffer.

• BUFFER_INX

Indicates the index in the exported array AUDIT_BUFFERS into which the audit block

has been placed. This value indicates the row of the AUDIT_BUFFERS array to be

used.

• BLOCK_OFFSET

Indicates the second index in the exported array AUDIT_BUFFERS into which the

audit block has been placed. This value indicates the offset into the selected row

where the beginning of the audit block can be found.

Results

The Audit_RANDOM_ABSN procedure returns one of the following values:

• FALSE

Indicates that the block was read successfully.

• TRUE

Indicates that an error occurred during the read operation. Error values are described

later in this section under “Error Results.”

In case of any error, the values of the Buffer_INX and Block_Offset parameters are

undefined and should not be used.

AUDIT_NEXT_RECORD Entry Point Parameters

This entry point runs a procedure that retrieves the next audit record of the open audit file.

If no reads have been performed on the file, the first call to the Audit_Next_Record entry

point attempts to return data for the first audit record in the file. When the audit record is

successfully read, the contents of the output parameters are valid. The index in which the

information was placed is indicated by the value of the Buffer_INX and Record_Offset

parameters. The first word of the read audit record is at Audit_Buffers[Buffer_INX,

Record_Offset].

Using the Audit Reader Library Interface

20–18 8600 0759-622

If the AUDIT_Next_Record entry point is called after a successful call to either the

Audit_Next_ABSN or Audit_Random_ABSN entry point, it returns the first audit record that

begins in the current block. Partial audit records at the beginning of the block are ignored.

If no record begins in the current block, subsequent audit blocks are read until the next

record is located or an error, such as an end-of-file condition, is encountered.

The ALGOL interface for this procedure has the following specifications:

Boolean Procedure AUDIT_NEXT_RECORD (FILE_SWITCH_OK,
ABSN,
RECORD_TYPE,
STRUCTURE_NO,
RECORD_LENGTH,
BUFFER_INX,
RECORD_OFFSET);

Value FILE_SWITCH_OK;
Boolean FILE_SWITCH_OK;
Integer ABSN,

RECORD_TYPE
STRUCTURE_NO,
RECORD_LENGTH,
BUFFER_INX,
RECORD_OFFSET;

Input

• FILE_SWITCH_OK

Specifies whether it is permissible to open the next audit file, if necessary, to read the

audit block.

Output

The global array AUDIT_INFO is updated. The first word of the audit block just read is at

AUDIT_BUFFERS[BUFFER_INX, BLOCK_OFFSET].

• ABSN

Indicates the audit block serial number of the audit block in which this record begins. If

the audit record spans multiple audit blocks, the ABSN contains the audit block serial

number in which the record begins.

• RECORD_TYPE

Indicates the audit record type of the record.

• STRUCTURE_NO

Indicates the structure number to which this record applies.

• RECORD_LENGTH

Indicates the length, in words, of the audit record, including the left and right control

words.

• BUFFER_INX

Using the Audit Reader Library Interface

8600 0759-622 20–19

Indicates the first index in the exported array AUDIT_BUFFERS into which the audit

record has been placed. This value indicates the row of the AUDIT_BUFFERS array to

be used.

• RECORD_OFFSET

Identifies the offset within AUDIT_BUFFERS[BUFFER_INX, *] at which the record

begins. This offset is the index of the left control word for the audit record.

Results

The AUDIT_NEXT_RECORD procedure returns one of the following values:

• FALSE

Indicates that the audit record was read successfully.

• TRUE

Indicates that an error occurred during the read operation. Error values are described

later in this section under “Error Results.”

Error Results

Error results are passed from the library back to the calling program through the result

value for each procedure. Error result words are consistent with the standard error result

word returned by the Enterprise Database Server and have the following format:

DEFINE
RSLTSN = [47:12] #, % structure number
CATEGORY = [35:08] #, % error category
SUBCAT = [19:16] #, % error subcategory
ERROR_FLAG = [00:01] #; % SET if error

For an XL database, the error result word has the following format:

DEFINE
NEW57RSLTSN = [47:16] #, % structure number
NEW57CATEGORY = [31:08] #, % error category
FORMATLVL = [21:02] #, % = 1 for XL database
SUBCAT = [19:16] #, % error subcategory
ERROR_FLAG = [00:01] #; % SET if error

The full text of the ALGOL Enterprise Database Server error result interface, including

many errors not used by the DMAuditLib library, can be included into a calling program by

using the $INCLUDE command as shown in the following example:

$INCLUDE "DATABASE/PROPERTIES" 32000000 - 32999999

All the procedures in the DMAuditLib library return a Boolean error result word. This result

word has the following format:

• FALSE

Indicates that the procedure completed its operation successfully.

• TRUE

Using the Audit Reader Library Interface

20–20 8600 0759-622

Indicates that the procedure failed to complete its operation. The fields of the result

word have the following values:

RSLTSN = 0
CATEGORY = AEERRORCATEGORY
SUBCAT = One of the values described

in Table 20-1.
ERROR_FLAG = 1

The error results listed in the following table are defined in the DATABASE/PROPERTIES

file and are returned to calling programs in the DMAuditLib library. These error

subcategories, values 14 through 30, were added to the AEERRORCATEGORY (15) and

return integer values in the SUBCAT field of the DM result word.

Table 20–1. Error Results

Value Name

14 AEAUDITNOTFOUNDV

15 AESECTIONNOTFOUNDV

16 AEAUDITNOTOPENV

17 AEENDOFFILEV

18 AEBADPARAMV

19 AEBADINTEGRITYV

20 AEINTERNALERRORV

21 AEREADERRORV

22 AECHECKSUMERRORV

23 AEABSNSEQERRORV

24 AETIMESEQERRORV

25 AEUPPERLIMITV

30 AEWRITEERRORV

When an integrity error of any kind is reported (error values 19 and 21 through 24), the

calling program attempts to recover from the error by one of the following means:

• Reading a different audit block by calling AUDIT_RANDOM_ABSN

• Explicitly closing the audit file (AUDIT_CLOSE)

• Implicitly closing the audit file by opening the same or another audit file

(AUDIT_OPEN)

• Disconnecting the link from the audit library

Using the Audit Reader Library Interface

8600 0759-622 20–21

Using the Audit Reader Library Interface

20–22 8600 0759-622

Section 21
Database Events Management

Some database exceptions and messages for a running database are captured in an event

log file. These captured events are categorized under Event categories. These event

messages are written to an event log file only when the Event Category is subscribed to

for the database. The event categories are described next in this section under “Events

Management Overview.” Event log subscription management as well as viewing events

is performed through Database Operations Center. For additional information, refer to

“Monitoring Database Events” in the Database Operations Center Help.

Events Management Overview

In database events management you can subscribe to the following categories:

• ADMINISTRATIVE – this category covers: database backup, database recovery and

reorganizations.

- Database backup – when a database backup is performed, the events generated

contain information about the backup process.

- Database recovery – contains information about database recovery when it

occurs.

- Reorganizations – contains information about reorganizations when performed on

the database.

- Online garbage collection – contains information about online garbage collect

performed on the database.

• DEADLOCK – this category covers the DEADLOCK exceptions occurring in Enterprise

Database Server databases. The number following the program title is the sequence

number in the program where the DEADLOCK occurred. For additional information,

refer to the Enterprise Database Server Application Program Interfaces Programming

Guide, and the Enterprise Database Server Interpretive Interface Programming

Reference Manual.

In most cases, when a Deadly Embrace subcategory of a DEADLOCK event is logged

in the event log, it will be logged in the sumlog. However, there are some cases

where a DEADLOCK is reported internally by Enterprise Database Server, but not

logged in the sumlog. For example, if you delete an entry in a table of a set, the

attempt to lock another entry of the same table by another user will get logged in the

event log, but not logged in the sumlog.

• FATAL_DB_ERROR – when the database encounters errors that cause abnormal

termination, these events are generated.

• SECURITY – these events are applicable to the databases protected by guard file(s)

8600 0759-622 21–1

rules. When an application program performs an operation on the database that is not

authorized by the guard file rules, the exceptions events are generated.

• PUBLICIO – this category determines whether or not to initialize future event logs

with the SECURITYTYPE set to PUBLIC (subscribed) or PRIVATE (unsubscribed). The

subscription value of this category is considered when one of the following occurs:

- The database needs to create a new event log because one does not exist.

- The database needs to switch to a new event log because the previous event log

is either full or corrupted.

Event Log Files

Event log files contain information about all subscribed events and are created in

chronological order. The files are created in the same location as the control file of the

database.

The file is named <dbname>/system/eventlog and contains textual information in the first

81 characters, and binary information in columns 82-90.

The text information can be internationalized using MLS utilities.

An event file, when full (which is currently set at 20000 records), is closed and a new file is

opened. The old file is renamed to <dbname>/eventlog/yyyymmyy>/<hhmmss>. The

new file becomes the current <dbname>/system/eventlog.

Currently, Enterprise Database Server does not provide a mechanism to back up these

files. You are responsible for the maintenance of these files.

The events generated from the Event Management system do not include all the display

information generated by the utilities. Supported analysis tools such as the

LOGANALYZER and DUMPANALYZER (if applicable) can be used in addition to these

events for a complete analysis.

Examples

The following are examples of a subscription and different event categories.

Every time you subscribe to an event it records a subscription event. The program title

cannot exceed 46 characters in the first line, but the maximum size of a program title is

255 characters. If the program title is longer than 46 characters, the % character occurs at

the 71st column, causing the remainder of text to be wrapped-around to additional lines.

Similarly, any event line that is longer than 70 characters is continued on subsequent lines

with the % character on the 71st column; refer to Example 4 for an example of this.

Example 1

The following is an example of a subscription:

Database Events Management

21–2 8600 0759-622

EVENT: SUBSCRIBE DEADLOCK
DATE: 1/10/2012 TIME: 8:16:06
PROGRAM NAME:
*SYSTEM/DBCENTER/SERVER ON UI1.

Example 2

The following example is of a DEADLOCK event. The * (asterisk) indicates that the stack

was in a waiting state when the DEADLOCK information was retrieved.

EVENT CATEGORY: DEADLOCK
SUBCATEGORY: DEADLY EMBRACE
DATE: 1/10/2012 TIME: 9:15:52
MIX NUMBER: 7917 STRUCTURE#: 3 NAME: D1.

7913 (0868)* (086B) (SUBRA)OBJECT/TEST/DEADLOCK1 ON DMCP2.
(00014500)

7916 (086b)* (086C) (SUBRA)OBJECT/TEST/DEADLOCK2 ON DMCP2.
(00014500)

7917 (086C)* (0849) (SUBRA)OBJECT/TEST/DEADLOCK3 ON DMCP2.
(00014500)

7889 (0849)* (084B) (SUBRA)OBJECT/TEST/DEADLOCK4 ON DMCP2.
(00014500)

7890 (084B)* (084D) (SUBRA)OBJECT/TEST/DEADLOCK5 ON DMCP2.
(00014500)

7892 (084D)* (0850) (SUBRA)OBJECT/TEST/DEADLOCK6 ON DMCP2.
(00014500)

7893 (0850)* (0858) (SUBRA)OBJECT/TEST/DEADLOCK7 ON DMCP2.
(00014500)

7897 (0858)* (0859) (SUBRA)OBJECT/TEST/DEADLOCK8 ON DMCP2.
(00014500)

7898 (0859)* (085D) (SUBRA)OBJECT/TEST/DEADLOCK9 ON DMCP2.
(00014500)

7902 (085D)* (085E) (SUBRA)OBJECT/TEST/DEADLOCK0 ON DMCP2.
(00014500)

Example 3

The following is an example of a reorganization event:

EVENT CATEGORY: ADMIN
SUBCATEGORY:REORG - INFORMATION
DATE: 1/10/2012 TIME: 0:21:37 1/10/2012
MIX NUMBER: 1979 STRUCTURE#: 0 NAME:

1979(0EDD) (SUBRA)REORGANIZATION/TESTDB ON DMCP2. (10802998)
DATABASE NAME:TESTDB
MIX PROCESS STATUS START TIME END TIME
--- ------- ------ --------- --------

1992 GEN/D1/3 COMPLETED (120000 RECORDS) 1/10/2012 0:20:41 1/10/2012 0:21:24
2104 FIX/S1/4 COMPLETED (10032 BLOCKS) 1/10/2012 0:21:24 1/10/2012 0:21:37
2105 FIX/S4/5 COMPLETED (48 BLOCKS) 1/10/2012 0:21:24 1/10/2012 0:21:24

Example 4

The following example is of a database backup event:

Database Events Management

8600 0759-622 21–3

EVENT CATEGORY: ADMIN
SUBCATEGORY:DMUTILITY- INFORMATION
DATE: 1/10/2012 TIME: 0:19:58 1/10/2012
MIX NUMBER: 1787 STRUCTURE#: 0 NAME:

1787(0DCD) *SYSTEM/DMUTILITY ON DEV00.
RELEASE: SSR 56.1 (56.114.0010) DATE: TUESDAY, JANUARY 10, 2012, 12:19 AM.

DB=TESTDB OFFLINE DUMP = TO TESTDBDMP1 ON DMCP2
ESTIMATED DUMP DISK SIZE PER FILE
TOTALSECTORS = 70400

DUMP OF DATABASE (SUBRA)TESTDB
RESTART DATASET:TESTDB/R/DATA ON DMCP2

USING TAPE: TESTDBDMP1 ON DMCP2.

THIS DUMP STARTED DURING AUDIT FILE NUMBER 6
THE LATEST VERSION OF THE DIRECTORY FOR THIS SET OF TAPES IS ON CYCLE 0%
1, VERSION 01
SPECIFY THE INFORMATION WHEN RECOVERINGFROM THIS SET OF TAPES.
DUMP TIMES : #ET: 6.1 PT: 0.2 IO: 1.1

Example 5

The following example is of a recovery event:

EVENT CATEGORY: ADMIN
SUBCATEGORY:RECOVERY - INFORMATION
DATE: 1/09/2012 TIME: 21:23:50 1/09/2012
MIX NUMBER: 5111 STRUCTURE#: 0 NAME:

5111(051D) *SYSTEM/DMRECOVERY ON DEV00.. (0000)
SOFTWAREVERSION:(56.114.3)

ALLOWEDCORE: 10000000, TOTALCORE: 0, MAXBUFF: 1

Example 6

The following example is of an abnormal termination of the database:

EVENT CATEGORY: FATALERROR
SUBCATEGORY: : DS OF DBS
DATE: 1/09/2012 TIME: 21:21:40 1/09/2012
NUMBER: 5083 STRUCTURE#: 0 NAME:
5083(04F5) (SUBRA)TESTDB.

Example 7

The following example is of a security event:

EVENT CATEGORY: SECURITYERROR
SUBCATEGORY: ILLEGAL TO CREATE STORE
DATE: 7/16/2010 TIME: 9:26:10
MIX NUMBER: 3527 STRUCTURE#: 0 NAME:
3527(0750) (DOCTEST)OBJECT/RAM/PRG/GUARD/CREATE/INQUIRE O% (00011302)
N DMCP.

Database Events Management

21–4 8600 0759-622

Example 8

The following examples are of online garbage collection events:

EVENT CATEGORY: ADMIN
SUBCATEGORY:ONLINE GARBAGE COLLECT - INFORMATION
DATE: 7/30/2013 TIME: 13:24:42
MIX NUMBER: 4373 STRUCTURE#: 0 NAME:

4373(OD23) (SUBRA)EVENTDB.
GARBAGE COLLECT FOR STRUCTURE 7 (S3) STARTED

EVENT CATEGORY: ADMIN
SUBCATEGORY:ONLINE GARBAGE COLLECT - INFORMATION
DATE: 7/30/2013 TIME: 13:24:44
MIX NUMBER: 4475 STRUCTURE#: 7 NAME:

4475(ODA5) (SUBRA)GARBAGE/COLLECT/S3/7.
GARBAGE COLLECT FOR STRUCTURE 7 (S3) : SWAP COMPLETED

Using the Programmatic Interface

Programmatically, you can use DMINQ call (91) to manage the event subscriptions. The

following requests are currently available to perform the following two tasks:

• To obtain a list of event categories that are available in the database

• To subscribe or unsubscribe to a specific event category

The above subscription management as well as viewing the events can also be done

without directly using the DMINQ call, and this is performed through Database Operations

Center.

Examples of Programmatic Subscription and Interface

The following examples demonstrate how to programmatically manage event

subscriptions.

Example 1: Sample Code for DMINQ Call

The following is general sample code for the DMINQ call.

BEGIN
DATABASE DB;
ARRAY A[0:99];
OPEN INQUIRY DB;
A[0]:=91;
A[1]:=<n>;%n=0 for unsubscribe,
1 for subscribe,
2 for list of event categories

A[2]:=<Event number>;
% (1 for Deadlock event); Valid only if A[1]=0 or 1
DMINQ[0] (A);
END.

Database Events Management

8600 0759-622 21–5

Example 2: Getting a List of Event Categories

The following code obtains a list of event categories supported by the database system.

BEGIN
DATABASE DB;
ARRAY A[0:99];
OPEN INQUIRY DB;
A[0]:=91;
A[1]:=2;
DMINQ[0] (A);
END.

The resulting array A has the following format:

[
· Category number for 3 characters

(value of 1 for deadlock)
· Subscription Status – 1 character

(value of 1 to subscribe, 0 to unsubscribe)
· Length of the event name

(the following field) – 3 characters
· Event Name – MLSable name – variable length
]
0..n times followed by a NUL character

Where n is the number of events supported by the database system.

The following is an example of the resulting array A:

0011018DEADLOCK0020010FATALERROR0030005ADMIN0040013SECURITYERROR0050008PUBLICIO?

The previous example of array A can be decoded as follows:

Event Category Number Event Category Name Subscribed?

1 DEADLOCK Yes

2 FATALERROR No

3 ADMIN No

4 SECURITYERROR No

5 PUBLICIO No

Example 3: Subscribing to an Event Category

Based on the above example, the ADMIN category has a value of 3. The following

example subscribes to the ADMIN category.

Database Events Management

21–6 8600 0759-622

BEGIN
DATABASEDB;
ARRAY A[0:99];
OPEN INQUIRY DB;
A[0]:=91;
A[1]:=1;
A[2]:=3;%For ADMIN category
END.

Example 4: Unsubscribing to an Event Category

The following example unsubscribes to the ADMIN category.

BEGIN
DATABASE DB;
ARRAY A[0:99];
OPEN INQUIRY DB;
A[0]:=91;
A[1]:=0;
A[2]:=3;%For ADMIN category
END.

Database Events Management

8600 0759-622 21–7

Database Events Management

21–8 8600 0759-622

Section 22
Logging Data Access

LOGACCESS, a DASDL schema specification, allows you to perform the logging of data

set access by database applications. The following configuration tasks are required to log

data set access.

• Setting System Logging Options

• Set the DASDL LOGACCESS Option

• Enable the LOGACCESS Option

When data access is logged, data access information is written to the system SUMLOG.

You can access and filter recorded information using any of the following interfaces:

• MCP Loganalyzer

• Database Operations Center

• User-written log analysis applications

• Third-party log analysis products

Caution

For LOGACCESS-enabled structures, all structure access is logged, both

update and inquiry. This can result in large increases in resource usage. For

example, a single application that performs a sequential FIND operation

through a set of 100,000 entries results in 100,000 SUMLOG records written.

For another example, a single application that performs 100,000 DELETE

operations will result in 200,000 SUMLOG records written.

Table 22–1 identifies the tasks you can perform using the LOGACCESS specification and

the heading in this section under which these tasks are described.

Table 22–1. Tasks Related to Using the LOGACCESS specification

To perform this task . . . Refer to . . .

Set the DMS ACCESS system logging option System Logging Options

8600 0759-622 22–1

Table 22–1. Tasks Related to Using the LOGACCESS specification (cont.)

To perform this task . . . Refer to . . .

Specify the DASDL LOGACCESS option DASDL LOGACCESS Option

Enable/Disable the LOGACCESS option Enabling the LOGACCESS Option

Change LOGACCESS DMVERB list for

structures

Changing the LOGACCESS DMVERB List

Analyze LOGACCESS SUMLOG records LOGACCESS Analysis

System Logging Options

You can use Security Center or the LOGGING (Logging Options) system command to set

the DMS ACCESS option. This action is required in order for ACCESS records to be written

to the system SUMLOG.

The following is an example of a LOGGING system command:

LOGGING 1,35

Refer to the System Commands Reference or Security Center Help for additional

information about the LOGGING system command.

DASDL LOGACCESS Option

In order to log data access, a DASDL schema update is required to set the option for the

selected structures. You can specify the LOGACCESS option as a global default or as a

data set physical option. The LOGACCESS option is automatically and implicitly set for all

associated sets and subsets of a data set which has the option set.

DASDL also provides the LOGACCESSDMVERBS option which enables logging of the

DMVERBS that you select. You can specify the LOGACCESSDMVERBS option as a

default or as a data set physical option. The LOGACCESSDMVERBS option is

automatically and implicitly applied to all sets and subsets of a data set which has the

option specified. When you specify LOGACCESS without specifying the

LOGACCESSDMVERBS option, all DMVERBS are logged.

The following figure is a portion of a DASDL schema used throughout the examples of this

section. LOGACCESS syntax is demonstrated in BOLD print. Access is logged for all

Enterprise Database Server data sets with at LOGACCESS option set. Refer to the DASDL

Programming Reference Manual for additional information on the LOGACCESS Option

including diagrams.

Logging Data Access

22–2 8600 0759-622

% This schema demonstrates the various
% syntactic combinations allowed with
% the LOGACCESS option. This example
% explicitly sets LOGACCESS to TRUE
% for all structures. New LOGACCESS
% syntax is demonstrated in BOLD print
% for allsupported usages.
%
% $RESET ZIP DMCONTROL
% INITIALIZE;
% UPDATE;

DEFAULTS
(

BUFFERS = 0 + 0 PER RANDOM USER OR 2 PER SERIAL USER,
PACK = DBPK,

LOGACCESS = TRUE, % set for all structures
LOGACCESSDMVERBS= ALL EXCEPT (DELETE) % log all dmverbs except

% DELETE dmverb
CHECKSUM = TRUE,
DUMPSTAMP = TRUE);
DMSUPPORT = (PROD)DMSUPPORT/TESTDB ON SOFTWARE;

OPTIONS
(

STATISTICS, ADDRESSCHECK,
INDEPENDENTTRANS, REAPPLYCOMPLETED,
AUDIT

);

PARAMETERS
(

CONTROLPOINT = 2
,SYNCWAIT = 2 ,SYNCPOINT = 1000

);

CONTROL FILE
(

PACK = DBPK
,USERCODE = PROD
);

AUDITAREA RESTART DATA SET
(

RS-NAME ALPHA(30);
RS-PNAME ALPHA(30);
RS-CNAME ALPHA(30);

)
CHECKSUM,
MEMORY RESIDENT = ALL,
% LOGACCESS = TRUE,
% LOGACCESS = FALSE,
BLOCKSIZE = 9 RECORDS,
AREASIZE = 1008 SEGMENTS,
POPULATION = 800;

Logging Data Access

8600 0759-622 22–3

PRODUCT DATA SET
(

PNAME ALPHA(42);
PID NUMBER(12);
PDEPARTMENT ALPHA(28);
PDATE NUMBER(12);

) POPULATION = 300000,
BLOCKSIZE = 100 RECORDS,

% LOGACCESS = TRUE,
% LOGACCESS = FALSE,

AREASIZE = 10 BLOCKS,
MEMORY RESIDENT = ALL;

COMPUTER SET OF PRODUCT KEY PID
DUPLICATES AREASIZE = 1000 ENTRIES;

PLANT DATA SET
(

STATE ALPHA(27);
CITY ALPHA(27);
ZIP NUMBER(12);

) POPULATION = 300000,
BLOCKSIZE = 100 RECORDS,

% LOGACCESS = TRUE,
% LOGACCESS = FALSE,
AREASIZE = 10 BLOCKS,
MEMORY RESIDENT = ALL;

CP SET OF PLANT KEY ZIP
DUPLICATES AREASIZE = 1000 ENTRIES;

CUSTOMER DATA SET
(

CNAME ALPHA(42);
CID NUMBER(12);

) POPULATION = 300000,
BLOCKSIZE = 100 RECORDS,

% LOGACCESS = TRUE,
% LOGACCESS = FALSE,

AREASIZE = 10 BLOCKS,
MEMORY RESIDENT = ALL;

CCC SET OF CUSTOMER KEY CID
DUPLICATES AREASIZE = 1000 ENTRIES;

PERSONNEL DATA SET
(

NAME ALPHA(42);
NAME1 ALPHA(50);
NAME2 ALPHA(50);
NAME3 ALPHA(50);
NAME4 ALPHA(50);

% ADDRESS ALPHA(600);
ID NUMBER(12);
ID2 NUMBER(12);
DEPARTMENT ALPHA(28);

% SUBPERSONNEL SUBSET OF PERSONNEL

Logging Data Access

22–4 8600 0759-622

% KEY IS ID,
% ORDERED LIST;

) POPULATION = 300000,
%REASIZE = 1000,

BLOCKSIZE = 100 RECORDS,
% LOGACCESS = TRUE,

% LOGACCESS = FALSE,
AREASIZE = 10 BLOCKS,

MEMORY RESIDENT = ALL;
SUBPERSONNEL2 SUBSET OF PERSONNEL
WHERE ID2 > 10000
KEY IS ID;

MANAGER SET OF PERSONNEL KEY ID
DUPLICATES AREASIZE = 1000 ENTRIES;

Enabling the LOGACCESS Option

Logging begins when the LOGACCESS option is enabled on a structure. You can enable a

structure through Visible DBS or Database Operations Center.

The following is sample output of structure information. It is extracted from a database

control file listing following a DASDL compile to set the LOGACCESS capability, prior to

enabling the option.

LOG ACCESS CAPABLE = SET
LOG ACCESS ENABLE = RESET

The following is sample output of structure information. It is extracted from a database

control file listing following the enabling of the option.

LOG ACCESS CAPABLE = SET
LOG ACCESS ENABLE = SET

When a LOG ACCESS ENABLE command becomes SET, the following types of

information are logged:

• When a LOG ACCESS ENABLE is SET or RESET. Information includes the structure

name or * for all structures.

• When the structure is opened.

• When the structure is accessed by a selected DMVERB.

Note: LOGACCESS is implicitly set for SETS and SUBSETS that span a data set that is

configured to use LOGACCESS.

Table 22–2 identifies the actions that result in the logging of DMVERBS and provides

information recorded for each action.

Access is recorded for the following DMVERBS:

• ASSIGN

• ASSIGNLOB

Logging Data Access

8600 0759-622 22–5

• CREATESTORE

• DELETE

• DELETELOB

• FIND

• FINDLOB

• FREE

• GENERATE

• INSERT

• LOCK

• LOCKSTORE

• REMOVE

• SECURE

In addition to the SUMLOG record information provided for all types of DMS records (such

as program name, time-of-day, and so on), the following information is recorded for

DMVERB LOGACCESS:

• Structure Name

• Structure Number

• Section Number (if sectioned)

• Record Address

• Record Serial Number (RSN) for XE structures

• DMEXECEPTION

• DMVERB (from the list above)

Most of the DMVERBS generate one log entry, although some generate two. Update

verbs also have audit file and ABSN numbers logged.

The following table provides information logged for DMVERB access.

Table 22–2. DMVERB Access

DMVERB Information Logged

ASSIGN <data set> TO

<link>

Two log records:

• The <data set> which contains the <link> item

• The <data set> assigned to the <link> item

The audit file and ABSN numbers in both log entries point to the

audit record for the ASSIGN operation.

Logging Data Access

22–6 8600 0759-622

Table 22–2. DMVERB Access (cont.)

DMVERB Information Logged

ASSIGN <link1> TO

<link2>

Two log records:

• The data set> which contains the <link2> item

• The <data set> assigned to the <link1> item

The audit file and ABSN numbers in both log entries point to the

audit record for the ASSIGN operation.

ASSIGN LOB/FIND

LOB/DELETE LOB

The <data set> which contains the LOB item

ASSIGN NULL The <data set> which contains the <link> item

DELETE Two log records:

• LOCK verb with the <data set>

• DELETE verb with <data set> information

DELETE <set selection

expression>

Two log records:

• LOCK verb with the <data set>

• DELETE verb with <set> information along with its associated

<data set> information.

FREE <data set> <data set> information

GENERATE <subset> <subset> information only

INSERT <data set> INTO

<subset>

Two log records:

• <subset> information only

• <data set> information

The audit file and ABSN numbers in both log entries point to the

audit record for the INSERT operation.

LOCK/FIND/SECURE

<data set>

<data set> information

LOCK/FIND/SECURE<set> <set> information along with its associated <data set>

information. For FIND KEY OF <set>, only <set> information is

present.

REMOVE <data set>

From <subset>

Two log records:

• <subset > information only

• <data set> information

The audit file and ABSN numbers in both log entries point to the

audit record for the REMOVE operation.

Notes:

• Data accessed through REMAP is logged as access through a physical structure.

• An Enterprise Database Server exception word is recorded in the SUMLOG when an

exception occurs. No record (record address, RSN and section), and audit (audit file

number and ABSN) information is included.

Logging Data Access

8600 0759-622 22–7

• The structure number in the DMS ACCESS log record is the structure number on

which the DMVERB is performed and can be different from the structure number in

the exception word when an exception occurs. The structure number in the exception

word is the structure that causes the exception during the DMVERB operation. For

example: For DMVERB on an ACCESS structure, the exception word contains the

structure number of the data set that the ACCESS structure spans. A DMVERB on a

SET can result in an exception on the data set that the set spans; the reverse is also

true.

Changing the LOGACCESS DMVERB List

You can change the DMVERB list for structures using the DMCONTROL LOGACCESS

command. The changes take effect the next time the database is opened.

Example 1

The following is sample output of structure D information from a control file listing. The

DMVERB list for structure D is ALL (which is the default).

LOG ACCESS DMVERB = ALL

Example 2

The following DMCONTROL statement changes the DMVERB list of structure D.

RUN $SYSTEM/DMCONTROL ("DB=TESTLOBDB LOGACCESS STRUCTURE D
DMVERBS = (CREATESTORE, DELETE, LOCK)")

Refer to the DMCONTROL LOGACCESS statement in Section 5, Initializing and

Maintaining, for additional information on changing the DMVERB list for structures.

LOGACCESS Examples

The following examples demonstrate enabling the LOGACCESS option with Visible DBS,

using the DMCONTROL LOGACCESS command and performing LOGACCESS analysis.

Enabling LOGACCESS Option with Visible DBS

For syntax and command descriptions, refer to the STRUCTURE CHANGE command in

Section 12, Communicating with the Database.

Example 1

This example is of a Visible DBS command used to enable all LOGACCESS capable

structures:

<Visible DBS number> SM STRUCTURE *(LOGACCESS SET)

Logging Data Access

22–8 8600 0759-622

Example 2

This example is of a Visible DBS command used to disable the LOGACCESS option for the

PLANT data set:

<Visible DBS number> SM STRUCTURE PLANT
(LOGACCESS RESET)

Using the DMCONTROL LOGACCESS Command

For syntax and command descriptions, refer to the DMCONTROL statement in

Section 5, Initializing and Maintaining, .

Example 3

This example is of a DMCONTROL command used to disable all LOGACCESS-capable

structures:

DB = <database name> LOGACCESS RESET

Example 4

This example is of a DMCONTROL command used to change the DMVERB list for

structures D1, D2, and D3. The DMVERB list for structures D1 and D2 is changed to LOCK

DMVERB only. The DMVERB list for structure D3 is changed to include all DMVERBS.

DB = <database name> LOGACCESS
STRUCTURE D1, D2 DMVERBS = (LOCK),
STRUCTURE D3 DMVERBS = ALL

Database Operations Center provides the necessary configuration forms for the

DMCONTROL LOGACCESS command. Refer to the Database Operations Center product

for more information.

LOGACCESS Analysis

Loganalyzer

Examples 5 and 6 assume that the following required configuration tasks were

successfully executed:

• Setting the system log option for Major Type 1, Minor Type 35 (as described in

“System Logging Options” earlier in this section).

• Setting the DASDL schema data set specification for structure-based LOGACCESS

capability (following example 1 earlier in this section).

• Enabling the structure-based LOGACCESS option (following example 1 earlier in this

section).

Example 5

This example extracts DMS ACCESS records written when the structures were enabled:

Logging Data Access

8600 0759-622 22–9

Input:
LOG "LOGACCESS/SUMLOG ON RDBCP" DMS (ACCESS) FIND "ENABLE"

Output:
14:35:51 DMS 7643 (PROD)TESTDB.

DATABASE ACCESS : ENABLE LOGACCESS
USERCODE: PROD. ACCESSCODE: PROD.
USERCODE PRIVILEGES : PU
DATABASE NAME : (PROD)TESTDB.(MIX 7643, STACK 0C4C
)
STRUCTURE NAME : *

Example 6

This example extracts DMS ACCESS records written when the structure PLANT was

accessed.

Input:
LOG "LOGACCESS/SUMLOG ON RDBCP" DMS (ACCESS) FIND "PLANT"

Output:
14:35:53 DMS 7642 (PROD)CANDE/CODE6550 ON RDBCP.

DATABASE ACCESS : ACCESS RECORD
USERCODE: PROD. ACCESSCODE: PROD.
USERCODE PRIVILEGES : PU
DMVERB : CREATESTORE
DATABASE NAME : (PROD)TESTDB. (MIX 7643, STACK 0C4C

)
STRUCTURE NAME : PLANT, STRUCTURE # 5
RECORD ADDRESS : (000000000064)
AUDIT FILE NUMBER : 1
ABSN : 15

14:35:56 DMS 7642 (PROD)CANDE/CODE6550 ON RDBCP.
DATABASE ACCESS : ACCESS RECORD
USERCODE: PROD. ACCESSCODE: PROD.
USERCODE PRIVILEGES : PU
DMVERB : CREATESTORE
DATABASE NAME : (PROD)TESTDB. (MIX 7643, STACK 0C4C
)
STRUCTURE NAME : PLANT, STRUCTURE # 5
RECORD ADDRESS : (00000000006E)
AUDIT FILE NUMBER : 1
ABSN : 16

14:35:59 DMS 7642 (PROD)CANDE/CODE6550 ON RDBCP.
DATABASE ACCESS : ACCESS RECORD
USERCODE: PROD. ACCESSCODE: PROD.
USERCODE PRIVILEGES : PU
DMVERB : CREATESTORE
DATABASE NAME : (PROD)TESTDB. (MIX 7643, STACK 0C4C

)
STRUCTURE NAME : PLANT, STRUCTURE # 5
RECORD ADDRESS : (000000000078)
AUDIT FILE NUMBER : 1
ABSN : 17

14:36:02 DMS 7642 (PROD)CANDE/CODE6550 ON RDBCP.
DATABASE ACCESS : ACCESS RECORD
USERCODE: PROD. ACCESSCODE: PROD.
USERCODE PRIVILEGES : PU

Logging Data Access

22–10 8600 0759-622

DMVERB : CREATESTORE
DATABASE NAME : (PROD)TESTDB. (MIX 7643, STACK 0C4C

)
STRUCTURE NAME : PLANT, STRUCTURE # 5
RECORD ADDRESS : (000000000082)
AUDIT FILE NUMBER : 1
ABSN : 18

Database Operations Center

Database Operations Center provides the interfaces that enable comprehensive filtered

queries for LOGACCESS analysis. Refer to the Database Operations Center Help for

additional information.

User-Written Applications

You can write applications that enable comprehensive filtered queries for LOGACCESS

analysis. Methods to accomplish this are detailed in the section titled, “Writing Log

Analysis Programs” in the System Log Programming Reference Manual.

Logging Data Access

8600 0759-622 22–11

Logging Data Access

22–12 8600 0759-622

Section 23
Database Encryption

Database encryption provides customers with the ability to transparently apply encryption

within the database making the data unreadable to those who do not have the proper key

to decode the data. Recompilation is required to handle record format/size changes and

you should review the restrictions section to determine if any application modifications are

necessary.

The Enterprise Database Server for ClearPath MCP supports the use of two levels of

database encryption: field level encryption (FLE) and structure level encryption (SLE).

Field Level Encryption (FLE)

Note: The terms field and item are used interchangeably.

The DATAENCRYPT option enables you to encrypt an individual field, multiple fields, or all

Alpha, Number, and Real fields in a data set. An existing database can be encrypted

without changing any existing applications. FLE requires record format change

reorganization. After the database is encrypted, user programs must be recompiled.

Structure Level Encryption (SLE)

The STRENCRYPT option enables you to encrypt an entire file: a data set and all spanning

sets and subsets of that data set. An existing database can be encrypted without changing

any existing applications. SLE requires file record format change reorganization. After the

database is encrypted, user programs do not need to be recompiled.

Before using the database encryption feature, you need to install the Unisys MCP

Cryptographic Services product. You must also install Security Center and the MCP

security products, both of which are installed as part of the MCP software installation.

Database Encryption Components and
Interdependencies

The following figures illustrate the configuration of the Enterprise Database Server and

how it interfaces with Security Center for key management and MCP Cryptographic

Services for database encryption and decryption. MCP Cryptographic Services work as an

agent for the Enterprise Database Server to interface with other components.

8600 0759-622 23–1

Figure 23–1 illustrates the relationship between the DASDL compiler, MCAPISUPPORT

library, key manager, and the Security Center database during the DASDL compilation.

Figure 23–1. Compile-Time Database Encryption Configuration

When you specify the DATAENCRYPT option in the DASDL source, the DASDL compiler

calls the key manager indirectly, through the MCAPISUPPORT library, to create a key set.

There is one unique key set for a database. Key sets are stored in the Security Center

database. The Security Center database manages encryption keys for all Unisys products

including the Enterprise Database Server DATAENCRYPT key sets.

Figure 23–2 illustrates the relationship between the Accessroutines, DMSUPPORT library

and the MCAPISUPPORT library when applications are accessing a database encryption-

capable database.

Database Encryption

23–2 8600 0759-622

Figure 23–2. Run-Time Database Encryption Configuration

When the first user opens an encrypted database, the DMSUPPORT library links to the

MCAPISUPPORT library and opens the unique key set. Once the key set is opened, the

DMSUPPORT library calls routines in the MCAPISUPPORT library to encrypt or decrypt a

record.

Refer to Sections 9 and 10 of the Security Overview and Implementation Guide and the

Security Center Help for information about the Security Center and Crypto Service

components

Components

The following information describes the database encryption components:

DASDL compiler – calls the key manager indirectly through the MCAPISUPPORT library to

create a key set.

Database Encryption

8600 0759-622 23–3

MCAPISUPPORT library – interfaces with the Enterprise Database Server for all of the

encryption and decryption functions, and interfaces with Security Center for tasks related

to key management. For additional information refer to the Security Overview and

Implementation Guide.

Key Manager – creates the key set and sends the key set to the Security Center database

and the MCAPISUPPORT library.

Security Center – enables the security administrator to configure and manage several

MCP security modules through a single graphical user interface (GUI). Security Center

database is enhanced to manage Enterprise Database Server database encryption key

sets. It is extremely important that you back-up the key sets because the encrypted data

will not be seen unless the key sets are stored in the Security Center database. Refer to

the BACKUPKEYSET option in the DASDL Programming Operations Reference Manual for

information about backing up key sets.

CryptoProxy Service – runs on the Windows environment of the Clearpath MCP server

and is invoked by the MCAPISUPPORT library. It calls the Microsoft CryptoAPI to manage

keys and certificates, and uses it for the cryptography functions used by user applications.

DMSUPPORT Library – links to the MCAPISUPPORT library and opens the unique key set.

Database Stack (ACR) – contains all the information necessary for the Enterprise Database

Server Accessroutines to manage a database.

Cryptographic services - provided through the following programs and services in an MCP

environment:

• CryptoProxy service

• MCAPISUPPORT library

These programs and services, in conjunction with TLS and Kerberos Security, provide data

protection and strong user authentication within an MCP environment. For detailed

information, refer to the Security Overview and Implementation Guide.

Using Database Encryption

Encryption Key Set

When you specify the DATAENCRYPT option or the STRENCRYPT option in the DASDL

source, a key set is created. This key set is composed of multiple keys, and the DASDL

compiler assigns a key in a key set for a data set that contains one or more encrypted

items.

In order to use FLE or SLE, a DASDL source is required to enable the setting of several

options.

Refer to the Enterprise Database Server for ClearPath MCP Data and Structure Definition

Language (DASDL) Programming Reference Manual for additional information about the

DATAENCRYPT option, STRENCRYPT option, and other database encryption syntaxes.

Database Encryption

23–4 8600 0759-622

Set the DATAENCRYPTKEYSET option under the defaults specification so that a crypto

key set can be used for the encryption process. A syntax error occurs if the

DATAENCRYPTKEYSET option is not specified and the database contains encrypted data.

For a database that does not have a key set associated with it, this option instructs the

DASDL compiler to call the MCAPISUPPORT library which then calls the Key

Management library to create a key set for the database. A key set contains the database

encryption keys and an RSA Master Key. The database encryption keys are the AES-256

keys that are used to encrypt data in the database. There are 16 database encryption keys

in a key set. RSA is the most widely used public-key crypto-system today. The 4096-bit

RSA Master key is considered to be a very large and secure key by today’s standards. This

RSA Master key is used to protect the database encryption keys. A unique key set is

created for each database that uses encryption. If this option is specified for a database

that already has a key set associated with it, then the existing key set is used for the

encryption process. The name of the key set is stored in the control file and can be listed

using the LIST or WRITE statement in DMUTILITY. Users are responsible for backing up

the key set manually using Security Center.

For security purposes, users can change the existing key set by using either the

NEWKEYSET or the REPLACEKEYS option in a subsequent DASDL update.

• NEWKEYSET Option

The NEWKEYSET option allows users to generate new database encryption keys and

a new RSA Master Key. This change requires that a database reorganization be

performed to decrypt the existing data with the old key set and then encrypt it again

with the new key set. User programs do not need to be recompiled. However, if a set

or subset contains an FLE key, or the structure is SLE, then the sets or subsets must

be generated from the data set. Note that a reorganization cannot generate a manual

subset with encrypted keys. There is a maximum of 300 structures in one

reorganization at a time.

• REPLACEKEYS Option

The REPLACEKEYS option allows users to generate a new RSA Master Key and

re-encrypt all the existing database encryption keys. Since the database encryption

keys remain the same, there is no need to perform a reorganization to decrypt and

re-encrypt the data. This change only requires a control file update to reflect the

change; the applications do not need to be recompiled. Once the RSA Master Key has

been changed, it can no longer be used to decrypt an old database backup. Therefore,

it is strongly recommended that a full database backup be taken after the key set is

changed.

• COPYKEYSET Option

A database can be copied from one usercode to another usercode, and can also be

retitled as a different database name. Since the database name includes the usercode

as part of the key set name, copying the database under a new usercode is considered

a separate database from the original one and requires a different key set name. The

option COPYKEYSET is used to create a new key set from an existing key set. A new

RSA Master Key is created during this process. All the database encryption keys from

the original key set are copied to the new key set and encrypted with the new RSA

Master Key. The COPYKEYSET option is only performed if a different usercode is

specified under the CONTROL FILE specification in DASDL. This change only requires

a control file update to reflect the change.

Database Encryption

8600 0759-622 23–5

Set the BACKUPKEYSET option under the Options Specification to specify that the key set

needs to be manually backed-up before the database can be accessed. By default, the

BACKUPKEYSET option is SET. If the BACKUPKEYSET option is SET and the key set is not

manually backed-up, an OPEN ERROR 120 is returned when the database is opened. This

option can be changed by a subsequent DASDL update which also requires an update to

the control file.

It is recommended that the BACKUPKEYSET option is always SET, since a database

cannot be recovered if the keys are lost. For information on how to back up the key set,

refer to the Security Center Help.

If Remote Database Backup (RDB) is enabled for the database, or if you plan to copy the

database to another host (for example, using the QUIESCE command), you must use

Security Center to export the key set from the primary host and then import the key set on

the secondary host.

Encryption Algorithm

Set the DATAENCRYPTTYPE option under the parameters specification to specify the

encryption algorithm. Two encryption algorithms are supported: AESGCM and AESHMAC.

Only one algorithm is permitted per database. Use the AESGCM algorithm for structure

level encryption. You can use either AESGCM or AESHMAC algorithms for field level

encryption; however, it is recommended that you use the AESGCM algorithm as it

provides faster performance. The AESHMAC algorithm is provided as a back-up in the

event that the AESGCM algorithm becomes weakened during an attack. If no algorithm is

specified, AESGCM is used as the default algorithm to encrypt the data. The encryption

algorithm can be changed with a subsequent DASDL update. These two encryption

algorithms require different ″padding″ to the data which makes the record size different if

the algorithm is changed. Therefore, if the algorithm is changed, a reorganization and

recompilation of the applications is required.

DATAENCRYPT Option

The DATAENCRYPT option enables you to encrypt specific data items in a data set within

an Enterprise Database Server database. Only alpha, numeric, real, or group data item

types are valid for FLE. The items inside a group cannot specify the DATAENCRYPT option.

An item in a remap must have the same DATAENCYRPT option with its associated data

set item.

You can set the DATAENCRYPT option at the global database level or data set level. If this

option is set at the data set level, all alpha, numeric, real, and group items in the data set

inherit the DATAENCRYPT option. Additionally, you can set the option at the structure

level in the physical options for data sets, or for selected items in a data set. The

DATAENCRYPT option cannot be used for restart data sets, internal structures, or

partitioned data sets.

If a record contains an encrypted item, the data is encrypted on both memory and disk.

The record size is increased based on the encryption algorithm being used. To optimize

runtime performance and storage usage, all encrypted items are automatically moved to

the end of a record. If you change the DATAENCRYPT option for an item, a record format

Database Encryption

23–6 8600 0759-622

change reorganization is required and user programs must be recompiled. For more

information about using the DATAENCRYPT option, refer to the Enterprise Database

Server for ClearPath MCP Data and Structure Definition Language (DASDL) Programming

Reference Manual.

The following example is of a DASDL source using data encryption for Social Security and

driver’s license numbers:

OPTIONS
(

BACKUPKEYSET
);
PARAMETERS

(
DATAENCRYPTTYPE = AESGCM

);
DEFAULTS
(

DATAENCRYPTKEYSET
);
EMPLOYEE DATA SET
(

EMPLOYEEID NUMBER(8) DATAENCRYPT = TRUE;
FIRST NAME ALPHA (30);
LAST NAME ALPHA (30);
SSNUMBER NUMBER (9) DATAENCRYPT = TRUE;
ADDRESS GROUP
(

STREETNO NUMBER (5);
STREETNAME ALPHA (30);
CITY ALPHA (10);
STATE ALPHA (2);
ZIPCODE NUMBER (6);

);
HIREDATE DATE;
SERVICEYEAR REAL;
PHONENO REAL;
DRIVELICENSE ALPHA (10) DATAENCRYPT;

);
PHONESET SET OF EMPLOYEE KEY IS PHONENO,

INDEX SEQUENTIAL;

Using Encrypted Key Items

When a key item has the DATAENCRYPT option set, that key will be hashed into a 32-byte

hash value. As a result, the size of the table (TABLESIZE or BLOCKSIZE) needs to be

extended. The same key value will have the same hashed value as long as it is in the same

set or subset. Keys in different sets or subsets will have different hashed values even if

they contain the same data. Once a key item is hashed, it cannot be undone; this creates

the some restrictions for querying. Refer to the topic “Restrictions” in this section for

more information.

Database Encryption

8600 0759-622 23–7

The following example is of a DASDL source using data encryption for the employee ID,

social security number, address and driver’s license number. These encrypted items can

be used as key items of the sets.

OPTIONS
(

BACKUPKEYSET
);

PARAMETERS
(

DATAENCRYPTTYPE = AESGCM
);

DEFAULT
(

DATAENCRYPTKEYSET
);

EMPLOYEE DATA SET
(

EMPLOYEEID NUMBER(8) DATAENCRYPT = TRUE
FIRST NAME ALPHA (30);
LAST NAME ALPHA (30);
SSNUMBER NUMBER (10) DATAENCRYPT = TRUE;
% (or) DATAENCRYPT = FALSE
ADDRESS GROUP
(

STREETNO NUMBER (6);
STREETNAME ALPHA (30);
CITY ALPHA (10);
STATE ALPHA (2);
ZIPCODE NUMBER (6);

) DATAENCRYPT ;
HIREDATE DATE;
SERVICEYEAR REAL;
PHONENO REAL DATAENCRYPT;
DRIVELICENSE ALPHA (10) DATAENCRYPT;

);

PHONESET SET OF EMPLOYEE KEY IS PHONENO,
INDEX SEQUENTIAL;

ID-SSN-SET SET OF EMPLOYEE KEY IS
(EMPLOYEEID, SSNUMBER);

ID-ADDRESS-SET SET OF EMPLOYEE KEY IS
(EMPLOYEEID, STREETNO, ZIPCODE)
INDEX SEQUENTIAL;

ID-SSN-SET SET OF EMPLOYEE KEY IS
(EMPLOYEEID, SSNUMBER);

ID-ADDRESS-SET SET OF EMPLOYEE KEY IS
(EMPLOYEEID, STREETNO, ZIPCODE);

Restrictions

The following restrictions apply to the items specified with the DATAENCRYPT option:

Database Encryption

23–8 8600 0759-622

• Only alpha, numeric, real, and group data item types are valid for field level encryption.

• The DATAENCRYPT option cannot be used for restart data sets, internal structures, or

partitioned data sets.

The following restrictions apply to key items specified with the DATAENCRYPT option:

• Only FIND equal is supported.

• Linear search is not supported if

- a user selection expression contains an encrypted key item and a non-encrypted

signed numeric or real item.

- a user selection expression contains an encrypted REAL type key item.

• The size of an encrypted numeric (NUMBER) key item must be in multiples of bytes.

That is, the encrypted numeric item must be an even number of digits.

• An encrypted group cannot be used as a key of a set or subset. To use a group item as

one of the keys in the set or subset, you must declare the individual items of the group

as the keys rather than declaring the group itself.

• The ASCENDING and DESCENDING options cannot be specified for an index

sequential set or subset containing encrypted key items. The ordering of the set or

subset is based on the order of the hashed key values and not on the order of the

unencrypted (clear text) key values.

• An Access of a random, direct, or ordered data set cannot contain encrypted key

items.

• An item specified with the DATAENCRYPT option cannot be used as key data.

• An Index Random set cannot contain encrypted key items.

• An item specified with the DATAENCRYPT option cannot be used as a part of SELECT,

VERIFY, or WHERE clause.

• Only OFFLINE and USEREORGDB reorganizations are supported if an index

sequential set or subset contains any encrypted key items. ONLINE reorganization

and online garbage collection are not supported if an index sequential set contains any

encrypted key items.

• A reorganization of a set or subset with encrypted keys must be generated from its

data set. Reorganization cannot generate a manual subset with encrypted keys.

Additionally, for database reorganization, there is a restriction of up to 300 structures in

one reorganization at a time. It is recommended that you use REPLACEKEYS instead of

the NEWKEYSET option when changing the key set.

STRENCRYPT Option

The STRENCRYPT option encrypts the entire selected data set within an Enterprise

Database Server database. Additionally, all spanning sets and subsets of the database that

belong to the data set are automatically encrypted. This feature is also called structure

level encryption (SLE).

Database Encryption

8600 0759-622 23–9

You can set the STRENCRYPT option at the global default or at the structure level in the

physical options for data sets. If a database has the STRENCRYPT option defined as a

global default, all of the disjoint standard fixed format data sets and their index sequential

spanning sets and subsets are encrypted.

The STRENCRYPT and DATAENCRYPT options are mutually exclusive. The CHECKSUM

option must be set for the structure with STRENCRYPT option set. When a structure has

the STRENCRYPT option set, the block size of the structure is increased according to the

encryption algorithm; the encrypted data must be a multiple of 16 bytes in length and

requires an additional 30 bytes for the encryption algorithm. If the VSS2OPTIMIZE or

VSS3OPTIMIZE option is set in addition to a specification of BLOCKSZ for the structure

with the STRENCRYPT option set, you must adjust the block size of the structure to

maintain the VSS2OPTIMIZE or VSS3OPTIMIZE setting.

If you change the STRENCRYPT option for a data set, a file format change reorganization is

required. A reorganization of a set or subset must be generated from its data set. Note

that reorganization cannot generate a manual subset with encrypted keys. User programs

do not need to be recompiled.

For more information about using the STRENCRYPT option, refer to the Enterprise

Database Server for ClearPath MCP Data and Structure Definition Language (DASDL)

Programming Reference Manual.

The following example of a DASDL source shows the STRENCRYPT option set at the data

set physical option of the EMPLOYEE data set. This setting encrypts the EMPLOYEE,

PHONESET, ID-SSN-SET, and ID-ADDRESS-SET physical files.

OPTIONS
(

BACKUPKEYSET
);
PARAMETERS
(

DATAENCRYPTTYPE = AESGCM
);
DEFAULTS
(

DATAENCRYPTKEYSET
);

EMPLOYEE DATA SET
(

EMPLOYEEID NUMBER(8);
FIRST NAME ALPHA (30);
LAST NAME ALPHA (30);
SSNUMBER NUMBER (9);
ADDRESS GROUP
(

STREETNO NUMBER (5);
STREETNAME ALPHA (30);
CITY ALPHA (10);
STATE ALPHA (2);
ZIPCODE NUMBER (5);

);
HIREDATE DATE;

Database Encryption

23–10 8600 0759-622

SERVICEYEAR REAL;
PHONENO REAL;
DRIVELICENSE ALPHA(10);

)STRENCRYPT = TRUE;

PHONESET SET OF EMPLOYEE KEY IS PHONENO,
INDEX SEQUENTIAL;

ID-SSN-SET SET OF EMPLOYEE KEY IS
(EMPLOYEEID, SSNUMBER);

ID-ADDRESS-SET SET OF EMPLOYEE KEY IS
(EMPLOYEEID, STREETNO, ZIPCODE);

INDEX SEQUENTIAL;
ID-SSN-SET SET OF EMPLOYEE KEY IS

(EMPLOYEEID, SSNUMBER);
ID-ADDRESS-SET SET OF EMPLOYEE KEY IS

(EMPLOYEEID, STREETNO, ZIPCODE);

Compiler-DMSII Compatibility Matrix for Encrypted Items

Compiler Enterprise Database Server Release

Release 57.1 58.1 59.1

Data Item Key Item Data Item Key Item Data Item Key Item

57.1 X X

58.1 X X

59.1 X X X

Note: The compilers in the compatibility matrix are for ALGOL and COBOL85 only.

DMSII-MCP Compatibility Matrix for SLE

DMSII MCP

58.1 59.1 60.0 or later

60.0 Only IC MCP-

058.1A.67 or later

Only IC MCP-

059.1A.37 or later

X

Error Handling

The MCAPI support library opens the key set and performs the encryption and decryption

process. If an error is returned from the MCAPI support library, the error message text

from the MCAPI support library is displayed as well as an error message from the

Enterprise Database Server.

Database Encryption

8600 0759-622 23–11

System Configuration Errors

If the MCAPI support library is installed, and encryption is enabled on a system that does

not have the firmware to support it, the DASDL compiler generates the following error:

LINKAGE FAILED DUE TO MISSING LIBRARY OBJECT

Normally, this error is related to a problem in the system configuration. To verify your

system configuration, do the following:

Note: The following procedure assumes that the halt/load unit is DISK.

1. On the ODT, enter PD *SYSTEM/SECURITYCENTERDB/DMSIIRUNTIME ON

DISK.

• If the SYSTEM/SECURITYCENTERDB/DMSIIRUNTIME file does not exist, the

Security Center software is not installed.

To install Security Center and initialize the Security Center database, contact the

Unisys Support Center.

• If the SYSTEM/SECURITYCENTERDB/DMSIIRUNTIME file exists but the

*DESCRIPTION/SECURITYCENTERDB/INSTALLED file is not present, the

Security Center software is installed; however, the Security Center database is not

initialized. To initialize the Security Center database, do the following:

a. Connect to Security Center from the client workstation.

b. Click MCP Cryptographic Services Manager.

Note: A warning displays if the database is not initialized.

c. Complete the initialization using the database installation wizard.

Note: For more information on initializing the Security Center database, see the topic

“Installing Security Center” in Section 7, “Security Configuration” of the MCP

Security Overview and Implementation Guide.

2. On the ODT, enter PD *SECURITYCENTERDB/= ON DISK.

The ODT returns the SECURITYCENTERDB database files.

3. Enter SL KMAPISUPPORT to verify that the KMAPISUPPORT library is

established.

If the KMAPISUPPORT support library is established, the ODT returns the following

message:

SL KMAPISUPPORT = *SYSTEM/KMAPI/SUPPORT ON DISK

4. Enter SL MCAPISUPPORT to verify that the MCAPISUPPORT support library is

established.

If the MCAPISUPPORT support library is established, the ODT returns the following

message:

SL MCAPISUPPORT = *SYSTEM/MCPCRYPTOAPI/SUPPORT ON DISK

5. If KMAPISUPPORT and MCAPISUPPORT were not automatically installed, enter the

following commands to install them manually:

Database Encryption

23–12 8600 0759-622

SL KMAPISUPPORT = *SYSTEM/KMAPI/SUPPORT ON DISK: ONEONLY,

TRUSTED, LINKCLASS=1

SL MCAPISUPPORT = *SYSTEM/MCPCRYPTOAPI/SUPPORT ON DISK:

ONEONLY, TRUSTED, LINKCLASS=1

6. Enter NA MCAPI STATUS.

The ODT displays the status of each CryptoProxy service.

If the Cryptoproxy or Cryptoproxy CPMCryptoProxy statuses are unavailable, the

ODT displays a reason. For example

Database Encryption Not Available. CPM is too old

or

Database Encryption Not Available. CRYPTOFLE Feature Key Not Installed

Note: If either CryptoProxy service is unavailable, contact Unisys Support.

7. Enter DBS.

The ODT displays a list of all active database stacks.

• If the SECURITYCENTERDB is open, it appears in the list. For example, the

following DBS output identifies SECURITYCENTERDB by mix number 5921.

--Mix-Pri--Usr------------- 2 ACTIVE DATABASES --------
5921 50 1 Job SECURITYCENTERDB
7654 50 2 Job (USER1) (USER1)EMPLOYEEDDB

• If the SECURITYCENTERDB is not open, it does not appear in the list. Do the

following to open the SECURITYCENTERDB:

a. Enter LIBS NAME =KMAPI= and identify the KMAPISUPPORT mix

number.

For example, the following LIBS output identifies KMAPI by mix number

6071.

-Mix--Frz--Shr--Usr-- 1 FROZEN LIBRARY (ALL) =KMAPI= --
6071 Conn Priv Job *SYSTEM/KMAPI/SUPPORT

b. Enter <KMAPI MIX number> AX OPEN DATABASE , where

<KMAPI MIX number> is the mix number that you identified in this step.

For example, 6071 AX OPEN DATABASE.

The SECURITYCENTERDB opens.

Encryption and Decryption Errors

For an encrypted database, the key set needs to be opened at the time the database is

opened.

If the key set cannot be opened, the following open error 120 is returned:

OPEN DATAENCRYPT KEY SET FAILED OR KEY SET IS NOT BACKED UP

Database Encryption

8600 0759-622 23–13

If a database contains structure level encryption and you use an MCP that does not

support structure level encryption, you received error 123:

CURRENT MCP LEVEL DOES NOT SUPPORT STRUCTURE ENCRYPTION

During the encryption and decryption process, one of two types of errors may occur. If the

database integrity cannot be maintained, an error occurs and the database shuts down.

The second type of error is returned if the database integrity can be maintained, and in this

case, the database does not shut down. Typically, if the error occurs during the encryption

process, it will be SYSTEMERROR 7 and the database will be terminated. If it occurs

during the decryption process, it most likely will be INTEGRITYERROR 10, and the

database will not terminate.

Note: If the CryptoProxy Service is down during the encryption and decryption process, a

fatal error will occur and database will shut down.

Example 1

The following example is of an error during a FIND Operation. The database does not

shutdown.

#7950 DISPLAY:(USER1)TESTDB DATA ENCRYPT/DECRYPT FAILED
@ 40734500 IN ACR STRUCTURE #3 D1.

#7950 DISPLAY:(USER1)TESTDB: NON-FATAL
PROGRAMDUMP BY 7905/7950.

#7950 INTEGRITYERROR 10#3 @ (00020250)
#E-DS @ 00020250, 00021340.
Program Dump:

(USER1)PDUMP/OBJECT/TEST/141114/003344/07950
ON DUMPS.

#ET=0.7 PT=0.3 IO=0.3

Example 2

The following example is of an error during a STORE Operation. In this case

SYSTEMERROR 7 is returned, and the database is terminated.

#7910 DISPLAY:(USER1)TESTDB DATA ENCRYPT/DECRYPT FAILED
@ 41053600 FAULT IN ACR STRUCTURE #3 D1.
#7910 DISPLAY:(USER1)TESTDB: FATAL ERROR IN DATABASE.
#7910 SYSTEMERROR 7#3 @ (00018600)
#E-DS @ 00018600, 00021340.
Program Dump:

(USER1)PDUMP/OBJECT/TEST/141114/001010/07910
ON DUMPS.

#ET=2.0 PT=0.2 IO=0.6

Performance Impact and Best Practices

Even though the Enterprise Database Server allows you to specify the DATAENCRYPT

option at the global default, global data set, physical data set, or at the item levels, note

that encryption affects the overhead storage and performance of the database.

Database Encryption

23–14 8600 0759-622

For performance consideration, it is recommended that you use the AESGCM algorithm

for encryption and decryption.

Since overhead is involved when performing database encryption, encryption should only

be performed on the necessary items.

When a structure contains encrypted items, the record size increases. All of the encrypted

items are moved to the end of a record. The item offsets can be different from a data set

with the same item descriptions, but contains no encrypted items.

If you change the DATAENCRYPT option of an item, you must perform a reorganization

and recompile the user programs.

When a structure has the STRENCRYPT option set, the block size of the structure is

increased according to the encryption algorithm; the encrypted data must be a multiple of

16 bytes in length and requires an additional 30 bytes for the encryption algorithm.

If the VSS2OPTIMIZE or VSS3OPTIMIZE option is set in addition to a specification of

BLOCKSZ for the structure with the STRENCRYPT option set, you must adjust the block

size of the structure to maintain the VSS2OPTIMIZE or VSS3OPTIMIZE setting.

If you change the STRENCRYPT option for a data set, a file format change reorganization is

required. User programs do not need to be recompiled.

Always set the BACKUPKEYSET option and manually back up the key set before

accessing the database. Without a backup key set, a database cannot be recovered if the

key set is lost.

If you compile a new database with SLE in addition to setting INITIALIZE and ZIP,

DMUTILITY is not initiated to initialize the database files because the user needs to back

up the key set before accessing the database. A warning message is written to the

DASDL compiler listing.

Database Encryption

8600 0759-622 23–15

Database Encryption

23–16 8600 0759-622

Section 24
Troubleshooting

The following information provides information when you experience Enterprise Database

Server problems.

Events That Cause Halt/Load Recoveries to Fail

When a halt/load recovery fails, the Accessroutines sends diagnostic information to the

printer. The following table lists the causes for an unsuccessful halt/load recovery and the

task or manual recovery operation you need to perform to bring the recovery to a

successful conclusion.

Cause Remedy

The halt/load recovery process is discontinued. Perform a manual halt/load recovery.

The system halt/loads during the halt/load

recovery process.

Perform a manual halt/load recovery.

The audit file necessary to the halt/load

process is corrupt or unavailable.

Retry on a duplicate audit file.

If the retry fails, perform a rebuild recovery.

The RECOVERYINFO file becomes corrupted

or unavailable.

Perform a manual halt/load recovery.

The ROWLOCKOUTAUDIT file becomes

corrupted or unavailable.

Perform a manual halt/load recovery.

Handling I/O Errors During a Halt/Load Recovery

Like any other task, a halt/load recovery might encounter I/O errors when performing

reads or writes. If I/O errors do occur, SYSTEM/DMRECOVERY locks the area or areas of

the database file or files where the errors occurred.

If the REAPPLYCOMPLETED option is not set, the locked area or areas can be

reconstructed using the RECOVER ROWS capability once the recovery is complete and

the database has been initiated.

If the REAPPLYCOMPLETED option is set and SYSTEM/DMRECOVERY encounters I/O

errors while reprocessing completed transactions, the relevant area or areas are locked as

before, but the recovery process fails with a fatal error. In either case, the locked area or

areas can be reconstructed using the RECOVER ROWS capability.

8600 0759-622 24–1

Note: When the REAPPLYCOMPLETED option is set, the reconstruction is unusual

because it has to be initiated while the database is down. The normal recovery process or

Tracker in Remote Database Backup is initiated and in turn starts the row reconstruction

process. The database remains locked until both processes complete. If, ultimately, the

database cannot be recovered, a full database rebuild is required.

Enterprise Database Server Errors During a Halt/Load
Recovery

When a halt/load recovery updates the restart data set for each active application,

occasionally the Enterprise Database Server software issues an error. Frequent errors are

DUPLICATES or LIMITERROR.

The message the halt/load recovery displays at the ODT is

<job#> DISPLAY: RESTART DS ERR : CAT nn SUBCAT nnn

The category and subcategory values enable you to identify the error in a list of Enterprise

Database Server exceptions and errors.

DATAENCRYPT Option Error during a DASDL
Compilation

Installing an incorrect version of the Security Center database or Key Manager library may

be the cause of the following message:

KMAPI ERR: DATABASE NOT OPEN

The Key Manager library, *SYSTEM/KMAPI/SUPPORT, handles the creation of database

encryption keys for the Enterprise Database Server. The Key Manager library uses the

Security Center database and must be upgraded at the same time that the Security Center

server is upgraded.

Refer the Security Overview and Implementation Guide for information about the Security

Center database and the Key Manager library.

REQUIRES *PK DISK Error during a Reorganization

Running a reorganization without INTERNAL FILES specified, or with INTERNAL

FILES=DISK specified on a system which does not have a pack called DISK, results in the

following message:

REQUIRES *PK DISK

To resolve this error, include an INTERNAL FILES specification in the BUILDREORG specs.

Troubleshooting

24–2 8600 0759-622

Appendix A
Common Syntactic Items

This appendix describes the common syntactic items used in this manual. Specific

syntactic items are illustrated in the sections in which they are referenced.

<db statement>

The <db statement> communicates the database name and location of either the control

file or the description file to the respective program. Syntax for this statement is illustrated

and described on the following pages.

Syntax

── DB = ─┬────────────────┬─<database name>─┬────────────────────┬─────┤
├─ * ────────────┤ └─ ON <family name> ─┘
└─ (<usercode>) ─┘

Explanation

When the <db statement> is required for the DMUTILITY, DMRECOVERY, and

DMDATARECOVERY, it communicates control file information to the database. When the

<db statement> is required for the DMCONTROL program, it communicates description

file information to the database. Because these programs are not tailored, they need this

user-supplied information.

The <usercode> construct identifies the usercode of the file. The asterisk (*) indicates that

the file is not under any usercode. If no usercode is specified, the usercode with which

the respective program is running is assumed unless the database resides within a

permanent directory. In that case, the * or the usercode is not used because the control

file is located using the DATAPATH task attribute value. The DATAPATH task attribute value

can be supplied as part of the RUN command or can default to the contents of the

userdatafile. Do not use the usercode or family when the database resides within a

permanent directory.

The <family name> construct identifies the location of the file. If it is not specified, the

family on which the respective program is running is assumed.

Quotation marks (“ ”) are not required for a hyphenated usercode or a hyphenated

database name.

Examples

DB= TESTDB
DB= (MYNAME) TESTDB
DB= (MYNAME) TESTDB ON TESTPACK

8600 0759-622 A–1

<family name>

The <family name> identifies a disk or pack family.

Syntax

──┬─ DISK ──────────────────┬──┤
├─ PACK ──────────────────┤
│ ┌◄────────────────────┐ │
└─┴─ /17\ ─┬─<letter>─┬─┴─┘

└─<digit>──┘

Examples

DISK
PACK
DBPACK
SYSPACK

<digit>

One of the decimal digits from 0 through 9.

Syntax

┌◄────────┐
──┴─<digit>─┴──┤

<integer>

The <integer> construct is used to represent an unsigned whole value.

<dump name>

The <dump name> construct identifies a particular dump on a multidump backup tape

produced by DMUTILITY.

Syntax

──┬─<letter>─┬─┬──┬──────────────┤
└─<digit>──┘ ├───────────────────────────┬─┬─<letter>─┤

│ ┌◄──────────────────────┐ │ └─<digit>──┘
└─┴─/15\─┬─<letter>─────┬─┴─┘

├─<digit>──────┤
└─ hyphen (-) ─┘

Explanation

The <dump name> construct is an identifier or series of identifiers that represent an

Enterprise Database Server file name. It is used in conjunction with multidump tapes.

For example, if MYDB960501 is specified as a dump name, the dump is created with the

dump name MYDB960501 on a tape wit the name <tape name>. When this construct is

used, <tape name> must be a single node.

Common Syntactic Items

A–2 8600 0759-622

<identifier>

The <identifier> constructs have no intrinsic meaning. They are used to represent

symbolic names of structures within an Enterprise Database Server database.

Syntax

──<letter>─┬──┬──────────────────┤
├───────────────────────────┬─┬─<letter>─┤
│ ┌◄──────────────────────┐ │ └─<digit>──┘
└─┴─/15\─┬─<letter>─────┬─┴─┘

├─<digit>──────┤
└─ - (hyphen) ─┘

Explanation

An identifier is composed of from 1 to 17 letters, digits, and hyphens. The first character

must be a letter. The last character must not be a hyphen.

Examples

A
EMPLOYEE
ACCOUNTS-PAYABLE
B-1

<file title>

The <file title> construct consists of a <file name> and a <family name>.

Syntax

──<file name>── ON ──<family name>─────────────────────────────────────┤

<file name>

The <file name> construct is an identifier, or series of identifiers separated by a slash (/),

which represents the name of a ClearPath MCP file.

Syntax

──┬─ = ───────────────────────────────┬────────────────────────────────┤
│ ┌◄────────── / ──────────┐ │
└─┴─/12\─<file identifier>─┴─┬──────┤

└─ /= ─┘

Explanation

The slash equal sign (/=) can be used to represent a family of files. The equal sign (=) alone

designates all files in the database.

<file identifier>

The <file identifier> construct is a single node of a ClearPath MCP file name.

Common Syntactic Items

8600 0759-622 A–3

Syntax

──┬──<letter>─┬────┬───┬─────┤
└──<digit>──┴ ├───────────────────────────────┬─────┬─<letter>──┤

├◄──────────────────────────────┤ └─<digit>───┘
└────────/15\─┬───<letter>──────┤

├──<digit>────────┤
├─ - (hyphen)─────┤
└─ _ (underscore)─┘

Explanation

A file identifier is composed of 1 to 17 letters, digits, hyphens, or underscores. The first

and last character must be a letter or digit.

Examples

A5
EMPLOYEE
ACCOUNTS-PAYABLE
B_1

<path name>

A path name identifies the location of a permanent directory within the file system. A path

name cannot exceed 7 nodes and it must start with the *DIR node to identify the

permanent directory.

Syntax

┌─────────── / ────┐
──*DIR/ ──┴─/7\───<node>─────┴──┤

<tape name>

The <tape name> construct identifies a dump tape produced by DMUTILITY.

Syntax

──┬─<letter>─┬─┬──┬──────────────┤
└─<digit>──┘ ├───────────────────────────┬─┬─<letter>─┤

│ ┌◄──────────────────────┐ │ └─<digit>──┘
└─┴─/15\─┬─<letter>─────┬─┴─┘

├─<digit>──────┤
└─ hyphen (-) ─┘

Explanation

If a multinode tape name is specified, DMUTILITY accepts the full tape name. However,

only the first node and the last node are retained by the system. When a multinode tape

name is specified for a single dump tape, DMUTILITY accepts the full tape name.

However, only the first node and the last node are retained by the system.

Common Syntactic Items

A–4 8600 0759-622

For multidump tape specifications, the tape name must consist of a single node. The

reason for this requirement is that files on tape can have at most, two nodes. The first

node is the tape name; the second node is the file name. When you use multidump tapes,

you can explicitly specify the tape name by using the “TAPE =” syntax and specify the

dump node name with the <name> variable that follows the TO or FROM syntax

component.

For example, if MYDB/960501/DUMP1 is specified as a dump tape name, the tape is

created with the tape name MYDB/DUMP1. You can verify the tape name by initiating a

PER MT command from the ODT.

If you require unique tape names in your processes, be sure to make the combination of

the first and last node unique. Use the SERIALNO option to uniquely identify tapes.

<range>

The <range> construct identifies specific family indexes and rows to be on by DMUTILITY.

Syntax

┌◄───────────── , ─────────────┐
──┴─<integer>─┬────────────────┬─┴─────────────────────────────────────┤

└─ - <integer> ─┘

Explanation

A contiguous group of family indexes or rows can be declared by specifying two integers

separated by a hyphen. If a contiguous group is specified, the second integer must be

larger than the first.

<string>

Syntax

┌◄────────────────────────────────────┐
── " ─┴─ Any EBCDIC character except quote ─┴─ " ──────────────────────┤

Explanation

Strings must be contained within double quotation marks (“ ”). A string can contain, at

most, 255 characters.

<string6>

The <string6> is used in DMUTILITY to designate dump tape serial number.

Syntax

┌◄─────────────────┐
──┬─────┬─┴─/6\─┬─<letter>─┬─┴─┬─────┬─────────────────────────────────┤
├─ " ─┤ └─<digit>──┘ ├─ " ─┤
└─ ' ─┘ └─ ' ─┘

Common Syntactic Items

8600 0759-622 A–5

Explanation

The <string6> construct is a group of between one and six letters and digits, optionally

enclosed within single (’ ’) or double quotation (“ ”) marks.

When DMUTILITY is initiated by CANDE, double quotation marks cannot be used to

delimit tape serial numbers.

Common Syntactic Items

A–6 8600 0759-622

Appendix B
Interpreting Database Statistics

The STATISTICS option of the Data and Structure Definition Language (DASDL) gathers

and prints statistical information about the efficiency of the database. This information

includes statistics on input/output (I/O), buffer use, database use, audit files, and

transactions.

The Visible DBS STATISTICS RESTART command initializes all statistics information, and

clears the timers and totals. When the last user closes the database, the statistics are

printed if the DASDL option list of the database includes the STATISTICS option. You can

also print the statistics at any time by using the Visible DBS STATISTICS command.

The Visible DBS STATISTICS command is described in Section 12, Communicating with

the Database, The STATISTICS option is described in the Data and Structure Definition

Language (DASDL) Programming Reference Manual.

The following paragraphs describe the parts of a statistics report in the order that they

appear in the report. For example, the header appears at the beginning of the report and

the transactions statistics appear at the end.

These paragraphs also describe some general guidelines on using statistics. These

guidelines are not specific because each database environment is unique. Consequently,

recommendations cannot fit all situations.

Note: In addition to using the Visible DBS commands described in this appendix, you can

use the Visible Recovery STATUS, STATISTICS, and STATISTICS CLEAR commands to

monitor the status of database recovery operations. The Visible Recovery commands are

described in Section 8, Recovering the Database.

Header

The header, as shown in the following example, describes the dates and times that the

statistics were gathered.

Unisys Enterprise Database Server for ClearPath MCP SYSTEM/DMUTILITY
<release number> <cycle number>

<day of week>, <month>, <day>, <year> <time>
SYSTEM: <name> SERIAL NUMBER: <number>

DATABASE DATE TIME
OPENED 3/31/06 9:15:19
CLOSED 3/31/06 10:05:17

INTERVAL 49:58

8600 0759-622 B–1

STATISTICS DATE TIME
STARTED 3/31/06 9:15:19

ENDED 3/31/06 10:05:17
INTERVAL 49:58

The header contains the information described in the following table.

Field Name Description

Header Identifies the machine type, version number of the Enterprise Database

Server release, and the system serial number.

Database date

and time

Identifies the date and time when the database was first opened, when it

was closed by the last user, and the interval between both times.

The text (** DATA BASE STILL OPEN **) in this area shows that the

statistics report was printed with the Visible DBS STATISTICS command.

For more information on this command, see Section 12, “Communicating

with the Database,” of this guide.

Statistics date

and time

Identifies the date and time during which the statistics apply. By default,

statistics are generated from the time a user first opens the database until

the last user successfully closes the database. If a halt/load abnormally

closes the database, statistics are not generated.

To reset the time, use the Visible DBS command STATISTICS RESTART. For more

information on this command, see Section 12, Communicating with the Database, of this

guide.

Buffer Statistics

The buffer statistics provide information about the ALLOWEDCORE and buffer

specifications. The following example shows these statistics.

BUFFER STATISTICS

ALLOWEDCORE 100000
MAXIMUM BUFFER STORAGE USED 101924
NUMBER OF BUFFERS USED 568
OVERLAY GOAL 1.000
OVERLAY RATE 0.000
NUMBER OF FORCED OVERLAYS 516
NUMBER OF NORMAL OVERLAYS 1477
MEMORY RESIDENT LIMIT 100000
MAXIMUM MEMORY RESIDENT USED 0

The buffer statistics are described in the following table.

Interpreting Database Statistics

B–2 8600 0759-622

Field Name Description

ALLOWEDCORE Indicates the number of words of main memory that the

Accessroutines is allowed to use for database buffers. When buffer

space exceeds the ALLOWEDCORE value, the Accessroutines

uses an overlay algorithm to write modified buffers back to disk

and return the space until the amount of memory used by the

buffers is less than the ALLOWEDCORE value. To control this

value, use the DASDL parameter ALLOWEDCORE or the

ALLOWEDCORE option in the Visible DBS command.

The ALLOWEDCORE parameter is described in the Data and

Structure Definition Language (DASDL) Programming Reference

Manual. The Visible DBS command is described in

Section 12, Communicating with the Database, of this guide.

Maximum Buffer Storage

Used

Identifies the maximum number of words of main memory that

Accessroutines has used since the database opened or the since

the STATISTIC option was reset for database buffers and data

control blocks. This value can exceed the ALLOWEDCORE value.

Number of Buffers Used Identifies the total number of buffers used for all structures.

Overlay Goal Controls the rate at which buffers are overlaid to the disk. The

unsigned integer value for OVERLAYGOAL must be a number or

decimal value in the range 0 through 100. For databases using the

XE features, the default value is 1 percent of the allowed core for

each minute and applies only if the OVERLAYGOAL parameter is

not specified. Otherwise, the default value is 5 percent of the

allowed core for each minute.

OVERLAYGOAL is a dynamic database parameter that can be

changed by a DASDL update without recompilation of the

Enterprise Database Server software.

If the OVERLAYGOAL parameter is not 0 (zero), the Enterprise

Database Server dynamically allocates buffers to a structure as

long as the total core usage does not exceed the ALLOWEDCORE

value. When OVERLAYGOAL is not zero, the BUFFERS

specifications for structures are ignored. To manually set the

number of buffers for each structure, set the OVERLAYGOAL

parameter to 0 (zero). Next, designate the number of buffers by

using either the DEFAULTS option or the attributes of the individual

structures.

The value for the OVERLAYGOAL option can also be changed by

using a Visible DBS command. For instructions on using Visible

DBS commands, refer to Section 11, Checking Integrity and

Performance.

Overlay Rate Identifies the current, dynamic run-time rate of overlaid memory

expressed as a percentage of the ALLOWEDCORE value per

minute. If the statistics are printed at the final closing of the

database, all the dynamic variables used to calculate the overlay

rate have been cleared, so the overlay rate is 0. To get the current

overlay rate in the database statistics, use the Visible DBS

command SM STATISTICS RESTART.

Interpreting Database Statistics

8600 0759-622 B–3

Field Name Description

Number of Forced

Overlays

Identifies the number of buffers flushed when the buffer space

exceeds the ALLOWEDCORE value and the number of all buffers

for all users is less than the buffer specifications in the DASDL

source. When the OVERLAYGOAL parameter is used, it controls

the rate at which these buffers are overlayed.

A high forced overlay rate can severely slow down the system.

When the Maximum Buffer Storage Used value exceeds the

ALLOWEDCORE value, the system uses forced overlays to reduce

the number of buffers stored until the amount is less than the

ALLOWEDCORE value.

Perform the following steps to reduce the number of forced

overlays:

1. Increase the ALLOWEDCORE value.

2. Decrease the buffer specifications.

3. Decrease the buffer sizes.

4. Decrease the audit block size.

Try to bring the number of forced overlays as close to 0 (zero) as

possible—for example, 1 or 2 per minute.

Number of Normal

Overlays

Indicates the number of buffers flushed when the database

structures close normally. This value is also the number caused by

user state changes such as NORMAL, READAHEAD, and

REBLOCK.

This value should be as close to 0 (zero) as possible—for example, 1

or 2 per minute.

Memory Resident Limit Limits the amount of memory used for MEMORY RESIDENT

buffers. When the RESIDENT LIMIT parameter is exceeded, no

more MEMORY RESIDENT buffers can be added. The value of the

RESIDENT LIMIT parameter cannot exceed the value of the

ALLOWEDCORE parameter. The default value is one half the value

of the ALLOWEDCORE parameter.

Maximum Memory

Resident Used

Identifies the maximum number of words of resident memory that

Accessroutines has used since the database opened. This value

can exceed the Memory Resident Limit value.

For more information on these values and specifications, see the Data and Structure

Definition Language (DASDL) Programming Reference Manual or the explanation of the

Visible DBS command in Section 12, Communicating with the Database.

Input/Output (I/O) Statistics

Input/output (I/O) statistics contain information about user access to a database—that is,

about the process of writing data to and reading data from a database. With these

statistics and the transaction statistics, you can determine whether

Interpreting Database Statistics

B–4 8600 0759-622

• Too many read and write operations are taking place.

• Too much time is spent waiting for channel and control resources.

• Too much time is spent waiting for data transfer, which suggests that the blocks are

too large.

Each line of the I/O statistics describes the database structures that were accessed. The

I/O statistics also include Access statistics because an Access is part of a data set. The

following example shows these statistics.

Interpreting Database Statistics

8600 0759-622 B–5

Each line of the I/O statistics begins with a structure number and a name. Nine fields of

information are printed for each structure. These nine fields are described in the following

table.

Interpreting Database Statistics

B–6 8600 0759-622

Field Name Description

I/O Time Indicates the time spent by the MCP, in seconds, writing to and

reading from the structure. This machine-dependent value excludes

the time necessary to search for and transfer data, and excludes the

delay between those times.

Number of Reads Indicates the number of times the structure was physically read.

This value includes readahead operations

Number of Readaheads Indicates the number of read operations that occur during

readaheads. This value includes reads of small blocks and large

blocks (reblock), normal block reads, and storage control reads.

You activate readahead operations when you designate serial

buffers in your DASDL source and when the Accessroutines

detects sequential physical access and sequential access through

the set. The Accessroutines reads a structure in blocks.

The readahead facility allows the Accessroutines to read blocks

before they are needed. This reduces the time required to access

records serially by decreasing the buffer wait time. For data sets,

this means that the next physical block of data is retrieved. When

serially accessing records through a set or subset, the following

records are retrieved and placed in the data buffers of the data set:

• The next set or subset

• The data set records pointed to by entries in the set or subset

table

Reblocking causes the Accessroutines to use a larger block size

when reading data blocks. Using a larger block size increases the

amount of serially accessed records being put into the buffers for

each physical read. Reblocking is not valid for index sequential

structures. Both optimization methods cause a decrease in elapsed

time for data retrieval.

When the DASDL REBLOCK option is turned on and the

REBLOCKFACTOR is set to a value greater than 1, readahead logic

is turned off for data set accessing. Since readahead logic only

reads one block ahead at a time, setting the REBLOCKFACTOR

option to a value of 2 or higher means that more information can be

read in one physical I/O operation than if readahead logic is used to

read smaller blocks of information. You cannot use readahead logic

to read large blocks. When the REBLOCKFACTOR option is set to a

value greater than 1 for a data set, readahead logic is still used for

accessing associated sets serially.

Wait Time for Reads Indicates the time, in seconds, that the program spent waiting for

read operations to finish. This value does not include housekeeping

while waiting to read. The Wait Time for Reads value is a key

indicator of the structures that need tuning

Interpreting Database Statistics

8600 0759-622 B–7

Field Name Description

Average Wait Time for

Reads

Indicates the Wait Time for Reads value divided by the Number of

Reads value, in milliseconds. Normally, this value should range from

10 to 20. For heavily loaded systems, the value can range from 20 to

30. Values over 30 can be excessive.

To reduce the waiting time for read operations and to increase

overall performance, perform the following steps:

• Add more channel capacity.

• Add more I/O resources.

• Add more packs.

• Distribute the database among different packs.

You might also need to use System Management Facility II (SMFII)

to determine if high values are the result of inefficient processor use

or too many reads or writes. See the System Management Facility

II (SMFII) Query Operations Guide for more information.

Number of Writes Indicates the number of times the structure was physically written,

including normal write operations, writeahead operations, and

storage control writes

Number of Writeaheads Indicates the number of writeahead operations. The system writes

the oldest buffer while waiting for a read operation to finish. The

system writes the serial buffer depending on the audit

specifications, as soon as it accesses the next buffer

Wait Time for Writes Indicates the time, in seconds, that the program spent waiting for

write operations. The time measurement begins after all possible

housekeeping is finished and ends when I/O is finished

Average Wait Time for

Writes

Indicates the Wait Time for Writes value divided by the Number of

Writes value, in milliseconds. The value should range from 10 to 30.

Values over 40 milliseconds are too high and can be caused by

• Too many buffers

• Storage control writes

• Forced overlays

• Heavy sequential update

To reduce the waiting time for write operations, perform the

following steps:

• Decrease the number of buffers.

• Defer physical addition and deletion.

• Increase the ALLOWEDCORE value.

• Increase the number of writeahead operations.

Interpreting Database Statistics

B–8 8600 0759-622

VSS2 Optimization

VSS2 optimization lists the database structures that are not optimized for VSS-2 devices.

Structures that are not optimized for VSS-2 devices are not aligned on block boundaries

that are multiples of 60 words.

There is one line for each structure that is not optimized. The first field is the structure

number. The second field is the structure name. The total number of structures that are

not optimized is at the end of the list.

VSS3 Optimization

The following information is valid only if VSS3OPTIMIZE is specified in the database.

VSS3 optimization lists the database structures that are not optimized for VSS-3 devices.

Structures that are not optimized for VSS-3 devices are not aligned on block boundaries

that are multiples of 660 words.

There is one line for each structure that is not optimized. The first field is the structure

number. The second field is the structure name. The total number of structures that are

not optimized is at the end of the list.

Note that only structures that are opened during the report time frame are listed.

Control file and audit file are also listed after the structure list if they are not optimized for

VSS3 blocking.

Database Usage Statistics

The database usage statistics describe activity on the database. Each line of these

statistics describes the number and name of the accessed structure. Five fields of data are

listed for each structure. All fields include both successful and unsuccessful operations.

Because an Access is part of a data set, the Access statistics are included with the

database usage statistics. The following example shows the database usage statistics.

DATABASE USAGE STATISTICS

(1) FIND DATA RECORD/FIND ENTRY IN SET
(2) STORE AFTER CREATE/INSERT KEY INTO SET
(3) STORE AFTER LOCK/CHANGE DATA IN KEY
(4) DELETE DATA RECORD/DELETE ENTRY FROM SET
(5) CHANGE A CONTROL FIELD OF DATA RECOR D
(6) USER FIND DATA RECORD

(1) (2) (3) (4) (5) (6)
1 ORDERSDB 0 0 0 0 7 0
2 RSTART-INFO 0 0 0 0 0 0
3 RS-SET 4 0 0 0

.

Interpreting Database Statistics

8600 0759-622 B–9

.

.
24 ORDERS 49 0 0 0 0 0
25 ORD-SET 56 0 0 0
26 ORD-STATUS-SET 0 0 0 0
27 ORD-DATE-SET 0 0 0 0

.

.

.
49 MAJOR-ASSEMBLY 3296 11111 3290 0 0 0
50 MASMBLY-SET 3297 11111 0 0
50 MASMBLY-SET 0 0 0 0
50 MASMBLY-SET 0 0 0 0
50 MASMBLY-SET 0 0 0 0
50 MASMBLY-SET 0 0 0 0
50 MASMBLY-SET 0 0 0 0
50 MASMBLY-SET 0 0 0 0
50 MASMBLY-SET 0 0 0 0
50 MASMBLY-SET 0 0 0 0

SUBTOTAL 3297 11111 0 0
.
.
.

56 PART-DESC 2169 0 0 1084 0 1084
56 PART-DESC 2169 0 0 1084 0 1084
56 PART-DESC 2169 0 0 1084 0 1084

SUBTOTAL 6507 0 0 3252 0 3252
57 PDESC-SET 3255 0 0 3252
57 PDESC-SET 0 0 0 0
57 PDESC-SET 0 0 0 0
57 PDESC-SET 0 0 0 0
57 PDESC-SET 0 0 0 0
57 PDESC-SET 0 0 0 0
57 PDESC-SET 0 0 0 0
57 PDESC-SET 0 0 0 0
57 PDESC-SET 0 0 0 0

SUBTOTAL 3255 0 0 3252

Field Name Description

Find Data Record/Find Entry in Set Indicates for a data set, the number of FIND operations on a

record. For a data set, the number of FIND operations can

include internal FIND operations of deleted records. For a

set, the number of logical FIND operations using a set and a

FIND KEY OF clause. This value does not include internal

FIND operations such as those required to insert a record

into a set

Store After Create/Insert Key into

Set

Indicates for a data set, the number of records stored after

the records were created. For a set, the number of keys

inserted into a set

Store After Lock/Change Data in

Key

Indicates for a data set, the number of times that records

were stored after the records were locked. For a set, the

number of times data in a key was changed

Interpreting Database Statistics

B–10 8600 0759-622

Field Name Description

Delete Data Record/Delete Entry

from Set

Indicates for a data set, the number of records deleted. For

a set, the number of entries deleted

Change a Control Field of Data

Record

Indicates the number of times a control field, such as

POPULATION or COUNT, was changed

User Find Data Record Indicates the number of times application programs

executed statements resulting in a FIND operation being

performed for a data set. It does not include internal FINDs

performed by the ACCESSROUTINES such as those that

occur when deleted records are encountered as the result

of processing records serially through the data set.

Database usage statistics are most valuable when compared with data in I/O statistics.

You can detect linear search problems by comparing the ratio of logical reads to the ratio

of physical reads.

Structure Lock Statistics

The structure lock statistics provide locking information on various locks of structures.

These statistics are printed only when the LOCKSTATISTICS option is turned on. The

following example shows the structure lock statistics.

STRUCTURE LOCK STATISTICS

(1) NUMBER OF TIMES LOCK HELD
(2) TOTAL LOCK HOLD TIME (SECONDS)
(3) NUMBER OF LOCK WAITS
(4) TOTAL LOCK WAIT TIME (SECONDS)
(5) AVERAGE LOCK HOLD TIME (MS)
(6) AVERAGE LOCK WAIT TIME (MS)

(1) (2) (3) (4) (5) (6)

2 AUDITAREA
BLOCKLOCK 11 0.0 0 0.0 3.915 0.000
STORELOCK 3 0.0 0 0.0 11.229 0.000

3 GLB-CRITIC
BLOCKLOCK 3414111 46.0 0 0.0 0.013 0.000
STORELOCK 2 0.0 0 0.0 10.908 0.000
RSNLOCK 1 0.0 0 0.0 0.000 0.000

4 GLB-PATH
BLOCKLOCK 3 0.0 0 0.0 3.946 0.000
STORELOCK 2 0.0 0 0.0 5.922 0.000
PATHLOCK 1 0.0 0 0.0 0.000 0.000

5 GLB-PATH-2
BLOCKLOCK 3 0.0 0 0.0 7.161 0.000
STORELOCK 2 0.0 0 0.0 11.717 0.000
PATHLOCK 1 0.0 0 0.0 0.000 0.000

Interpreting Database Statistics

8600 0759-622 B–11

The structure lock statistics consists of six fields which are described in the following

table.

Field Name Description

Number of Times Lock Held Indicates the number of times the lock was held.

Total Lock Hold Time Indicates the total hold time, in seconds, on the lock.

Number of Lock Waits Indicates the number of times the lock was waited for.

Total Lock Wait Time Indicates the total wait time, in seconds, on the lock.

Average Lock Hold Time Indicates the Total Lock Hold Time value divided by the

Number of Times Lock Held value, in milliseconds.

Average Lock Wait Time Indicates the Total Lock Wait Time value divided by the

Number of Lock Waits value, in milliseconds.

Audit Statistics (First Part)

Audit statistics provide information on audit file performance. These statistics are printed

only for audited databases. The following example shows the first part of the statistics.

The first part of the audit statistics consists of five fields, which are described in the

following table.

Field Name Description

Starting Audit File Number Indicates the number of the audit file when statistics

were started

Ending Audit File Number Indicates the number of the audit file when statistics

were printed

Starting Audit Block Serial Number Indicates the serial number of the audit file when

statistics were started

Interpreting Database Statistics

B–12 8600 0759-622

Field Name Description

Ending Audit Block Serial Number Indicates the serial number of the audit file when

statistics were printed

Average Audit Block Size Indicator of excessively large audit block sizes or

syncpoint values. An Average Audit Block Size value that

is less than the physical audit BLOCKSIZE value

declared in the DASDL source might indicate a low

syncpoint value

Audit Statistics (Second Part)

The second part of the audit statistics consists of the fields shown in the following

example, which describe audit wait times.

These audit statistics describe audit wait times and counts for the fields shown in the

following table.

Field Name Description

Force Audit at Syncpoint Time Indicates the time in milliseconds that the program spent

waiting for the audit buffers to flush during syncpoints.

Values over 80 milliseconds might be excessive

depending on the system configuration.

Force Audit to Unconstrain Buffers When reusing or overlaying a data buffer, those audit

buffers recording the updates of that data buffer have to

be flushed first. This field indicates the time in

milliseconds that the program spent waiting for those

audit buffers to flush. Values over 80 milliseconds might

be excessive depending on the system configuration.

Interpreting Database Statistics

8600 0759-622 B–13

Field Name Description

Force Audit for

REAPPLYCOMPLETED

Indicates the time in milliseconds that the program spent

waiting for the audit buffers to flush at the end of the

transaction. Values over 80 milliseconds might be

excessive depending on the system configuration.

Force Audit for New Top Buffer Indicates the time in milliseconds that the program spent

waiting for the top audit buffers to flush because all the

buffers were full

Force Audit for CatchupServer Indicates the time in milliseconds that the Remote

Database Backup Catchup-server task spent waiting for

the audit buffers to flush at the end of a Catchup process.

Values over 80 milliseconds might be excessive

depending on the system configuration.

Force Audit for FILE SWITCH Indicates the time in milliseconds that the program spent

waiting for the audit buffers to flush during the audit

switch

Force Audit for REORG ETR Indicates the time in milliseconds that reorganization

tasks spent waiting for the audit buffers to flush at the

end of the transaction. Values over 80 milliseconds might

be excessive depending on the system configuration.

Force Audit for WRITE AUDIT

BLOCK

Indicates the time in milliseconds that the program spent

waiting for the audit buffers to flush at the completion of

an Enterprise Database Server statement such as

CREATE, STORE, or DELETE

Force Audit (Other) Indicates the time in milliseconds that the program spent

waiting for the audit buffers to flush at other

miscellaneous situations.

Normal Audit I/O Indicates the time in milliseconds that the program spent

waiting for the audit buffers to flush when the audit

buffers were full. The values for total waiting times

should range from 1 to 5 milliseconds. The values for

average waiting time should range from 3 to 8

milliseconds for a tape and about 15 milliseconds for a

pack.

High audit wait times are caused by

• Small audit block sizes

• Updates to large data set records

• Too many syncpoints

• Heavy overlay (unconstrained buffers)

• Audits to a busy pack

An audit block size that is too small or logical audit records that are too large can cause an

audit block to fill before the I/O operation finishes for another audit block. To prevent audit

blocks from filling too quickly, increase the audit BLOCKSIZE value.

Interpreting Database Statistics

B–14 8600 0759-622

The audit BLOCKSIZE value you designate in the DASDL source determines the block

size. Shorter blocks can be written if needed.

Transaction Statistics

Transaction statistics provide statistics about transactions, syncpoints, and controlpoints.

The following example shows these statistics.

Transaction statistics consist of the information in the following table.

Field Name Description

Total Transaction Count Indicates the number of successful BEGINTRANSACTION

statements

Total Syncpoint Count Indicates the number of syncpoint operations

Total Controlpoint Count Indicates the number of controlpoint operations. A

syncpoint frequency of 100 and a controlpoint frequency of

2 produces two syncpoints and one controlpoint for every

200 transactions

Wait for Syncpoint/Controlpoint

Count

Indicates the number of times the programs waited at a

BEGINTRANSACTION statement for syncpoint and

controlpoint operations

Average Wait for

Syncpoint/Control

Indicates the average time the program spent waiting at a

BEGINTRANSACTION statement for a syncpoint or a

controlpoint operation. This value should range from 1 to 2

seconds. The value is biased by the controlpoint overhead.

To reduce this value, perform one or all of the following

steps:

• Increase the syncpoint or controlpoint values.

• Reduce the controlpoint overhead.

• Reduce the time the program is in transaction state

Average Time to Take

Controlpoint

Indicates the average time spent taking a controlpoint. This

value should be as close to the number 0 as possible. High

values can be caused by too many buffers.

Interpreting Database Statistics

8600 0759-622 B–15

Field Name Description

Average Number of Buffers

Flushed at Controlpoint

Indicates the average number of buffers that are flushed at

controlpoints

Percent of Modified Buffers

Flushed at Controlpoint

Indicates the overhead for data buffer flushing (not including

storage control writes). This value is typically 10 to 20

percent of the modified buffers that are flushed and, in the

worst cases, can go as high as 50 percent. Too many

buffers cause higher values.

Global Lock Statistics

The global lock statistics provide locking information on various locks in the database.

These statistics are printed only when the LOCKSTATISTICS option is turned on. The

global lock statistics consists of six fields. the following example shows these statistics:

GLOBAL LOCK STATISTICS

(1) NUMBER OF TIMES LOCK HELD
(2) TOTAL LOCK HOLD TIME (SECONDS)
(3) NUMBER OF LOCK WAITS
(4) TOTAL LOCK WAIT TIME (SECONDS)
(5) AVERAGE LOCK HOLD TIME (MS)
(6) AVERAGE LOCK WAIT TIME (MS)

(1) (2) (3) (4) (5) (6)

DCBALLOC 212 0.0 0 0.0 0.001 0.000
OLAYLOCK 1 0.0 0 0.0 0.000 0.000
MEMLOCK 109 0.0 0 0.0 0.001 0.000
DBLOCK 2 0.0 0 0.0 0.000 0.000
GBLOCK 5 0.0 0 0.0 0.679 0.000
DBOPENLOCK 3 0.0 0 0.0 12.164 0.000
CONTROLLOCK 4 0.0 0 0.0 3.565 0.000
VDBSLOCK 1 0.0 0 0.0 0.000 0.000
CNTLIOLOCK 3 0.0 0 0.0 4.237 0.000
POPZIPLOCK 1 0.0 0 0.0 0.000 0.000
TRANSTAMPLOCK 8 0.0 0 0.0 0.008 0.000
GCLOCK 1 0.0 0 0.0 0.000 0.000
VSS2WARNLOCK 1 0.0 0 0.0 0.000 0.000
RSLOCK 3 0.0 0 0.0 0.001 0.000
SPACE_LOCK 11 0.0 0 0.0 0.004 0.000
CPT_LOCK 1 0.0 0 0.0 0.002 0.000
AUDITLOCK 18 0.0 0 0.0 1.501 0.000
SYNCL 9 0.0 0 0.0 0.002 0.000
PTIMELOCK 5 0.0 0 0.0 0.004 0.000
AUDITIOCLOCK 9 0.0 0 0.0 2.968 0.000
AUDITQUEUELOCK 18 0.0 0 0.0 1.382 0.000
AUDITCLOSELOCK 3 0.0 0 0.0 8.272 0.000
AUDITWRITELOCK 8 0.0 0 0.0 3.146 0.000
AUDITACCESSLOCK 25 0.0 0 0.0 0.003 0.000
AUDITWAITLOCK 11 0.0 0 0.0 0.002 0.000

Interpreting Database Statistics

B–16 8600 0759-622

The global lock statistics consists of six fields which are described in the following table.

Field Name Description

Number of Times Lock Held Indicates the number of times the lock was held.

Total Lock Hold Time Indicates the total hold time, in seconds, on the lock.

Number of Lock Waits Indicates the number of times the lock was waited for.

Total Lock Wait Time Indicates the total wait time, in seconds, on the lock.

Average Lock Hold Time Indicates the Total Lock Hold Time value divided by the

Number of Times Lock Held value, in milliseconds.

Average Lock Wait Time Indicates the Total Lock Wait Time value divided by the

Number of Lock Waits value, in milliseconds.

Control Point Buffer Statistics

The Control Point Buffer Statistics provide buffer information between and at control

points for every structure.

Statistics are printed only when the CPSTATS option is turned on. The statistics consists

of five fields.

The following example shows these statistics.

CONTROLPOINT COUNT 14

(1) NUMBER OF WRITEAHEADS
(2) NUMBER OF AUDIT CONSTRAINED BUFFERS
(3) NUMBER OF I/O PENDING BUFFERS
(4) NUMBER OF CP FLUSHED BUFFERS
(5) NUMBER OF CP MODIFIED BUFFERS

(1) (2) (3) (4) (5)

2 RESTART-DS 0 0 0 0 0
3 DS 4286 317 548 1 464
4 DS-XE/0 266 0 185 1 301
4 DS-XE/1 261 0 201 1 302
4 DS-XE/2 252 1 145 1 266

SUBTOTAL 779 1 531 3 869
5 DS-SET 39 0 10 1 22
6 DS-XE-SET 103 116 1 1 52

The control point buffer statistics consists of five fields which are described in the

following table.

Interpreting Database Statistics

8600 0759-622 B–17

Field Name Description

Number of writeaheads Indicates the number of writeaheads completed between

control points.

Number of audit constrained

buffers

Indicates the number of buffers the writeahead process

skipped between control points due to audit constraints.

Number of I/O pending buffers Indicates the number of buffers the writeahead process

skipped between control points due to I/O pending.

Number of CP flushed buffers Indicates the number of buffers flushed at the control

point.

Number of CP modified buffers Indicates the number of buffers modified (and not flushed)

at the control point.

Using Statistics

Some general guidelines to using the statistics include the following:

• Begin with a test version of a database. Run your programs on this version, and

generate statistics to discover the effect of the programs on the database. When you

are satisfied with the results, use a production version of the database and generate

statistics on that version.

• If you adjust a statistics parameter, study the statistics again to ensure that you did not

adversely affect another statistic.

Note: Using the ON parameter with the LOCKSTATISTICS command can adversely

impact performance. It is recommended that you use the LOCKSTATISTICS ON in short,

controlled time intervals. Use this setting for diagnostic purposes only.

Interpreting Database Statistics

B–18 8600 0759-622

Appendix C
COPYAUDIT Error Messages

Introduction

All COPYAUDIT messages can be categorized as follows.

Category Caused by . . .

I/O error Difficulties with reading or writing audit block information

I/O errors usually occur under either of the following

circumstances:

• Physical problems with the I/O devices being used to

transfer the data

• Attempting to read or write more or less data than

expected

For more detailed information on any I/O error messages, refer

to the File Attributes Programming Reference Manual.

Data error Problems with the actual data being transferred

File attribute error Problems with the file to which or from which data is being

transferred

Syntax error An incorrect COPYAUDIT statement

This appendix provides tables of the COPYAUDIT error numbers you might receive when

running the COPYAUDIT program.

Error Message Format

The general format of a fatal error message is

<mix number> DISPLAY:
ERROR <error number>: <audit file name>.

<mix number> DISPLAY:
<error message text>.

The general format of a nonfatal error message is

<mix number> DISPLAY:
NONFATAL ERROR <error number>: <audit file name>.

<mix number> DISPLAY: <error message text>.

The audit file name construct provides the following information:

8600 0759-622 C–1

• The file title, including the pack name for disk files and the tape drive number (MT#) for

tape files

• Either SOURCE AUDIT FILE, DEST AUDIT FILE, or NEXT AUDIT FILE to identify

which audit file has the problem

If the error is an I/O error, then the following information is appended to the last line of the

error message:

IOERRORTYPE = <number>: <I/O error message text>.

COPYAUDIT Errors

The following information provides an explanation of the COPYAUDIT error messages that

can occur during a COPYAUDIT run. Errors are listed in fatal and nonfatal categories and in

numeric order under each category.

For a nonfatal problem, COPYAUDIT attempts to find a solution. If a fatal error occurs, you

must fix the cause of the problem and then try rerunning the COPYAUDIT program. If a

syntax error occurs, the last token scanned before the error was detected is included in

the error message.

Some of the COPYAUDIT errors are also accompanied by an IOERRORTYPE error

message. Refer to the File Attributes Programming Reference Manual for details of these

error messages.

Lists of fatal and nonfatal errors are as follows:

COPYAUDIT Fatal Errors

ERROR 1: READ AUDIT BLOCK# <audit block number>

An I/O error occurred while reading the input audit file. Refer to the

IOERRORTYPE error message accompanying this message for more

details.

This error occurs if the problem is with the input audit file. Error 10 is

returned when the problem occurs with the first copy of the audit file.

Error 11 is returned when the problem occurs with the second copy of

the audit file.

ERROR 2: READ AUDIT BLOCK# <audit block number>: <words>

WORDS BUT COULD ONLY READ <words>

The audit block being read was not of the expected size.

This error occurs if the problem is with the input audit file. Error 12 is

returned when the problem occurs with the first copy of the audit file.

Error 13 is returned when the problem occurs with the second copy of

the audit file.

ERROR 3: AT AUDIT BLOCK# <audit block number>: ABSN = <absn>

SHOULD = <absn>

COPYAUDIT Error Messages

C–2 8600 0759-622

The ABSN of the block being read does not have the expected value.

This error occurs if the problem is with the input audit file. Error 14 is

returned when the problem occurs with the first copy of the audit file.

Error 15 is returned when the problem occurs with the second copy of

the audit file.

ERROR 4: AUDIT BLOCK# <audit block number> TIME STAMP

MISMATCH FROM PREVIOUS BLOCK

The previous block timestamp field of the current audit block does not

match the timestamp of the previous audit block.

This error occurs if the problem is with the input audit file. Error 16 is

returned when the problem occurs with the first copy of the audit file.

Error 17 is returned when the problem occurs with the second copy of

the audit file.

ERROR 5: AUDIT BLOCK# <audit block number> CHECKSUM ERROR

A checksum error occurred on an audit block.

This error occurs if the problem is with the input audit file. Error 18 is

returned when the problem occurs with the first copy of the audit file.

Error 19 is returned when the problem occurs with the second copy of

the audit file.

ERROR 6: WRITE AUDIT BLOCK# <audit block number>

An I/O error occurred while trying to write an audit block. Refer to the

IOERRORTYPE error message accompanying this message for more

details.

There are several reasons that an I/O error is identified as DESCRIPTOR

ERROR. This error occurs if the maximum allowed I/O length for an I/O

tape on the system has been exceeded. For example, some tape

subsystems might have a maximum I/O size as small as 65,535 bytes.

To ensure that audit files copy to any tape device on those systems, the

declared block size of the audit file must be less than or equal to 65, 535

bytes (10,922 words).

Ensure that the audit block size declared in DASDL does not exceed the

maximum I/O length for this particular tape device when the

COPYAUDIT program runs. Enter the following to find the maximum I/O

block size allowed:

OL MT <device type> <unit number>

For more information on this command, refer to the System Commands

Operations Reference Manual.

This error occurs if this is the first copy of the audit file. Error 7 is returned

when the problem occurs with the second copy of the audit file.

ERROR 7: WRITE AUDIT BLOCK# <audit block number>

An I/O error occurred while trying to write an audit block. Refer to the

IOERRORTYPE error message accompanying this message for more

details.

This error occurs if this is the second copy of the audit file. Error 6 is

returned when the problem occurs with the first copy of the audit file.

COPYAUDIT Error Messages

8600 0759-622 C–3

ERROR 8: AT AUDIT BLOCK# <audit block number> : <words> WORDS

TO WRITE BUT WROTE <words>

An error occurred while trying to write an audit block. This problem

usually occurs because the audit block is smaller than expected.

This error occurs if this is the first copy of the audit file. Error 9 is returned

when the problem occurs with the second copy of the audit file.

ERROR 9: AT AUDIT BLOCK# <audit block number> : <words> WORDS

TO WRITE BUT WROTE <words>

An error occurred while trying to write an audit block. This problem

usually occurs because the audit block is smaller than expected.

This error occurs if this is the second copy of the audit file. Error 8 is

returned when the problem occurs with the first copy of the audit file.

ERROR 10: READ AUDIT BLOCK# <audit block number>

An I/O error occurred while trying to check the first copy of the audit file.

Refer to the IOERRORTYPE error message accompanying this message

for more details.

This error occurs if this is the first copy of the audit file. Error 11 is

returned when the problem occurs with the second copy of the audit

file. Error 1 is returned when the problem occurs while reading the input

audit file.

ERROR 11: READ AUDIT BLOCK# <audit block number>

An I/O error occurred while trying to check the second copy of the audit

file. Refer to the IOERRORTYPE error message accompanying this

message for more details.

This error occurs if this is the second copy of the audit file. Error 10 is

returned when the problem occurs with the first copy of the audit file.

Error 1 is returned when the problem occurs while reading the input

audit file.

ERROR 12: READ AUDIT BLOCK# <audit block number> : <words>

WORDS BUT COULD ONLY READ <words>

The audit block was not of the expected size; the error occurred while

checking the first copy of the audit file.

This error occurs if this is the first copy of the audit file. Error 13 is

returned when the problem occurs with the second copy of the audit

file. Error 2 is returned when the problem occurs while reading the input

audit file.

ERROR 13: READ AUDIT BLOCK# <audit block number> : <words>

WORDS BUT COULD ONLY READ <words>:

The audit block was not of the expected size; the error occurred while

checking the second copy of the audit file.

This error occurs if this is the second copy of the audit file. Error 12 is

returned when the problem occurs with the first copy of the audit file.

Error 2 is returned when the problem occurs while reading the input

audit file.

COPYAUDIT Error Messages

C–4 8600 0759-622

ERROR 14: AT AUDIT BLOCK# <audit block number> : ABSN = <absn>

SHOULD = <absn>

The ABSN of the current audit block does not have the expected value.

This error occurs if this is the first copy of the audit file. Error 15 is

returned when the problem occurs with the second copy of the audit

file. Error 3 is returned when the problem occurs while reading the input

audit file.

ERROR 15: AT AUDIT BLOCK# <audit block number> : ABSN = <absn>

SHOULD = <absn>

The ABSN of the current audit block does not have the expected value.

This error occurs if this is the second copy of the audit file. Error 14 is

returned when the problem occurs with the first copy of the audit file.

Error 3 is returned when the problem occurs while reading the input

audit file.

ERROR 16: AUDIT BLOCK# <audit block number> TIMESTAMP

MISMATCH FROM PREVIOUS BLOCK

The previous block timestamp field of the current audit block does not

match the timestamp of the previous audit block.

This error occurs if this is the first copy of the audit file. Error 17 is

returned when the problem occurs with the second copy of the audit

file. Error 4 is returned when the problem occurs while reading the input

audit file.

ERROR 17: AUDIT BLOCK# <audit block number> TIMESTAMP

MISMATCH FROM PREVIOUS BLOCK

The previous block timestamp field of the current audit block does not

match the timestamp of the previous audit block.

This error occurs if this is the second copy of the audit file. Error 16 is

returned when the problem occurs with the first copy of the audit file.

Error 4 is returned when the problem occurs while reading the input

audit file.

ERROR 18: AUDIT BLOCK# <audit block number> CHECKSUM ERROR

A checksum error occurred on an audit block.

This error occurs if this is the first copy of the audit file. Error 19 is

returned when the problem occurs with the second copy of the audit

file. Error 5 is returned when the problem occurs while reading the input

audit file.

ERROR 19: AUDIT BLOCK# <audit block number> CHECKSUM ERROR

A checksum error occurred on an audit block.

This error occurs if this is the second copy of the audit file. Error 18 is

returned when the problem occurs with the first copy of the audit file.

Error 5 is returned when the problem occurs while reading the input

audit file.

ERROR 20: SYNTAX <token>: “)” EXPECTED

COPYAUDIT Error Messages

8600 0759-622 C–5

A syntax error exists in your COPYAUDIT statement. A closing

parenthesis appears to be missing.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 21: SYNTAX <token>: DECIMAL INTEGER EXPECTED

A syntax error exists in your COPYAUDIT statement. Check that integer

values have been supplied.

Refer toSection 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 22: SYNTAX <number>: DECIMAL INTEGER> 12 DIGITS

A syntax error exists in your COPYAUDIT statement. A value you have

supplied is larger than 12 digits.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 23: SYNTAX <token>: PRIMARY OR SECONDARY EXPECTED

A syntax error exists in your COPYAUDIT statement. Either the keyword

SECONDARY or PRIMARY is misspelled, or you have provided an

incorrect phrase.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 24: SYNTAX <token>: “=” EXPECTED

A syntax error exists in your COPYAUDIT statement. The equal sign (=) is

missing from a clause of the COPYAUDIT statement.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams for information on the AS PRIMARY and AS SECONDARY

options.

ERROR 25: SYNTAX <token>: “1” OR “2” EXPECTED

A syntax error exists in your COPYAUDIT statement. You have

designated an alphanumeric, a negative, or a noninteger value in the

COPIES clause. You can either omit the COPIES clause, or request

COPIES=1 or COPIES=2. Assigning a value of 1 in the COPIES clause

has the same effect as not providing a COPIES clause. The value you

supply in the COPIES clause must be an unsigned integer. Refer to

Section 9, Copying Audit Files, for the COPYAUDIT syntax diagrams.

ERROR 26: SYNTAX <number>: “1” OR “2” EXPECTED

A syntax error exists in your COPYAUDIT statement. In the COPIES

clause you have assigned an integer other than 1 or 2. You can either

omit the COPIES clause, or request COPIES=1 or COPIES=2. Assigning

a value of 1 in the COPIES clause has the same effect as not providing a

COPIES clause.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 27: SYNTAX <token>: END OF INPUT EXPECTED

COPYAUDIT Error Messages

C–6 8600 0759-622

A syntax error exists in your COPYAUDIT statement. Check the end of

the statement; more input was found than expected.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 28: This error number is not currently used.

ERROR 29: SYNTAX <token>: UNRECOGNIZED REQUEST

A syntax error exists in your COPYAUDIT statement. There is an

unrecognized request or command. Check the first keyword in the

statement.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 30: SYNTAX <token>: “TO” EXPECTED

A syntax error exists in your COPYAUDIT statement. The TO keyword is

missing.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 31: SYNTAX <token>: “FROM” EXPECTED

A syntax error exists in your COPYAUDIT statement. The FROM

keyword is missing.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 32: SYNTAX <token>: DATABASE NAME EXPECTED

A syntax error exists in your COPYAUDIT statement. Check for any of the

following conditions:

• The first node of the audit file name is not a valid database name.

• You have provided an audit file name that begins with a slash (/).

• You have used lowercase letters.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 33: SYNTAX <token>: “AUDIT” OR “2AUDIT” OR “QCAUDIT”

OR “QC2AUDIT” EXPECTED

COPYAUDIT Error Messages

8600 0759-622 C–7

A syntax error exists in the audit file name you provided in your

COPYAUDIT statement. The correct format for audit file names is as

follows:

• <database name>/AUDIT<integer> for primary audit files

• <database name>/2AUDIT<integer> for secondary audit files

• <database name>/QCAUDIT<integer> for primary audit files copied

using the QUICKCOPY command

<database name>/QC2AUDIT<integer> for secondary audit files copied

using the QUICKCOPY command

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 34: SYNTAX <token>: AUDIT FILE NUMBER EXPECTED

A syntax error exists in your COPYAUDIT statement. The last node of the

audit file name does not end with an integer in the range 1 through 9999.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 35: SYNTAX <number>: AUDIT FILE NUMBER > 4 DIGITS

A syntax error exists in your COPYAUDIT statement. The last node of the

audit file name is an integer greater than 9999.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 36: SYNTAX <token>: PACK, DISK, or TAPE EXPECTED

A syntax error exists in your COPYAUDIT statement. Check that you

have designated DISK, PACK, or TAPE.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 37: SYNTAX <token>: PACKNAME NOT VALID IDENTIFIER

A syntax error exists in your COPYAUDIT statement. Check that you

have designated a valid pack name. Be sure to use uppercase letters.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 38: READ AUDIT BLOCK 0

An I/O error occurred while trying to read audit block 0 (zero).

Refer to the IOERRORTYPE error message accompanying this message

for more details.

ERROR 39: This error number is not currently used.

ERROR 40: AUDIT BLOCK 0: CHECKSUM ERROR

The checksum verification on audit block 0 (zero) of the input file failed.

ERROR 41: AUDIT BLOCK 0: ABSN = <absn> NEQ <absn>

COPYAUDIT Error Messages

C–8 8600 0759-622

The starting ABSN specified in the COPYAUDIT statement does not

match the actual ABSN of the first audit block in the audit file. Check the

ABSN range you specified.

ERROR 42: ENDING ABSN = <absn> < (AUDIT BLOCK 0: ABSN +

LASTCNTR)

The ending ABSN specified in the COPYAUDIT statement does not

match the actual ABSN of the last audit block in the audit file. Check the

ABSN range you specified.

ERROR 43: READ AUDIT BLOCK# 0

An I/O error occurred while trying to read and rewrite block 0 of the

destination audit file as part of copying an audit file to disk.

Refer to the IOERRORTYPE error message accompanying this message

for more details.

ERROR 44: READ AUDIT BLOCK# 0: <words> WORDS BUT COULD ONLY

READ <words>

The audit block being read was not of the expected size. This error

occurs when trying to read and rewrite block 0 of the destination audit

file as part of copying an audit file to disk.

This error occurs when the audit file is on disk. Error 50 occurs when the

audit file is on tape.

ERROR 45: AUDIT BLOCK# 0: ABSN = <absn> SHOULD = <absn>

The ABSN of audit block 0 (zero) does not have the expected value. This

error occurs when trying to read and rewrite block 0 of the destination

audit file as part of copying an audit file to disk.

ERROR 46: AUDIT BLOCK# 0: CHECKSUM ERROR

A checksum error occurred in audit block 0 (zero) under either of the

following circumstances:

• While reading the next audit file in order to verify the starting ABSN

of that audit file

• While reading the output file in order to write block 0 when an audit

file is being copied to disk

ERROR 47: WRITE AUDIT BLOCK# 0: <words>

An I/O error occurred while trying to rewrite block 0 when copying an

audit file to disk.

Refer to the IOERRORTYPE error message accompanying this message

for more details.

ERROR 48: This error number is currently not used.

ERROR 49: READ AUDIT BLOCK# 0: <words>

An I/O error occurred while trying to read the next audit file in order to

verify the starting ABSN of that audit file.

Refer to the IOERRORTYPE error message accompanying this message

for more details.

COPYAUDIT Error Messages

8600 0759-622 C–9

ERROR 50: READ AUDIT BLOCK# 0: <words> WORDS BUT COULD ONLY

READ <words>

The audit block being read was not of the expected size. This error

occurs while trying to read the next audit file in order to verify the

starting ABSN of that audit file.

This error occurs when the audit file is on tape. Error 44 occurs when the

audit file is on disk.

ERROR 51: ATTRIBUTE ERROR(S)

A file attribute that the COPYAUDIT program tried to associate with the

destination audit file does not have a valid value. Ensure that the

DIRECTION file attribute is valid for the destination device. For more

information on file attributes, refer to the File Attributes Reference

Manual.

ERROR 52: CHECKSUM ERROR ON FILE SEPARATOR AFTER TAPE

AUDIT FILE # <audit number>

A checksum error exists on the file separator after the tape audit file.

This error is fatal if the problem occurs while appending audit files to

tape, but is nonfatal if the problem occurs while copying audit files from

tape.

ERROR 53: AUDIT BLOCK# 0: ABSN = <absn> < STARTING ABSN =

<absn>

The ABSN in block 0 (zero) is less than the expected value.

ERROR 54: ATTRIBUTE ERROR(S)

A file attribute that the COPYAUDIT program tried to associate with the

next audit file does not have a valid value. Ensure that the TITLE file

attribute is valid. For more information on file attributes, refer to the File

Attributes Reference Manual.

ERROR 55: FILE ATTRIBUTE: AREAS OR AREASIZE NOT LABEL

EQUATED

The AREAS file attribute or the AREASIZE file attribute of the destination

disk audit file was not specified or fileequated, and the value is not

stored on the tape audit file.

ERROR 56: This error number is currently not used.

ERROR 57: ABSN = <absn> DISAGREES WITH STARTING ABSN =

<absn>

The ABSN of the first block copied is not the same as the expected

ABSN.

ERROR 58: SYNTAX <token>: DECIMAL INTEGER OR (<hex integer>) OR

ALL EXPECTED

COPYAUDIT Error Messages

C–10 8600 0759-622

A syntax error exists in your COPYAUDIT statement. The value supplied

for the ABSN range is invalid. Use the ALL keyword or designate the

correct audit range using the ABSN values.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 59: SOME BLOCKS NOT COPIED (BLOCK 0 OF NEXT AUDIT FILE

GIVES LIMIT)

Some audit blocks were not copied because the audit file was shorter

than expected. This error is not fatal if the OVERRIDE option was

included in the COPYAUDIT command syntax.

ERROR 60: SYNTAX <token>: HEX INTEGER EXPECTED

A syntax error exists in your COPYAUDIT statement. A hexadecimal

integer was expected and not found.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 61: SYNTAX <hex number>: HEX INTEGER> 12 DIGITS

A syntax error exists in your COPYAUDIT statement. A hexadecimal

integer is too large. Hexadecimal integers must be no more than 12

characters in length.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 62: SYNTAX <token>: BEGINNING ABSN = <absn> < 1

A syntax error exists in your COPYAUDIT statement. You have

designated an invalid starting ABSN. The ABSN value cannot be less

than 1.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 63: SYNTAX <token>: ENDING ABSN = <absn> < BEGINNING

ABSN = <absn>

A syntax error exists in your COPYAUDIT statement. You have provided

an invalid ABSN range. The ending ABSN value in the ABSN range is less

than the starting value.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 64: SYNTAX <token>: “/” EXPECTED

A syntax error exists in the audit file you provided in your COPYAUDIT

statement. A slash (/) was expected.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 65: SYNTAX <name>: DATABASE NAME> 17 CHARACTERS

COPYAUDIT Error Messages

8600 0759-622 C–11

A syntax error exists in your COPYAUDIT statement. The first portion of

the audit file name, which identifies the database, is greater than the

allowed 17 characters.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 66: SYNTAX <token>: AUDIT FILE NUMBER = 0

A syntax error exists in your COPYAUDIT statement. The number 0 was

supplied as the audit file number. Audit file numbers must be in the

range 1 through 9999.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 67: SYNTAX <token>: <USERCODE> EXPECTED

A syntax error exists in your COPYAUDIT statement. A usercode was

expected as the first part of the audit file name.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 68: FILE ATTRIBUTE ERRORS

A file attribute that the COPYAUDIT program tried to associate with the

source audit file does not have a valid value. Ensure that the TITLE file

attribute is valid. For more information on file attributes, refer to the File

Attributes Reference Manual.

ERROR 69: SYNTAX <token>: “ON” EXPECTED

A syntax error exists in your COPYAUDIT statement. If you are verifying

an audit file, ensure that the ON <medium> designation is included

correctly in the VERIFY statement.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 70: DB TIMESTAMP NEQ TO DB TIMESTAMP OF <timestamp>

The database timestamp stored in the audit file being copied does not

match the database timestamp of the next audit file. If you are appending

an audit file, this error can also occur if the database timestamp of the

audit file being copied does not match the database timestamp of the

previous audit file.

ERROR 71: UPDATE LEVEL > UPDATE LEVEL OF <number>

The database update level stored in the audit file being copied is greater

than the database update level stored in the next audit file.

ERROR 72: FAILED TO SET LASTRECORD FILE ATTRIBUTE

The COPYAUDIT program was unable to set the last record file attribute

for the disk file.

ERROR 74: SYNTAX <token>: “COMPARE” EXPECTED

COPYAUDIT Error Messages

C–12 8600 0759-622

A syntax error exists in your COPYAUDIT statement. The keyword

FORWARD is included in the statement, but the keyword COMPARE is

missing.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 75: TIME OUT ON IO

A timeout error occurred while trying to perform an I/O operation.

ERROR 76: COPIES=2 IS NOT ALLOWED WHEN COPY TO DISK

A syntax error exists in your COPYAUDIT statement. You cannot request

two copies of the audit file when copying the audit file to disk.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 77: AUDIT BLOCK# 0 : ABSN = <absn> DISAGREES WITH LAST

ABSN = <absn>

The ABSN of the last audit block of the audit file you want to copy does

not match the block 0 ABSN of the next audit file.

ERROR 78: SYNTAX <token>: VALID TAPE DENSITY MNEMONIC

EXPECTED

A syntax error exists in your COPYAUDIT statement. Check that you

have designated a valid tape density or mnemonic.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 79: SYNTAX <token>: <density> or COMPRESSION OPTION

EXPECTED

A syntax error exists in your COPYAUDIT statement. A density

specification or a compression option was expected.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 80: AUDIT BLOCK# <number> : FIXED ABSN = <absn> SHOULD

= <absn>

The audit block does not have the expected tape block number and a

sequence error occurred. The problem occurred while checking the copy

of the audit file during a quickcopy operation.

This error occurs if this is the first copy of the audit file. Error 81 is

returned when the problem occurs with the second copy of the audit

file.

ERROR 81: AUDIT BLOCK# <number> : FIXED ABSN = <absn> SHOULD

= <absn>

COPYAUDIT Error Messages

8600 0759-622 C–13

The audit block does not have the expected tape block number and a

sequence error occurred. The problem occurred while checking the copy

of the audit file during a quickcopy operation.

This error occurs if this is the second copy of the audit file. Error 80 is

returned when the problem occurs with the first copy of the audit file.

ERROR 82: AUDIT BLOCK# <number> : FIXED ABSN = <absn> SHOULD

= <absn>

The audit block does not have the expected tape block number and a

sequence error occurred. The problem occurred while reading the audit

file during a quickcopy operation.

ERROR 83: UNEXPECTED END OF TAPE

An endoftape error occurred unexpectedly while writing to a new reel

during a quickcopy operation.

ERROR 84: FIXED BLOCK SEQUENCE ERROR DURING REEL SWITCH TO

CYCLE <cycle number>

A tapeblocksequence error occurred during a reel switch while

performing a quickcopy operation.

ERROR 85: TIMESTAMP OF LAST BLOCK OF CYCLE <cycle number>

DOES NOT MATCH PREVIOUS BLOCK TIMESTAMP OF FIRST

BLOCK OF CYCLE <cycle number>

A timestamp mismatch occurred during a reel switch while performing a

quickcopy operation.

ERROR 86: SYNTAX <token>: QUICKCOPY VALID ONLY FROM DISK TO

TAPE OR FROM TAPE TO DISK

A syntax error exists in your COPYAUDIT statement. You cannot use the

QUICKCOPY command to copy audit files from tape to tape or from disk

to disk. Instead, use the COPY command.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 87: SYNTAX <token>: QUICKCOPY APPEND VALID ONLY TO

TAPE

A syntax error exists in your COPYAUDIT statement. You cannot use the

QUICKCOPY APPEND command to copy audit files to disk; the

command can be used only to append audit files to tape.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 88: SYNTAX <token>: SCRATCHPOOL ATTRIBUTE VALID ONLY

FOR TAPE

A syntax error exists in your COPYAUDIT statement. You cannot include

a scratch pool statement with disk files.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 89: SYNTAX <token>: SCRATCHPOOL NAME NOT IDENTIFIER

COPYAUDIT Error Messages

C–14 8600 0759-622

A syntax error exists in your COPYAUDIT statement. You have

designated an invalid scratch pool name.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 90: SYNTAX <name>: SCRATCHPOOL NAME EXCEEDS 17

CHARACTERS

A syntax error exists in your COPYAUDIT statement. Scratch pool names

must be less than 18 characters.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 91: THE CONSTRUCT <token> WILL BE DEIMPLEMENTED ON

SSR <ssr number>

In your COPYAUDIT statement, you have included a tape mnemonic that

is no longer supported.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

This error message indicates a nonfatal problem.

ERROR 92: This error number is not currently used.

ERROR 93: SYNTAX <token>: COMPRESSION OPTION ALREADY

SPECIFIED

A syntax error exists in your COPYAUDIT statement. The COMPRESSED

option was already specified.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 94: SYNTAX <token>: COMPRESSION OPTION ALLOWED ONLY

FOR QUICKCOPY

A syntax error exists in your COPYAUDIT statement. You cannot use the

COMPRESSED and NONCOMPRESSED options with the COPY

command.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 95: ERROR OPENING PREVIOUS FILE FOR QUICKCOPY APPEND

During an APPEND request, an error occurred while trying to open the

last file copied to the tape.

ERROR 96: CLOSE ERROR# <error number> ON QUICKCOPY TAPE FILE

An error occurred while closing a tape file during a quickcopy operation.

ERROR 97: OPEN ERROR# <error number> ON QUICKCOPY TAPE FILE

An error occurred while opening a tape file during a quickcopy operation.

ERROR 98: SYNTAX <token>: SPECIFIED AUDIT FILE RANGE FIRST NOT

LOWER THAN RANGE LAST

COPYAUDIT Error Messages

8600 0759-622 C–15

You have specified an invalid audit file number range in the COPYAUDIT

statement. The first audit file number must always be less than the

second audit file number.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 99: SYNTAX <token>: AUDIT FILE #1 CANNOT BE SPECIFIED

FOR QUICKCOPY APPEND

You cannot append audit file number 1 to an existing tape. The first audit

file of a database and the first audit file after an audit file number rollover

occurs must always be copied to a new tape.

ERROR 100: AUDIT BLOCK# 0 : ABSN = <absn> DISAGREES WITH LAST

ABSN OF PREVIOUS FILE= <audit file number>

The ABSN value of block 0 (zero) for the file you want to copy or append

does not match the last ABSN of the last audit file currently on the tape.

ERROR 101: FILE SEPARATOR AFTER QCAUDIT# <audit file number> ON

UNIT# <unit number> DOES NOT MATCH FIRST COPY ON

UNIT# <unit number>

An error exists in the file separator after the audit file. The file separator is

used for data checks when appending audit files and when copying audit

files from tape.

In this instance, you requested an append operation with the COPIES=2

option, and the tape you supplied for the first copy does not match the

tape you supplied for the second copy.

ERROR 102: SYNTAX <token>: APPEND OPTION NOT VALID FOR

SPECIFIED TAPE DEVICE

A syntax error exists in your COPYAUDIT statement.

ERROR 103: READ ERROR <number> ON FILE SEPARATOR AFTER AUDIT

FILE # <audit number>

A read error occurred while trying to read the file separator after the audit

file.

The file separator is used for data checks when appending audit files and

when copying audit files from tape. File separators are used only on

tapes created using a QUICKCOPY command.

This error is fatal if the problem occurred while appending audit files to

tape, but is nonfatal if the problem occurred while copying audit files

from tape.

ERROR 104: DB TIMESTAMP MISMATCH WITH FILE SEPARATOR AFTER

QC AUDIT # <audit file number>; WILL CHECK WITH NEXT

AUDIT FILE

COPYAUDIT Error Messages

C–16 8600 0759-622

You are trying to copy from a tape that is probably corrupted and the

database timestamp information in the file separator after the last audit

file does not match the audit file database timestamp.

The database timestamp information in the next audit file is checked

instead.

This error message indicates a nonfatal problem.

ERROR 105: LAST ABSN MISMATCH WITH FILE SEPARATOR AFTER QC

AUDIT # <audit file number>; WILL CHECK WITH NEXT

AUDIT FILE

You are trying to copy from a tape that is probably corrupted and the

ABSN information in the file separator after the last audit file does not

match the audit file ABSN information. The ABSN information in the next

audit file is checked instead.

This error message indicates a nonfatal problem.

ERROR 107: FILE SEPARATOR NOT FOUND AFTER AUDIT FILE # <audit

file number>

No file separator exists after the last audit file. You can append audit files

only to tapes that are created using the QUICKCOPY command.

The file separator is used for data checks when appending audit files and

when copying audit files from tape.

This error message indicates a nonfatal problem.

ERROR 108: CHECK OPTION NOT VALID FOR MULTI-FILE COPY TO

SPECIFIED TAPE DEVICE

A syntax error exists in your COPYAUDIT statement.

ERROR 109: BLOCKSIZE STORED IN BLOCK#0 DOES NOT MATCH TAPE

BLOCKSIZE

The block size of the data does not match the block size noted in the

tape file header information.

ERROR 111: SYNTAX <token>: INVALID AUDIT FILE SPECIFIED IN

RANGE

A syntax error exists in your COPYAUDIT statement. You have provided

an invalid audit file range. Either the database name or the type of audit

file (primary or secondary) does not match the first audit file specified or

the last audit file specified.

Refer to Section 9, Copying Audit Files, for the COPYAUDIT syntax

diagrams.

ERROR 112: DIRECTORY COMMAND VALID ONLY FOR QUICKCOPY

AUDIT TAPES

You cannot use the DIRECTORY command with tapes generated using

the COPY command. The DIRECTORY command is valid only with tapes

created using the QUICKCOPY command.

ERROR 115: SYNTAX <token>: MAXFILESPERTAPE MUST BE BETWEEN

1 AND 9999

COPYAUDIT Error Messages

8600 0759-622 C–17

You have designated an invalid value in the MAXFILESPERTAPE clause.

A valid setting for the MAXFILESPERTAPE clause is any integer in the

range 1 to 9999.

ERROR 117: SYNTAX <token>: REMOVE OPTION NOT ALLOWED WITH

OVERRIDE CLAUSE

If you use the OVERRIDE option in a COPYAUDIT command, you cannot

use both the CHECK option and the REMOVE option in the same

COPYAUDIT command.

ERROR 118: TAPE CLOSE ERROR WHILE ATTEMPTING TO LABEL

BADTAPE ON MT #

The COPYAUDIT program encountered a close error while attempting to

label the designated tape as BADTAPE.

ERROR 119: NOT READ REVERSE CAPABLE, USE QUICKCOPY

The tape you supplied to copy the audit file does not have read reverse

capability. Use the QUICKCOPY command to copy the audit file instead.

ERROR 120: AUDIT LEVEL OF <audit file> NOT SUPPORTED BY THIS

VERSION OF COPYAUDIT

You used a version of COPYAUDIT with an audit level that is different

from that of the audit file created by the Enterprise Database Server

software.

ERROR 123: QCAUDITS CAN ONLY BE COPIED FROM TAPE TO DISK

You can use the QUICKCOPY command to copy audit files from disk to

tape or from tape to disk. You cannot use the QUICKCOPY command to

copy audit files from disk to disk or from tape to tape.

ERROR 124: SYNTAX <token>: TAPESET NUMBER MUST BE BETWEEN 1

AND 9999

The valid tapeset numbers range from 1 to 9999.

ERROR 125: SYNTAX <token>: TAPESET NUMBER ONLY ALLOWED FOR

VERIFY OR QUICKCOPY COMMAND

Tapeset number can only be specified for the VERIFY or QUICKCOPY

command.

ERROR 126: SYNTAX <token>: TAPESET SPECIFICATION NOT ALLOWED

Tapeset specification is only allowed for the VERIFY or the QUICKCOPY

command.

ERROR 127: SYNTAX <token>: TAPESET NUMBER REQUIRED

Tapeset number is missing in the tapeset specification.

ERROR 128: SYNTAX <token>: MCP DOES NOT SUPPORT LOCATE FAST

ACCESS. TAPESET SPECIFICATION NOT ALLOWED

You cannot use the tapeset specification since MCP does not support

locate fast access.

COPYAUDIT Error Messages

C–18 8600 0759-622

ERROR 129: SYNTAX <token>: MCP DOES NOT SUPPORT

ASSOCIATEDFILENAME. TAPESET SPECIFICATION NOT

ALLOWED

You cannot use the tapeset specification since MCP does not support

ASSOCIATEDFILENAME tape attribute.

ERROR 130: AUDIT FILE#<1> ENDED AT ABSN AT ABSN <2> (PRIOR TO

USER SPECIFIED ABSN = <3>)

The ending ABSN value specified in the COPYAUDIT command was

greater than the actual ending ABSN value of the audit file copied. If the

ABSN value specified in the command is correct, this error might

indicate a fault in the audit file.

ERROR 131: TAPESET NUMBER MUST BE LESS THAN OR EQUAL TO

AUDIT FILE NUMBER

The tapeset number specified is greater than the audit file number

specified for the copy operation.

ERROR 132: TAPESET NUMBER MUST BE LESS THAN AUDIT FILE

NUMBER FOR QUICKCOPY APPEND COMMAND

The tapeset number specified is greater than or equal to the audit file

number specified for the append operation.

ERROR 200: AUDIT BLOCK# <1> READ ERROR

A read error occurred while reading the audit file.

ERROR 201: AUDIT BLOCK# <1> UNKNOWN ERROR RETURNED BY

AUDITLIB

An audit library error occurred while reading the audit file.

Errors 202, 203 and 204 are related to the XE features.

ERROR 202: THE QUICKCOPY COMMAND MUST BE USED TO COPY A

SECTIONED AUDIT FILE TO TAPE

When copying a sectioned audit file to tape, use the QUICKCOPY

command.

ERROR 203: AUDIT BLOCK # <1> WRITE ERROR

A write error occurred while writing the audit file.

ERROR 204: ONE OR MORE AUDIT SECTIONS MISSING

COPYAUDIT Error Messages

8600 0759-622 C–19

If the audit file is sectioned, all the sections of the audit file must be

present.

ERROR 205: AUDIT FILE# <audit file number> IS INCOMPLETE.

QUICKCOPY CAN’T BE USED TO COPY THIS AUDIT FILE.

PLEASE USE THE COPY COMMAND.

The audit file is not complete. This may be caused by a reclone of the

database at the Remote Database Backup secondary host or the

database may need a Halt/Load recovery. You can use the COPYAUDIT

COPY command to back-up the audit file. Once the partial audit is

resolved, you may use the QUICKCOPY command to back-up the audit

file.

ERROR 206: AUDIT FILE# <audit file number> IS INCOMPLETE.

COPYAUDIT CANNOT BE USED TO COPY THIS AUDIT FILE.

PLEASE USE LIBRARY MAINTENANCE.

The sectioned audit files are not complete. This may be caused by a

reclone of the database at the Remote Database Backup secondary host

or the database may need a Halt/Load recovery. You can only use the

Library Maintenance COPY command to back-up the audit file. Once the

partial audit is resolved, you may use the QUICKCOPY command to back

up the audit file.

ERROR 207: AUDIT FILE# <audit file number> IS INCOMPLETE.

QUICKCOPY CAN’T BE USED TO COPY THESE AUDIT FILES

(<audit file number> - <audit file number>). PLEASE USE THE

COPY COMMAND FOR NON-SECTIONED AUDITS OR

LIBRARY/MAINTENANCE FOR SECTIONED AUDITS.

This range of audit files cannot be copied using the QUICKCOPY

command, since one of the audit files is not complete. This may be

caused by a reclone of the database at the Remote Database Backup

secondary host or the database may need a Halt/Load recovery. You can

use the COPYAUDIT COPY command to back-up non-sectioned audits or

use the LIBRARY/MAINTENANCE COPY command to back-up the

sectioned audit files. Once the partial audit is resolved, you can use the

QUICKCOPY command to back-up the audit files.

Errors 208, 209, 210, and 211 are internal DMAuditLib errors passed to

COPYAUDIT.

ERROR 208: AUDITLIB ERROR: AUDIT FILE IS NOT OPEN

The DMAuditLib library found the audit file not opened. Do not perform

the AUDIT_OPEN call before the other functions.

ERROR 209: AUDITLIB ERROR: BAD PARAMETER PASSED TO AUDIT LIB

A bad parameter was passed to the audit reader library.

ERROR 210: AUDIT BLOCK# <audit block number> :INTEGRITY ERROR IN

AUDIT BLOCK/RECORD

COPYAUDIT Error Messages

C–20 8600 0759-622

An integrity error occurred while processing an audit block.

ERROR 211: AUDIT BLOCK# <audit block number> :INTERNAL ERROR IN

AUDITLIB

An internal error occurred while processing an audit block.

ERROR 212: QUICKCOPY TAPE – TAPE BLOCK SEQUENCE ERROR AT

BLOCK # <block number>

The QUICKCOPY tape has a block sequence error.

ERROR 213: QUICKCOPY TAPE – TAPE BLOCK TIMESTAMP SEQUENCE

ERROR AT BLOCK # <block number>

The QUICKCOPY tape has a timestamp sequence error at the specified

tape block.

ERROR 214: QUICKCOPY TAPE – TAPE BLOCK CHECKSUM ERROR AT

BLOCK # <block number>

The QUICKCOPY tape has a block checksum error at the specified tape

block.

ERROR 219: AUDIT FILE # <audit file number> NOT INT THE TAPESET

<tape set number>

The specified tape set does not contain the audit file that is specified.

ERROR 220: INVALID BLOCK ID IN TAPESET DIRECTORY <directory file

title>

The tape set directory file contains an invalid block identifier.

ERROR 221: SPECIFIED AUDIT FILE RANGE NOT IN THE TAPESET

The audit file range specified is not in the tape set.

ERROR 222: OPEN ERROR# <error result> ON TAPESET VOLUME

MARKER FILE

An error occurred while opening the volume marker file on the tape set.

ERROR 233: SYNTAX “<token>”: “AUDIT” OR “2AUDIT” OR

“QCAUDIT” OR “QC2AUDIT” OR “TAPESET” OR

“2TAPESET” EXPECTED

A syntax error exists in your COPYAUDIT directory statement.

ERROR 235: SYNTAX <token>: INVALID ENCRYPT TYPE

A syntax error exists in your COPYAUDIT statement. An invalid algorithm

type was designated.

ERROR 237: SYNTAX <token>: AUDITENCRYPT OPTION ALLOWED ONLY

FOR QUICKCOPY TAPE

A syntax error exists in your COPYAUDIT statement. You must use

QUICKCOPY when specifying AUDITENCRYPT.

ERROR 238: ERROR IN TAPE ENCRYPTION

An error occurred during the tape encryption.

COPYAUDIT Error Messages

8600 0759-622 C–21

ERROR 239: ERROR CODES TRANSLATION FAILED

An error occurred during the translation of the encryption/decryption

error.

ERROR 240: ERROR IN TAPE DECRYPTION

An error occurred during the tape decryption.

ERROR 243: FEATURE NOT AVAILABLE

The DATACOMPRESSION feature key is not installed.

ERROR 244: COMPRESSED LENGTH IS GREATER THAN INPUT LENGTH

The result of the compression indicates that the size of the output data is

greater than the input length.

ERROR 245: ONE OF THE ARRAY PARAMETERS IS SEGMENTED

One of the specified arrays passed to the COMPRESSION procedure is

segmented.

ERROR 246: NOT AESGCM CAPABLE

The installed MCPCRYPTOAPI does not support AESGCM.

ERROR 247: MCPCRYPTCAPABILITIES DOES NOT EXIST

The installed MCPCRYPTOAPI does not support

MCPCRYPTCAPABILITIES.

ERROR 248: ERROR IN DATACOMPRESSION

An error occurred during the data compression.

COPYAUDIT Nonfatal Errors

ERROR 106: AUDIT FILE # <audit file number> NOT FOUND ON TAPE

The audit file you want to copy is not on the mounted tape. Load the

correct tape.

This error message indicates a nonfatal problem.

ERROR 110: DISK AUDIT “LOCKEDFILE” ATTRIBUTE DOES NOT

MATCH TAPE; AUDIT# <audit file number> TO BE COPIED

TO A NEW TAPE

The setting of the LOCKEDFILE attribute of the audit file being copied

or appended does not match the setting of the LOCKEDFILE attribute

for the tape.

Enter AX OK to copy the audit file to a new or different tape.

Enter AX QUIT to end this COPYAUDIT run.

This error message indicates a nonfatal problem.

COPYAUDIT Error Messages

C–22 8600 0759-622

ERROR 113: TAPE COMPRESSION STATUS INCOMPATIBLE WITH

COMPRESSION REQUEST; AUDIT# <audit file number> TO

BE COPIED TO A NEW TAPE

During an APPEND request, either you included the COMPRESSED

option in the COPYAUDIT syntax and the mounted tape does not have

compression set, or you included the NONCOMPRESSED option in

the COPYAUDIT syntax and the mounted tape has compression set.

Enter AX OK to have the audit file copied to a different tape.

Enter AX QUIT to end this COPYAUDIT run.

This error message indicates a nonfatal problem.

ERROR 114: SPECIFIED MAXIMUM FILES PER TAPE (number)

EXCEEDED; AUDIT# <audit file number> TO BE COPIED

TO A NEW TAPE

The number of files you requested to be copied to a tape exceeds the

current MAXFILESPERTAPE setting.

Enter AX OK to have some of the files copied to a new tape.

Enter AX QUIT to terminate this COPYAUDIT run.

This error message indicates a nonfatal problem.

ERROR 121: READPOSITION ERROR <error number> ON QUICKCOPY

TAPE FILE

An error occurred while getting the position on the tape.

COPYAUDIT can still position the tape by doing rewinds.

ERROR 122: LOCATEBLOCK ERROR <error number> ON QUICKCOPY

TAPE FILE

An error occurred while locating a block on the QUICKCOPY tape.

ERROR 215: WARNING: SOME OF THE FILES SPECIFIED DO NOT EXIST

IN THIS TAPESET. COPYAUDIT CAN ONLY <copy or

verify> FROM AUDIT FILE <audit file number> TO AUDIT

FILE <audit file number>

Some of the files specified in the file range for the COPY or VERIFY

command do not exist in the tape set. These files are ignored for this

process.

ERROR 216: WARNING: TAPESET DIRECTORY FILE <directory file

title> NOT FOUND

The directory file for the specified tape set could not be located.

ERROR 217: NO ASSOCIATED FILE ON <database name> TAPESET

<tape set number>

There is no associated file on the tape that is labeled

<database name>/TAPESET <tape set number>

ERROR 218: WARNING: UNIT <tape unit numbers> DOES NOT HAVE

LOCATE FAST ACCESS CAPABILITIES

COPYAUDIT Error Messages

8600 0759-622 C–23

The tape drive does not have the Locate Fast Access capability. The

COPYAUDIT run does not benefit from a tape set specification.

ERROR 223: READ ERRIR <error result> ON DIRECTORY FILE AUDIT

FILE ENTRY

An error occurred while reading the audit file entry from the TAPESET

directory file.

ERROR 224: WRITE ERROR <error result> ON DIRECTORY FILE AUDIT

FILE ENTRY

An error occurred while writing the audit file entry to the TAPESET

directory file.

ERROR 225: READ ERROR <error result> ON DIRECTORY FILE VOLUME

ENTRY

An error occurred while reading the volume entry from the TAPESET

directory file.

ERROR 226: WRITE ERROR <error result> ON DIRECTORY FILE

VOLUME FILE ENTRY

An error occurred while writing the volume entry to the TAPESET

directory file.

ERROR 227: READ ERROR <error result> ON DIRECTORY FILE

CONTROL ENTRY

An error occurred while reading the control entry from the TAPESET

directory file.

ERROR 228: WRITE ERROR <error result> ON DIRECTORY FILE

CONTROL ENTRY

An error occurred while writing the control entry to the TAPESET

directory file.

ERROR 229: CHECKSUM ERROR ON DIRECTORY FILE <record type>

RECORD

A checksum error occurred on a TAPESET directory record.

ERROR 230: NO VOLUME MARKER FILE ON <database> TAPESET

<tape set number>

There is no volume marker file on the designated tape.

ERROR 231: OPEN ERROR# <error result> ON DIRECTORY FILE

An error occurred while opening the TAPESET directory file.

ERROR 232: WARNING: TAPESET DIRECTORY FILE <directory file

title> CONTAINS ERRORS AND IS NOT USABLE

The TAPESET directory file is corrupted and cannot be used.

ERROR 241: WARNING: EXCLUSIVE OPTION IGNORED FOR TAPE

AUDIT

This error message indicates a nonfatal problem.

COPYAUDIT Error Messages

C–24 8600 0759-622

ERROR 242: WRITING MARKER FILE HIT EOT; AUDIT <audit file

number> TO BE COPIED TO A NEW TAPE/TAPESET

COPYAUDIT hits an EOT error while writing a marker file on the

QUICKCOPY tape, the following messages are displayed:

NONFATAL ERROR 242: <audit file title> (SOURCE AUDIT FILE).

WRITING MARKER FILE HIT EOT; AUDIT <audit file number> TO BE

COPIED TO A NEW TAPE. PLEASE ENTER “OK” TO START NEW

TAPE OR “QUIT” TO QUIT.

COPYAUDIT copies the next audit file to a new tape when “OK” is

entered. COPYAUDIT quits when “QUIT” is entered.

ERROR 249: WARNING: COMPRESSED AND DATACOMPRESSION

SPECIFIED AT THE SAME TIME RESULTS IN DOUBLE

COMPRESSION, MAY NOT BE ADVANTAGEOUS

Using the COMPRESSED option and DATACOMPRESSION at the

same time will not be beneficial and may increase processor time.

COPYAUDIT Error Messages

8600 0759-622 C–25

COPYAUDIT Error Messages

C–26 8600 0759-622

Appendix D
Using Mirrored Disks for Disaster
Recovery

You can use mirrored disks to provide a remote copy of an audited Enterprise Database

Server database for disaster recovery backup. This disaster recovery solution is an

alternative to using Remote Database Backup or quiesced databases. Follow the

information in this appendix when using mirrored disks with Enterprise Database Server

database software so that you can optimize data recovery and minimize database

downtime if a switch over to the remote system becomes necessary.

Which Enterprise Database Server Files to Mirror?

The following list identifies the Enterprise Database Server files you need to copy, or

mirror, and provides information about whether the files must be placed on mirrored

packs. If the files are not placed on mirrored packs, it is essential that identical copies of

these files are maintained on the local and remote hosts. To expedite a switch over to the

remote system, these files should be placed on packs on the remote host with the same

name as the packs on the local host.

• Database data files

The physical database files—such as data sets, sets, and subsets—must be placed on

mirrored packs.

• Control file

The database control file must be placed on a mirrored pack.

• Audits

The database audit files must be placed on mirrored packs.

• Enterprise Database Server tailored files and software

Enterprise Database Server tailored files and software—such as the description file,

DMSUPPORT library, and the RECONSTRUCT program—must be placed on mirrored

packs. Although these files are generally static files, locating them on mirrored packs

is essential for recovery if a switch over to the remote system is necessary during a

reorganization.

• Guard files

Guard files associated with the database can be placed on mirrored packs or copies

can be maintained on nonmirrored packs on the remote host.

• Reorganization files

8600 0759-622 D–1

The generated reorganization code file must be placed on a mirrored pack. The

BUILDREORG internal files must identify this mirrored pack. If SORT or COPY

specifications are used, they also must identify the mirrored pack. These

requirements exist so that these temporary files are available on the remote system if

a switch over to the remote system is necessary during a reorganization.

• User programs and Enterprise Database Server system software

User program and Enterprise Database Server system software files can be placed on

mirrored packs or copies can be maintained on nonmirrored packs on the remote host.

The Enterprise Database Server software must be at the same release level on the

remote host as on the local host.

Environment Considerations

The USERDATA file on the remote system must contain the same usercode declaration as

the local host for all mirrored databases.

Backup Procedures

It is imperative that the remote system be able to fully recover the database, independent

of the local host. Because database dumps can be performed only at the local host,

existing disaster backup procedures must remain in place to ensure a recent copy of a

DMUTILITY database dump is available at the remote site.

It is also imperative that audit files be available at the remote site. Many recovery

scenarios—including those for single abort, abort, reconstruct, rollback, and rebuild—can

require more than one audit. You need to determine the appropriate audit history required

should one of these recovery scenarios need to occur soon after a switch over to the

remote host.

If you normally set the REMOVE option as part of the audit trail specification in your

DASDL source, COPYAUDIT removes mirrored audits from both the local pack and the

remote mirror. This removal is done once copying of the audit file is complete on the local

host. When using URDF, the Enterprise Database Server is not active on the remote host,

and there is no facility for copying audits from the remote host. One possible means of

transferring these audits is to modify the DATABASE/WFL/COPYAUDIT file to have library

maintenance transfer a copy of the audit files to a nonmirrored pack on the remote host

before the audit files are removed from disk.

All audits copied using library maintenance should be verified or backed up at the remote

host using COPYAUDIT. This action ensures the integrity of the audit files should it

become necessary to recover the database on the remote system.

Using Mirrored Disks for Disaster Recovery

D–2 8600 0759-622

Recovery Procedures

In most cases, when a switch over to a remote system occurs, halt/load recovery runs on

the remote system, the database recovers successfully, and normal processing resumes.

But, there are abnormal situations where critical Enterprise Database Server files on the

remote packs might not contain up-to-the-minute information. These situations cause

halt/load recovery to fail.

An example of an abnormal situation might be concurrent hardware problems with the

remote disk causing some remote packs to be out of synchronization with the local packs

when a switch over occurs or when a sudden disconnect of the communication lines

between the local and remote disk occurs.

In a worse-case scenario, a full database rebuild might be required.

Control File Integrity

Before attempting to bring up the database on the remote host, check the control file on

the remote pack to be sure it is not out of synchronization with the database audit file. The

audit file number (AFN) in the control file must match the current audit file number. The

audit block serial number (ABSN) in the control file must be one greater than the last block

serial number of the current audit file.

Use the following procedure to determine if the audit file and the control file of the

database are synchronized:

1. Use the SYSTEM/DMUTILITY LIST or WRITE function to examine the control file

information.

2. Use SYSTEM/PRINTAUDIT to print out block 0 and the last block of the current audit.

3. If the information in the control file is not synchronized with the current audit file, use

SYSTEM/DMCONTROL to perform a RECOVER UPDATE operation before opening

the database. Otherwise the audit file can be corrupted.

Data File Integrity

If halt/load recovery fails because of data corruption, you should be able to reconstruct the

bad rows to recover the database. Examples of such errors resulting from data corruption

include file integrity errors, and key and data mismatches. Messages from the failed

halt/load recovery indicate the parts of the database that require repair.

Audit File Integrity

If halt/load recovery fails with an AUDIT TIME-STAMP MISMATCH error, then the audit is

incomplete. You must choose the appropriate action from the following list. Each of these

actions allows halt/load recovery to complete successfully.

Using Mirrored Disks for Disaster Recovery

8600 0759-622 D–3

• If running with duplicated audits and one audit is corrupt, perform the recommended

COPYAUDIT procedures to replace the corrupted audit with a copy of the uncorrupted

audit.

• If running with duplicated audits and both audits are corrupt, use the COPYAUDIT

VERIFY command to determine which audit file contains the most audit information.

As a precaution, the most complete of the two files should be backed up using library

maintenance. Then repair the most complete audit file by using the COPYAUDIT

COPY function with the ALL OVERRIDE option to copy the audit to tape or disk. This

action repairs audit files by creating a valid end of audit. The copied (or repaired) audit

file should then be substituted for the corrupted audit file.

• If not running with duplicated audits, back up the corrupted audit file. Then repair the

audit file by using the COPYAUDIT COPY function with the ALL OVERRIDE option to

copy the audit to tape or disk. This action creates a valid end of audit. The copied audit

file should be substituted for the corrupted audit file.

Using Mirrored Disks for Disaster Recovery

D–4 8600 0759-622

Appendix E
Understanding Railroad Diagrams

This appendix explains railroad diagrams, including the following concepts:

• Paths of a railroad diagram

• Constants and variables

• Constraints

The text describes the elements of the diagrams and provides examples.

Railroad Diagram Concepts

Railroad diagrams are diagrams that show you the standards for combining words and

symbols into commands and statements. These diagrams consist of a series of paths that

show the allowable structures of the command or statement.

Paths

Paths show the order in which the command or statement is constructed and are

represented by horizontal and vertical lines. Many commands and statements have a

number of options so the railroad diagram has a number of different paths you can take.

The following example has three paths:

── REMOVE ─┬──────────┬──┤
├─ SOURCE ─┤
└─ OBJECT ─┘

The three paths in the previous example show the following three possible commands:

• REMOVE

• REMOVE SOURCE

• REMOVE OBJECT

A railroad diagram is as complex as a command or statement requires. Regardless of the

level of complexity, all railroad diagrams are visual representations of commands and

statements.

Railroad diagrams are intended to show

• Mandatory items

• User-selected items

8600 0759-622 E–1

• Order in which the items must appear

• Number of times an item can be repeated

• Necessary punctuation

Follow the railroad diagrams to understand the correct syntax for commands and

statements. The diagrams serve as quick references to the commands and statements.

The following table introduces the elements of a railroad diagram:

The diagram element . . . Indicates an item that . . .

Constant Must be entered in full or as a specific

abbreviation

Variable Represents data

Constraint Controls progression through the diagram path

Bold Faced Words

A boldfaced word in a railroad diagram indicates an XE feature.

Constants and Variables

A constant is an item that must be entered as it appears in the diagram, either in full or as

an allowable abbreviation. If part of a constant appears in boldface, you can abbreviate the

constant by

• Entering only the boldfaced letters

• Entering the boldfaced letters plus any of the remaining letters

If no part of the constant appears in boldface, the constant cannot be abbreviated.

Constants are never enclosed in angle brackets (< >) and are in uppercase letters.

A variable is an item that represents data. You can replace the variable with data that

meets the requirements of the particular command or statement. When replacing a

variable with data, you must follow the rules defined for the particular command or

statement.

In railroad diagrams, variables are enclosed in angle brackets.

Understanding Railroad Diagrams

E–2 8600 0759-622

In the following example, BEGIN and END are constants, whereas <statement list> is a

variable. The constant BEGIN can be abbreviated, since part of it appears in boldface.

── BEGIN ──<statement list>── END ─────────────────────────────────────┤

Valid abbreviations for BEGIN are

• BE

• BEG

• BEGI

Constraints

Constraints are used in a railroad diagram to control progression through the diagram.

Constraints consist of symbols and unique railroad diagram line paths. They include

• Vertical bars

• Percent signs

• Right arrows

• Required items

• User-selected items

• Loops

• Bridges

A description of each item follows.

Vertical Bar

The vertical bar symbol (|) represents the end of a railroad diagram and indicates the

command or statement can be followed by another command or statement.

── SECONDWORD ── (──<arithmetic expression>──) ──────────────────────┤

Percent Sign

The percent sign (%) represents the end of a railroad diagram and indicates the command

or statement must be on a line by itself.

── STOP ───%

Right Arrow

The right arrow symbol (>)

• Is used when the railroad diagram is too long to fit on one line and must continue on

the next

• Appears at the end of the first line, and again at the beginning of the next line

Understanding Railroad Diagrams

8600 0759-622 E–3

── SCALERIGHT ── (──<arithmetic expression>── , ──────────────────────►

►─<arithmetic expression>──) ───┤

Required Item

A required item can be

• A constant

• A variable

• Punctuation

If the path you are following contains a required item, you must enter the item in the

command or statement; the required item cannot be omitted.

A required item appears on a horizontal line as a single entry or with other items. Required

items can also exist on horizontal lines within alternate paths, or nested (lowerlevel)

diagrams.

In the following example, the word EVENT is a required constant and <identifier> is a

required variable:

── EVENT ──<identifier>──┤

User-Selected Item

A user-selected item can be

• A constant

• A variable

• Punctuation

User-selected items appear one below the other in a vertical list. You can choose any one

of the items from the list. If the list also contains an empty path (solid line) above the other

items, none of the choices are required.

In the following railroad diagram, either the plus sign (+) or the minus sign (–) can be

entered before the required variable <arithmetic expression>, or the symbols can be

disregarded because the diagram also contains an empty path.

──┬─────┬─<arithmetic expression>──────────────────────────────────────┤
├─ + ─┤
└─ ─ ─┘

Loop

A loop represents an item or a group of items that you can repeat. A loop can span all or

part of a railroad diagram. It always consists of at least two horizontal lines, one below the

other, connected on both sides by vertical lines. The top line is a right-to-left path that

contains information about repeating the loop.

Understanding Railroad Diagrams

E–4 8600 0759-622

Some loops include a return character. A return character is a character—often a

comma (,) or semicolon (;)—that is required before each repetition of a loop. If no return

character is included, the items must be separated by one or more spaces.

┌◄────── ; ─────┐
──┴─<field value>─┴──┤

Bridge

A loop can also include a bridge. A bridge is an integer enclosed in sloping lines (/ \) that

• Shows the maximum number of times the loop can be repeated

• Indicates the number of times you can cross that point in the diagram

The bridge can precede both the contents of the loop and the return character (if any) on

the upper line of the loop.

Not all loops have bridges. Those that do not can be repeated any number of times until all

valid entries have been used.

In the first bridge example, you can enter LINKAGE or RUNTIME no more than two times.

In the second bridge example, you can enter LINKAGE or RUNTIME no more than three

times.

┌◄──────── , ───────┐
──┴─/2\─┬─ LINKAGE ─┬─┴──┤

└─ RUNTIME ─┘

┌◄─/2\──────────┐
──┴─┬─ LINKAGE ─┬─┴──┤

└─ RUNTIME ─┘

In some bridges an asterisk (*) follows the number. The asterisk means that you must

cross that point in the diagram at least once. The maximum number of times that you can

cross that point is indicated by the number in the bridge.

┌◄──────── , ────────┐
──┴─┬─/2*\─ LINKAGE ─┬─┴───┤

└─ RUNTIME ──────┘

In the previous bridge example, you must enter LINKAGE at least once but no more than

twice, and you can enter RUNTIME any number of times.

Following the Paths of a Railroad Diagram

The paths of a railroad diagram lead you through the command or statement from

beginning to end. Some railroad diagrams have only one path; others have several

alternate paths that provide choices in the commands or statements.

The following railroad diagram indicates only one path that requires the constant LINKAGE

and the variable <linkage mnemonic>:

── LINKAGE ──<linkage mnemonic>──┤

Alternate paths are provided by

Understanding Railroad Diagrams

8600 0759-622 E–5

• Loops

• User-selected items

• A combination of loops and user-selected items

More complex railroad diagrams can consist of many alternate paths, or nested

(lowerlevel) diagrams, that show a further level of detail.

For example, the following railroad diagram consists of a top path and two alternate paths.

The top path includes

• An ampersand (&)

• Constants that are user-selected items

These constants are within a loop that can be repeated any number of times until all

options have been selected.

The first alternative path requires the ampersand and the required constant ADDRESS.

The second alternative path requires the ampersand followed by the required constant

ALTER and the required variable <new value>.

┌◄────── , ─────┐
── & ─┬─┴─┬─ TYPE ────┬─┴────┬───┤

│ ├─ ASCII ───┤ │
│ ├─ BCL ─────┤ │
│ ├─ DECIMAL ─┤ │
│ ├─ EBCDIC ──┤ │
│ ├─ HEX ─────┤ │
│ └─ OCTAL ───┘ │
├─ ADDRESS ────────────┤
└─ ALTER ──<new value>─┘

Railroad Diagram Examples with Sample Input

The following examples show five railroad diagrams and possible command and

statement constructions based on the paths of these diagrams.

Example 1

<lock statement>

── LOCK ── (── <file identifier> ──) ────────────────────────────────┤

Sample Input Explanation

LOCK (FILE4) LOCK is a constant and cannot be altered. Because no part of

the word appears in boldface, the entire word must be entered.

The parentheses are required punctuation, and FILE4 is a

sample file identifier.

Understanding Railroad Diagrams

E–6 8600 0759-622

Example 2

<open statement>

── OPEN ─┬───────────┬─<database name>─────────────────────────────────┤
├─ INQUIRY ─┤
└─ UPDATE ──┘

Sample Input Explanation

OPEN DATABASE1 The constant OPEN is followed by the variable DATABASE1,

which is a database name.

The railroad diagram shows two user-selected items, INQUIRY

and UPDATE. However, because an empty path (solid line) is

included, these entries are not required.

OPEN INQUIRY

DATABASE1

The constant OPEN is followed by the user-selected constant

INQUIRY and the variable DATABASE1.

OPEN UPDATE DATABASE1 The constant OPEN is followed by the user-selected constant

UPDATE and the variable DATABASE1.

Example 3

<generate statement>

── GENERATE ──<subset>── = ─┬─ NULL ──────────────────────┬────────────┤
└─<subset>─┬──────────────────┤

├─ AND ─┬─<subset>─┘
├─ OR ──┤
├─ + ───┤
└─ ─ ───┘

Sample Input Explanation

GENERATE Z = NULL The GENERATE constant is followed by the variable Z, an equal

sign (=), and the user-selected constant NULL.

GENERATE Z = X The GENERATE constant is followed by the variable Z, an equal

sign, and the user-selected variable X.

GENERATE Z = X AND B The GENERATE constant is followed by the variable Z, an equal

sign, the user-selected variable X, the AND command (from the

list of user-selected items in the nested path), and a third variable,

B.

GENERATE Z = X + B The GENERATE constant is followed by the variable Z, an equal

sign, the user-selected variable X, the plus sign (from the list of

user-selected items in the nested path), and a third variable, B.

Understanding Railroad Diagrams

8600 0759-622 E–7

Example 4

<entity reference declaration>

┌◄────────────────── , ─────────────────┐
── ENTITY REFERENCE ─┴─<entity ref ID>── (──<class ID>──) ─┴─────────┤

Sample Input Explanation

ENTITY REFERENCE ADVISOR1

(INSTRUCTOR)

The required item ENTITY REFERENCE is

followed by the variable ADVISOR1 and the

variable INSTRUCTOR. The parentheses are

required.

ENTITY REFERENCE ADVISOR1

(INSTRUCTOR), ADVISOR2

(ASST_INSTRUCTOR)

Because the diagram contains a loop, the pair

of variables can be repeated any number of

times.

Example 5

<PS MODIFY command>

── PS ── MODIFY ──►
┌◄───────────────────── , ────────────────────┐

►─┬─┴─┬─<request number>────────────────────────┬─┴─┬───────────────►
│ └─<request number>── ─ ──<request number>─┘ │
└─ ALL ─┬───┤

└─ EXCEPTIONS ────────────────────────────┘
►─┬───────────────────────────────────────┬─────────────────────────┤
│ ┌◄──────────────── , ───────────────┐ │
└─┴─┬─────┬─<file attribute phrase>─┬─┴─┘

├─ ─ ─┘ │
├─────┬─<print modifier phrase>─┘
└─ ─ ─┘

Sample Input Explanation

PS MODIFY 11159 The constants PS and MODIFY are followed by the

variable 11159, which is a request number.

PS MODIFY 11159,11160,11163 Because the diagram contains a loop, the variable 11159

can be followed by a comma, the variable 11160, another

comma, and the final variable 11163.

PS MOD 11159–11161

DESTINATION = ″LP7″
The constants PS and MODIFY are followed by the

userselected variables 11159–11161, which are request

numbers, and the user-selected variable DESTINATION =

“LP7”, which is a file attribute phrase. Note that the

constant MODIFY has been abbreviated to its minimum

allowable form.

PS MOD ALL EXCEPTIONS The constants PS and MODIFY are followed by the

userselected constants ALL and EXCEPTIONS.

Understanding Railroad Diagrams

E–8 8600 0759-622

Index

A
ABORT recovery program, overview, 2–11

ABSN, 2–10

ABSN command

DMCONTROL, 5–8

access to the database

during reorganization, 7–53

INQUIRYONLY option, 7–54

OFFLINE option, 7–56

during backup process, 6–4

EXCLUSIVE option, 7–55

PREVERIFY option, 7–55

Accessroutines

buffers, B–2

interface with the control file, 2–10

ALGOL interfaces

Audit_Info array, 20–3

Database/Properties file, 20–3

exported from the DMAuditLib library,

20–2

using the $INCLUDE command, 20–2

$INCLUDE command, 20–2

ALI_INFO group

AUDIT_INFO array, 20–4

AUDIT_NEXT_ABSN procedure, 20–7

AUDIT_NEXT_RECORD procedure, 20–6

linkage information, 20–8

linkage information ALI_INFO group, 20–8

ALI_xxx words

AUDIT_INFO array, 20–3

ALL option

COPYAUDIT program, 9–16

Database Certification, 11–11

DMUTILITY INITIALIZE statement, 5–33

Database Certification, 11–8

ALLOWEDCORE

Database Certification option, 11–9

DBS CHANGE command, 12–5

phrase in reorganization, 7–49

FAMILYNAME option, Database

Certification, 11–9

Visible Recovery command, 8–43

ALTERNATE AUDITFAMILY command

DMCONTROL, 5–24

ALTERNATE SECAUDITFAMILY command

DMCONTROL, 5–24

APPEND command

multidump tape specification, 6–31

syntax, 6–9

APPEND option, COPYAUDIT program

limiting, 9–14

appending audit files

changing audit file type, 9–17

identifying the file names, 9–15

limitations, 9–12

making two copies, 9–22

syntax, 9–11

syntax, examples, 9–19, 9–22

data compression, 9–20

designating tape density, 9–19

encrypting, 9–20

FORWARD COMPARE option, 9–22

limiting files on a tape, 9–14

MAXFILESPERTAPE clause, 9–14

primary audit files, copying as secondary

audit files, 9–17

QUICKCOPY command, using, 9–6

SCRATCHPOOL option, 9–21

assigned partition number, last, 2–4

attributes of audit file, 2–4

audit block serial number (ABSN)

rollover, 2–10

audit files

accessing, 20–1

appending to tapes, 9–11

checking integrity, 9–27

copying, 9–17

data compression, 9–8, 9–10

deleting after copying, 9–22

effect of LOCKEDFILE attribute, 9–9

information in the control file, 2–3

making two copies, 9–22

maximizing tape usage, 9–7

primary audit files as secondary audit files,

9–17

8600 0759-622 Index–1

printing, 10–1

secondary audit files as primary audit files,

9–17

statistics, B–12

syntax examples, 9–19, 9–22

tapes, creating a directory, 9–26

attributes, 2–4

viewing, 10–1

with COPY command, 9–23

control information, 2–8

copying, 9–1

extracting audit information, 10–1

handling discontinuities, 2–9

integrity with remote database copy, D–3

naming convention, 9–10

PRINTAUDIT program, 10–1

railroad diagrams, explanation of, E–1

selecting for analysis, 10–4

VERIFY command, COPYAUDIT program,

9–27

viewing, 10–1

viewing audit files, 10–1

audit records

ADSS audit record type, 10–22

AGCI audit record type, 10–22

AINT audit record type, 10–22

AIO audit record type, 10–22

AIRE audit record type, 10–22

AISE2 audit record type, 10–22

ALN audit record type, 10–22

ARNE audit record type, 10–22

RUODSS, 10–25

type mnemonics, 10–22, 10–23 , 10–24 ,

10–25

type name control records, 10–22

type name data change records, 10–22

type numbers, 10–22

AUDTB2 audit record type, 10–22

B4ROOT audit record type, 10–23

BCP audit record type, 10–23

BIO audit record type, 10–23

BLKIMG audit record type, 10–23

BTR audit record type, 10–23

BVEOF audit record type, 10–23

C audit record type, 10–22

CCD audit record type, 10–23

CDI audit record type, 10–23

CIRE audit record type, 10–23

CISE audit record type, 10–23

CPID audit record type, 10–23

CPNT audit record type, 10–23

CUOL audit record type, 10–23

D audit record type, 10–22

DBSI audit record type, 10–23

DBST audit record type, 10–23

DDCD audit record type, 10–23

DDSEOF audit record type, 10–23

DDSIEF audit record type, 10–23

DDSIEOF audit record type, 10–23

DIRE audit record type, 10–23

DISE2 audit record type, 10–23

DISE audit record type, 10–23

DLIRT audit record type, 10–23

DLKBLK audit record type, 10–23

DLLIST audit record type, 10–23

DRNE audit record type, 10–23

DSC audit record type, 10–23

DSD audit record type, 10–23

DSM audit record type, 10–23

DSSD audit record type, 10–24

ECP audit record type, 10–24

ETR audit record type, 10–24

FGTBLK audit record type, 10–24

FILEDC audit record type, 10–24

GCB audit record type, 10–24

GETBLK audit record type, 10–24

GIST audit record type, 10–24

GRNS audit record type, 10–24

GRWIST audit record type, 10–24

GTRL audit record type, 10–24

IDSBLK audit record type, 10–24

INSBLK audit record type, 10–24

ISPT audit record type, 10–24

KIOA audit record type, 10–24

LGRA audit record type, 10–24

LGRR audit record type, 10–24

LTAR audit record type, 10–24

MIDTR audit record type, 10–24

mnemonics for audit records, 10–23,

10–24 , 10–25

ODDSC audit record type, 10–24

ODEOF audit record type, 10–24

ODRTBL audit record type, 10–24

ODSFDN audit record type, 10–25

ODSFUP audit record type, 10–25

ODSPBL audit record type, 10–25

OINZP audit record type, 10–25

PFIX audit record type, 10–25

PNT audit record type, 10–25

RCB audit record type, 10–25

RDERR audit record type, 10–25

RDSC audit record type, 10–25

Index

Index–2 8600 0759-622

RDSO audit record type, 10–25

RECOV audit record type, 10–25

RFIX audit record type, 10–25

RFLUSH audit record type, 10–25

RFMT audit record type, 10–25

RIST audit record type, 10–25

RLOCK audit record type, 10–25

RMOVE audit record type, 10–25

RPATH audit record type, 10–25

RRNS audit record type, 10–25

RSTATE audit record type, 10–25

RUODSS audit record type, 10–25

SAA audit record type, 10–25

SAAG audit record type, 10–25

SAC audit record type, 10–25

SAD audit record type, 10–25

SAI audit record type, 10–25

SAM audit record type, 10–25

SAR audit record type, 10–25

SDSEOF audit record type, 10–25

SIBC audit record type, 10–26

SIBO audit record type, 10–26

SPIRT audit record type, 10–26

SPLIST audit record type, 10–26

SPT audit record type, 10–26

STRDC audit record type, 10–26

SVPT audit record type, 10–26

TABAI audit record type, 10–26

TABBA audit record type, 10–26

TABBI audit record type, 10–26

TBLXCH audit record type, 10–26

audited databases

availability during dump, 6–4

statistics, B–12

AUDITFAMILY command

DMCONTROL, 5–23

AUDIT_INFO array

ALI_INFO group, 20–4

Audit_Info array

ALI_xxx words, 20–3

AUDIT_NEXT_ABSN procedure

ALI_INFO group, 20–7

AUDIT_NEXT_RECORD procedure

ALI_INFO group, 20–6

B
backing up a database

APPEND command, 6–9

creating compound dump lists, 6–26

database control file, 6–5

disk and tape output, 6–43

effect of DASDL LOCKEDFILE option, 6–5

locked control file, resolving, 6–17

main directory file, 6–58

multidump tapes, 6–37

number of tapes for output, 6–27

process overview, 6–59

recovering, 6–69

requesting data compression, 6–28

tools, for, 6–58

VERIFYDUMP command, 6–44

while reorganizing the database, 6–17

BUILDDUMPDIRECTORY command,

6–68

cataloging information, 6–57

choosing a dump media, 6–4

compound dump lists, creating, 6–26

COMPRESSED option, using in DUMP

command, 6–28

COPYDUMP command, 6–46

deleted dump directory, recovering, 6–69

density of tapes, specifying for backups,

6–29

designating output disk requirements,

6–31

designating output tape requirements,

6–27

disk output, 6–40

DMDUMPDIR program, 6–60

DUMP command, 6–9

dump directory file, 6–58

DUPLICATEDUMP command, 6–50

grouping data on the output media, 6–26

identifying what to back up, 6–22

limiting the data, 6–25

lost dump directory, recovering, 6–69

mismatch errors during database backup,

6–5

multiple backup dumps, definition, 6–4

NONCOMPRESSED option, DUMP

command, 6–28

offline, 6–4

online, 6–4

partial dumps, selecting, 6–4

process, 6–3

recovering dump directories, 6–69

regenerating dump directories, 6–69

restoring dump directories, 6–69

running the DMDUMPDIR program, 6–60

selecting parts of the database, 6–4

Index

8600 0759-622 Index–3

storing more than one backup dump on

the same tape, 6–31

syntax, 6–60

tape density specification, 6–29

tape density, specifying for backups, 6–29

tape output, 6–34

TAPEDIRECTORY command, 6–53

TAPESET DIRECTORY command, 6–8

timestamp mismatch errors, 6–5

updating the dump tape directory, 6–59

VERIFYDUMP command, 6–44

BLOCKSIZE clause

DUMP command, 6–32

COPYDUMP command, 6–48

DUMP command, 6–29

file title clause, DUMP command, 6–34

BUILDREORG utility

ALLOWEDCORE phrase, 7–49

AUTOSWAP option, 7–64

CAPTUREUPDATETRAN phrase, 7–43

central data set sequence statement,

7–51

combinations, 7–57

compiler control options, 7–22

EXCLUSIVE option, 7–55

EXTRACT phrase, 7–39

generating a data set, 7–30

generating from a data set, 7–33

generating from index structures, 7–34

index control option, 7–37

INQUIRYONLY option, 7–54

alias name, 7–28

LOADFACTOR phrase, 7–38

MAXUPDATERS phrase, 7–43

OFFLINE option, 7–56

open options, 7–53

ORDERBYCORE phrase, 7–50

PREVERIFY option, 7–55

procedure sequence option, 7–45

resource control, 7–37

STRCOPYCORE phrase, 7–44, 7–65

structure COPY TO option, 7–40

syntax, 7–24

TASKLIMIT phrase, 7–51

TOTALCOPYCORE phrase, 7–44, 7–65

UPDATE option, 7–27

USEREORGDB option, 7–61

AUTOSWAP option, BUILDREORG utility,

7–64

central data set control options, 7–46

central data set control options in

reorganization, 7–46

Central Data Set GENERATE statement,

7–29

COPY TO option, 7–41

deadlock error during reorganization, 7–55

EXCLUSIVE option, BUILDREORG utility,

7–55

explicitly generating structures, 7–37

EXTRACT phrase, using to control

reorganization resources, 7–39

GENERATE statement, 7–29

index structure list option and

reorganization, 7–33

inquiry-only access to database during

reorganization, 7–54

INQUIRYONLY option, BUILDREORG

utility, 7–54

INTERNAL FILES phrase, 7–47

LIST compiler control option, using with

reorganization, 7–22, 7–32

LOADFACTOR phrase, using to control

reorganization resources, 7–38

MAXUPDATERS phrase, BUILDREORG

utility, 7–43

open options, BUILDREORG utility, 7–53

order of processes, 7–51

ORDERBYCORE phrase in reorganization,

7–50

PREVERIFY option, BUILDREORG utility,

7–55

purpose, 7–20

reorg global control statement, 7–53

reorganization order, 7–45

REORGDBALLOWEDCORE option, 7–66

resources, controlling during

reorganization, 7–37

SORT phrase, 7–39

SORT phrase, BUILDREORG utility, 7–39

SORT phrase, using to control

reorganization resources, 7–39

STRCOPYCORE phrase, BUILDREORG

utility, 7–44, 7–65

ZIP compiler control option, using with

reorganization, 7–22

BYCYCLE option

COPY statement, 8–55

RECOVER statement, 8–9

Index

Index–4 8600 0759-622

C
CANCEL statement, DMUTILITY

overview, 2–14

syntax, 5–29

cataloging backup information

main directory file, 6–58

process overview, 6–59

recovering, 6–69

running the DMDUMPDIR program, 6–60

tools, for, 6–58

updating the dump tape directory, 6–59

BUILDDUMPDIRECTORY command,

6–68

dump directory file, 6–58

syntax, 6–60

CERTIFY

command, Database Certification, 11–10

options, 11–11

options for sets and subsets, 11–22

options for structure types, 11–14

options for data sets, 11–14

checking

compatibility, 2–8

file compatibility, 2–8

COBOL74

SYSTEM/LOADDUMP, 17–12

text in LOADDUMP output, 17–7

SOURCE <source file title> clause,

LOADDUMP, 17–7

code file family change command

DMCONTROL, 5–24

security file title change command, 5–25

code file title change command

DMCONTROL, 5–25

commands, host language

OPEN INQUIRY, 2–11

OPEN UPDATE, 2–11

compact data sets

crosscheck certification options for, 11–15

internal certification options for, 11–14

AVAILABLE SPACE option, Database

Certification, 11–14

crosscheck certification, 11–15

LINK option, Database Certification, 11–15

compatibility checking

between control file and software, 2–8

between files in database, 2–8

compiler control options

LIST/ZIP/LISTSYM, LOADDUMP utility,

17–12

compiling Enterprise Database Server

software

DMINTERPRETER, 18–4

DMSUPPORT, 18–3

RECONSTRUCT program, 18–3

RMSUPPORT library, 18–4

WFL job parameters, 18–1

RMSUPPORT library, compiling Enterprise

Database Server software, 18–4

compressed tapes

audit files, using with, 9–10

audit files, using with, 9–8

requesting for backups, 6–28

control file

Accessroutines, 2–10

audit file attributes, 2–4

audit information, 2–3

CANCEL function for aborted DBCERT

run, 11–4

CANCEL statement, 2–14

CANCEL statement, syntax, 5–29

database update level, 2–3

deadlock, 2–7

directory descriptor, 2–3

DMUTILITY program, 2–13

dumping, 6–5

dumping the database and, 2–15

dynamic database parameters, 2–3

exclusive, 2–7

family changes, 5–28

file compatibility checking, 2–8

format level, 2–2

identifiers, 2–6

initializing, 5–1

interfaces, 2–10

last number assigned, 2–4

LIST/WRITE statements, 2–15

locked, resolving, 6–17

overwriting, 5–7

printing, overview, 2–15

procedure, 5–28

procedure for partitioned databases, 5–28

recovery, 5–27

recovery flag, 2–7

running DMCONTROL, 5–1

state variables, 2–3

structure, 2–2

structure directory descriptor, 2–3

structure numbers, 2–6

syntax, 5–3

table of contents, 2–2

Index

8600 0759-622 Index–5

tailored software compatibility, 2–8

tape directory flag, 2–4

text directory descriptor, 2–4

TPS synchronized recovery, 2–8

writing overview, 2–15

conflicts in TPS environment, 5–26

contents, 2–2

creating, 5–7

DASDL compiler, 2–10

database recovery, 2–11

database timestamp, 2–3

functions, 2–6

guard file directory descriptor, 2–4

integrity of remote database copy, D–3

interlock control, 2–7

listing, overview, 2–15

maintaining, 5–1

overview, 2–1

overwriting an existing control file, 5–7

procedure for nonpartitioned databases,

5–28

purpose, 2–1

records, 2–6

recovering from failure, 5–30

syntax, 5–3

text directory, 2–4

TPS information, 2–4

unlocking, 6–17

updating, 5–9

updating control file, 5–9

WRITE statement, overview, 2–15

control information for audits, 2–8

convention for audit file names, copied using

COPY command, 9–10

convention for audit file names copied using

QUICKCOPY command, 9–8

COPY command, COPYAUDIT program

audit file naming convention, 9–10

data compression, 9–10

database recovery, 9–10

overview, 9–9

DASDL LOCKEDFILE attribute, 9–10

noncompressed tapes and audit files,

9–10

uncompressed tapes and audit files, 9–10

COPY statement in DMUTILITY

copy to, 8–59

overview, 2–14

BYCYCLE option, 8–55

copy as, 8–57

copy onto, 8–59

QDCVERIFY option, 8–56

QDCWORKERS option, 8–56

recovery, 8–51

WORKERS option, 8–55

COPYAUDIT program

ALL option, 9–16

APPEND option, 9–12

AS PRIMARY option, 9–17

audit block serial number clause, 9–17

audit file name clause, 9–24

audit file range clause, 9–15

AUDITENCRYPT option, 9–20

checking results, 9–5

COMPRESSED option, 9–20

COPIES option, 9–22

data compression, 9–8

database recovery, 9–10

database recovery limitations, 9–9

DEBUG option, 9–4

DIRECTORY command, 9–26

error messages, C–1

examples, 9–19, 9–22

file naming convention, 9–8, 9–10

FORWARD COMPARE option, 9–22, 9–25

identifying destination location, 9–17

identifying source files, 9–17

limiting files on a tape, 9–14

LOCKEDFILE attribute, 9–9

MAXFILESPERTAPE clause, 9–14

methods for copying files, 9–6

NONCOMPRESSED option, 9–20

OVERRIDE option, 9–16

overview, 9–1, 9–6 , 9–9

APPEND option, COPYAUDIT program,

9–12

quick reference, 9–29

QUICKCOPY command, 9–11

REMOVE option, 9–22

running, 9–3

running, manually, 9–4

sample WFL job, 9–5

AS SECONDARY option, 9–17

SCRATCHPOOL option, 9–21

syntax, 9–4, 9–11 , 9–23

tape density specification, 9–19

TAPESET specification, 9–17

tasks, 9–6

audit block serial number (ABSN) clause,

9–17

audit file name clause, 9–15

Index

Index–6 8600 0759-622

audit file name clause, COPY command,

9–24

COPY command, 9–23

data compression, 9–10

density specification, COPY command,

9–25

EXCLUSIVE option, 9–17

facilities, 9–3

integrity of audit files, checking, 9–27

LOCKEDFILE attribute, 9–10

maximizing tape usage, 9–7

medium option, COPY command, 9–24

medium options, 9–24

noncompressed tapes and audit files, 9–8

overriding errors during audit file copy,

9–16

QC audit file name convention, 9–8

range clause, 9–15

running, automatically, 9–3

sectioned audits copying with COPY

command, 9–23

sectioned audits verifying with VERIFY

command, 9–28

syntax option for tape encryption, 15–4

tape density specification, 9–25

task values for COPYAUDIT program, 9–5

uncompressed tapes and audit files, 9–8

VERIFY command, 9–27

COPYDUMP command

BLOCKSIZE clause, 6–48

destination dump disk clause, 6–49

destination dump tape clause, 6–48

examples, 6–49

options clause, 6–47

source dump disk clause, 6–48

source dump tape clause, 6–48

syntax, 6–46

copying audit files

ALL option, 9–16

APPEND option, 9–12

AS PRIMARY option, 9–17

AS SECONDARY option, 9–17

audit block serial number clause, 9–17

audit file name clause, 9–15, 9–24

audit file range clause, 9–15

AUDITENCRYPT option, 9–20

COMPRESSED option, 9–20

COPIES option, 9–22

COPY command, 9–23

copying primary audit files as secondary

audit files, 9–17

copying secondary audit files as primary

audit files, 9–17

data compression, 9–8, 9–10

database recovery, 9–10

database recovery limitations, 9–9

examples, 9–22

EXCLUSIVE option, 9–17

file naming convention, 9–10

FORWARD COMPARE option, 9–22, 9–25

identifying destination location, 9–17

identifying source files, 9–17

limiting files on a tape, 9–14

LOCKEDFILE attribute, 9–9, 9–10

making two copies, 9–22

MAXFILESPERTAPE clause, 9–14

maximizing tape usage, 9–7

medium options, 9–24

one at a time, 9–9

one or more at a time, 9–6

options, 9–6

OVERRIDE option, 9–16

overview, 9–1, 9–6 , 9–9

purpose, 9–2

quick reference, 9–29

QUICKCOPY command, 9–11

REMOVE option, 9–22

sample WFL job, 9–5

SCRATCHPOOL option, 9–21

syntax, 9–4, 9–11 , 9–23

tape density specification, 9–19, 9–25

tasks, 9–6

checking results, 9–5

DEBUG option, 9–4

examples, 9–19

file naming convention, 9–8

NONCOMPRESSED option, 9–20

QUICKCOPY command, COPYAUDIT

program, 9–11

copying backup dumps

COPYDUMP command, 6–46

destination dump disk clause, 6–49

destination dump tape clause, 6–48

examples, 6–49

options clause, 6–47

source dump disk clause, 6–48

source dump tape clause, 6–48

syntax, 6–46

DUPLICATEDUMP command, 6–46

creation timestamp for structures, 2–5

customizing the PRINTAUDIT program

compiling, 10–27

Index

8600 0759-622 Index–7

file equations, 10–27

stopper pattern information, 10–29

syntax, 10–31

variables, 10–28

defining the interval, 10–31

developing the code, 10–28

examples, 10–35

explanation, 10–31

introduction, 10–31

options, 10–32

PRINTIT variable, 10–28

USERPROCEDURE procedure, 10–28

USERWRAPUP procedure, 10–28

D
DASDL, 2–10

Data and Structure Definition Language

(DASDL)

interface with the control file, 2–10

syntax for tape encryption, 15–3

data compression, using with

audit files, 9–8

COPYAUDIT COPY command, 9–10

COPYAUDIT QUICKCOPY command, 9–8

database backups, 6–28

data errors

reorganization, 7–84

data path change command

DMCONTROL, 5–25

data sets

direct preallocating records, 5–33

large object tank, 13–2

analyzing large object tank data sets, 13–2

random, 11–18

standard (fixed-format), 11–19

unordered, 11–21

CERTIFY options for structure types in,

11–14

compact, 11–14

direct, 11–16

direct data sets, 11–16

large object tank data sets, report of disk

usage, 13–2

LOBANALYZE command, DMUTILITY,

13–2

ordered, 11–16

ordered data sets, 11–16

preallocating records for direct data sets,

5–33

standard (variable-format), 11–20

standard (variable-format) data sets, 11–20

Database Certification

ALL option, 11–11

AVAILABLE SPACE option, 11–15

examples, 11–13

LINK option, 11–12, 11–15

ALL, 11–8

ALL option, 11–11

ALLOWEDCORE option, 11–9

ordered list sets, CERTIFY option, 11–24

REMOTEOUT option, 11–2

STRUCTURE CHECK option, 11–13

structure number, 11–11

AVAILABLE SPACE option, 11–12

AVAILABLE SPACE option, Database

Certification, 11–12

batch mode, 11–3

bit vector sets, 11–22

bit vector sets, CERTIFY option, 11–22

BYE command, 11–10

certification options, 11–1

CERTIFY ALL option, Database

Certification, 11–11

coarse table key, 11–23

command, 11–10

command variables, 11–7

compact data sets, 11–14

compact data sets, CERTIFY option,

11–14

CONTENTS option, 11–12

CONTENTS option, Database Certification,

11–12

control words, checking, 11–13

controlling output, 11–8

COUNT option, 11–12

COUNT option, Database Certification,

11–12

data control word check, 11–13

Database Certification, 11–1

direct data sets, CERTIFY option, 11–16

discontinuing, 2–17

DMSUPPORT library, 3–1

DUMPBLOCK, 11–8

DUMPBLOCK option, 11–8

DUMPBLOCKS option, Database

Certification, 11–8

END command, 11–10

error indicator, 11–3

failure, recovering, 2–14

FAMILYNAME option, 11–9

fine tables, 11–23

Index

Index–8 8600 0759-622

HELP CERTIFY command, Database

Certification, 11–7

HELP command, 11–6

index random sets, 11–23

index random sets, CERTIFY option,

11–23

index sequential sets, 11–23

index sequential sets, CERTIFY option,

11–23

interactive mode, 11–2

INTERNAL FILES command, 11–7

INTERNAL FILES command, Database

Certification, 11–7

LINK option, Database Certification, 11–12

LOWERCASE command, 11–9

LOWERCASE command, Database

Certification, 11–9

ONLINE command, 11–6

ONLINE command, Database

Certification, 11–6

options, 11–11

OPTIONS command, 11–8

OPTIONS command, Database

Certification, 11–8

options for structure types, 11–14

ordered data sets, CERTIFY option, 11–16

ordered list sets, 11–24

output description, 11–4

OWNER option, 11–12

OWNER option, Database Certification,

11–12

partition identifier, 11–11

QUIT command, 11–10

QUIT command, Database Certification,

11–10

random data sets, 11–18

random data sets, CERTIFY option, 11–18

READONLY option, 11–12

READONLY option, Database

Certification, 11–12

RECORD PLACEMENT option, 11–12

RECORD PLACEMENT option, Database

Certification, 11–12

REMOTEOUT, 11–8

REMOTEOUT option, 11–8

REMOTEOUT option, Database

Certification, 11–2, 11–8

RESET, 11–8

RESET option, Database Certification,

11–8

restart, 11–4

restart data sets, 11–18

restart data sets, CERTIFY option, 11–18

sample report, 11–4

SEGMENTS option, 11–9

SEGMENTS option, Database

Certification, 11–9

sets and subsets, CERTIFY option, 11–22

sets and subsets, Database Certification,

11–22

SETS option, 11–12

SETS option, Database Certification,

11–12

SORT command, 11–8

SORT command, Database Certification,

11–8

SORT USING option, 11–9

SORT USING option, Database

Certification, 11–9

standard (fixed-format) data sets, 11–19

standard (variable-format) data sets, 11–20

STOP command, 11–10

STOP command, Database Certification

program, 11–10

STRUCTURE CHECK option, Database

Certification, 11–13

structure names, 11–11

TAPES option, 11–9

TAPES option, Database Certification,

11–9

TASKVALUE, 11–3

unordered data sets, 11–21

unordered data sets, CERTIFY option,

11–21

unordered list sets, 11–25

unordered list sets, CERTIFY option,

11–25

UPPERCASE command, 11–9

VERIFYSTORE option, 11–13

VERIFYSTORE option, Database

Certification, 11–13

database control file, 2–1

database encryption

components and interdependencies, 23–1

DATAENCRYPT option, 23–4

error handling, 23–11

example, 23–6

performance and best practices, 23–15

troubleshooting, 24–1

database parameters, dynamic, 2–3, 2–8

database recovery

audit files, using, 9–10

Index

8600 0759-622 Index–9

QUICKCOPY audit files, using, 9–9

RECOVER statement, 2–15

overview, 8–1

Visible Recovery commands, 8–1

database reorganization

access to the database, 7–53

compiler control options, 7–22

GENERATE statement, 7–29

generating from index structures, 7–34

algorithm, 7–15

amount of fixup core, 7–49

amount of sort core, 7–49

SORT phrase, 7–39

backing up files, 7–15

BUILDREORG utility, 7–20

central data set control options, 7–46

Central Data Set GENERATE statement,

7–29

COPY TO option, BUILDREORG utility,

7–41

data errors, 7–84

disk storage requirements, 7–89

DMSUPPORT library file name changes,

7–7

effect of TPS, 7–69

EXCLUSIVE option, 7–55

explicitly generated structures, 7–37

EXTRACT phrase, 7–39

file format conversion, 7–3

garbage collection, 7–2

generating a data set, 7–30

generating from a data set, 7–33

identifying the location of internal files,

7–47

index control option, 7–37

index control option, BUILDREORG utility,

7–37

INQUIRYONLY option, 7–54

introduction, 7–1

I/O errors, 7–83

limitations, 7–91

limiting the number of processes, 7–51

LOADFACTOR phrase, 7–38

OFFLINE option, 7–56

OFFLINE reorganization, 7–16

ONLINE option, 7–15

order of processes, 7–51

ORDERBYCORE phrase, 7–50

overview, 2–16

performance enhancement, 7–87

phases, 7–67

preparation tasks, 7–67

PREVERIFY option, 7–55

process, 7–5

rebuild recoveries, 7–80

record format conversion, 7–4

reorganization order, 7–45

REORGDB control COPY TO option, 7–41

REORGDBALLOWEDCORE option, 7–66

REORGDBALLOWEDCORE option,

BUILDREORG utility, 7–66

resource control, 7–37

restarting, 7–79

rollback recoveries, 7–83

running REORGANIZATION program,

7–66

starting the REORGANIZATION program,

7–68

status, 7–86

structure availability, 7–70

structure COPY TO option, 7–40

syntax, 7–24

types, 7–2

UPDATE option, 7–27

databases

allowing access during backup, 6–4

allowing access during reorganization,

7–53

displaying file contents, 11–30

file name clause in DUMP command,

6–23

initializing, 5–30

large objects, maintaining, 13–1

nonusercoded, reorganizing, 7–69

partitioned, recovering control files, 5–28

usage statistics, B–9

VSS2 optimization, B–9

backing up, 6–1

communicating with Visible DBS

interface, 12–1

directory database, permanent, 16–1

initializing files, syntax, 5–32

LIST statement in DMUTILITY, 11–30

listing file contents, 11–30

partial recovery, 8–6

permanent directory, 16–1

permanent directory databases, 16–1

status of files and rows, 11–25

DBDIRECTORY statement

DMUTILITY, 11–25

overview, 2–14

Index

Index–10 8600 0759-622

DBS CHANGE command

AUDIT BUFFERS option, 12–6

AUDIT SECTIONS option, 12–6

ALLOWEDCORE option, 12–5

SYNCWAIT option, 12–8

TRACKERQPFACTOR option, 12–8

AUDIT ANALYZE AFN command, 12–9

AUDIT BLOCKSIZE, DBS CHANGE

command, 12–5

AUDIT BLOCKSIZE option, 12–5

AUDIT BUFFERS, in DBS CHANGE

command, 12–6

audit generation rates, reporting, 12–9

AUDIT SECTIONS, in DBS CHANGE

command, 12–6

Visible DBS program,, 12–5

MAXUPDATEPERTR, in DBS CHANGE

command, 12–7

MAXUPDATEPERTR option, 12–7

OVERLAYGOAL, in DBS CHANGE

command, 12–7

OVERLAYGOAL option, 12–7

RESIDENT LIMIT, in DBS CHANGE

command, 12–7

RESIDENT LIMIT option, 12–7

SETFAMILYINDEX, in DBS CHANGE

command, 12–7

SETFAMILYINDEX option, 12–7

SYNCPOINT, in DBS CHANGE command,

12–8

SYNCPOINT option, 12–8

SYNCWAIT, in DBS CHANGE command,

12–8

TRACKERFLUSHDB, in DBS CHANGE

command, 12–8

TRACKERFLUSHDB option, 12–8

TRACKERQPFACTOR option, 12–8

deadlock situations, preventing, 2–7

deleting

audit files after a copy job, 9–22

deleted large object items of an existing

structure, 13–3

large objects of a deleted structure, 13–3

directories, 2–4

creating for audit file tapes, 9–26

guard file, 2–5

tape flag, 2–4

structure, 2–5

tape flag, 2–4

DIRECTORY command

COPYAUDIT program, 9–26

disaster recovery

using mirrored disks, D–1

mirrored disks, for disaster recovery, D–1

mirroring files, D–1

discontinuities, handling, 2–9

disk dumps

contrasting with tape dumps, 4–5

directory, 6–57

input/output errors, 4–12

omitting tape options, 4–6

online disadvantages, 4–7

operator interface, 4–8

resource contention, 4–7

restarting, 4–8

tape incompatibility, 4–7

usercode, 4–7

verifying, 6–45

cataloging backup information, 6–57

limitations, 4–6

limitations; disk dumps, 4–6

warnings, 4–16

DMAuditLib library

ALI_INFO ALI_BLKLIST_COUNT word,

20–11

AUDIT_BUFFERS array, 20–10, 20–12

converting existing programs, 20–2

database encryption, 23–1

debug words, 20–10

declaring in the SYMBOLD/DMAUDITLIB

file, 20–2

entry points, 20–1, 20–12

error results, 20–20

exporting the ALGOL interfaces, 20–2

SYMBOL/DMAUDITLIB file, 20–2

DMCONTROL

ABSN command, 5–8

ALTERNATE AUDITFAMILY command,

5–24

ALTERNATE SECAUDITFAMILY

command, 5–24

AUDITFAMILY command, 5–23

code file family change command, 5–24

CREATE QDC command, 14–12

data path change command, 5–25

DONTOVERWRITE command, 5–8

FAMILY command, 5–23

INITIALIZE command, 5–7

LOCKEDFILE command, 5–10

MAXUPDATEPERTR command, 5–17

OVERRIDE AUDITBUFFERS command,

5–19

Index

8600 0759-622 Index–11

OVERRIDE AUDITSECTIONS command,

5–20

OVERRIDE DATAPATH command, 5–22

OVERRIDE FAMILY command, 5–20

OVERRIDE GUARDFILETITLE command,

5–21

OVERRIDE HL command, 5–20

OVERRIDE LOCKEDFILE command, 5–22

OVERRIDE POPULATIONINCR command,

5–21

OVERRIDE POPULATIONWARN

command, 5–21

OVERRIDE SECURITYADMIN command,

5–22

OVERRIDE SENSITIVEDATA command,

5–22

OVERRIDE USEREORGDB command,

5–22

RECOVER INITIALIZE command, 5–19

RECOVER PARTITIONS command, 5–18

RECOVER UPDATE command, 5–17

SECAUDITFAMILY command, 5–24

SENSITIVEDATA command, 5–11

STRUCTURE command, 5–23

UPDATE command, 5–9

creating incremental/accumulated dumps

from a quiesce database, 14–21

data file family change, 14–14

description file, file-equating in

DMCONTROL, 5–1

family change bit, 5–2

file-equating description file in

DMCONTROL, 5–1

file-equating the description file, 5–1

OVERRIDE DATAPATH command

DMCONTROL, 5–22

OVERRIDE LOCKEDFILE command

DMCONTROL, 5–22

OVERRIDE POPULATIONINCR command

DMCONTROL, 5–21

OVERRIDE SECURITYADMIN command

DMCONTROL, 5–22

OVERRIDE SENSITIVEDATA command

DMCONTROL, 5–22

OVERRIDE USEREORGDB command

DMCONTROL, 5–22

OVERWRITE command, 5–8

QUIESCEDBRESET command, 5–26

recovering control files with family

changes, 5–28

RESTORE FROM QDC command, 14–19

RESTORE FROM QDC command,

DMCONTROL, 14–19

running, 5–1

security file title change command, 5–25

syntax, 5–3

SYSTEM/DMCONTROL, 5–1

DMDATARECOVERY program, overview,

2–11

DMDUMPDIR program

disabling, 6–62

enabling, 6–61

examples, 6–65

fatal error, 8–32

running, 6–60

log of dumps, 6–57

using to maintain a dump directory, 6–57

using with duplicates of dumps, 6–51

DMSUPPORT library

entry points, 3–1

file name changes during reorganization,

7–7

compiling Enterprise Database Server

software, 18–3

declaring, 3–2

DMEXCEPTIONNAME, 3–1

DMEXCEPTIONTEXT, 3–2

DMSTRUCTURENAME, 3–1

example programs showing entry points,

3–3

DMUTILITY

CANCEL statement, syntax, 5–29

CFRESTORE command, 14–31

continuing, 4–10

COPY statement, recovery, 8–51

database disk I/O errors, 4–13

DBDIRECTORY statement, 11–25

disk dumps, limitations, 4–6

disk dumps, operator interface, 4–8

dumps, disk input/output errors, 4–12

dumps, tape input/output errors, 4–11

error handling, 4–11

INITIALIZE statement, syntax, 5–32

loads, disk input/output errors, 4–13

LOBANALYZE command, 13–2

LOBCLEANUP command, 13–3

LOBSQUASH command, 13–3

operator interface, tape dumps, 4–8

QUIESCE command, 14–2

QUIESCE QDC command, 14–6

RECOVER statement, 8–1

restarting disk dumps, 4–8

Index

Index–12 8600 0759-622

restarting tape dumps, 4–8

RESUME command, 14–5

RETRYIO error messages, examples,

4–15

tape encryption syntax, 15–3

task attribute task values, 4–4

warnings during disk dumps, 4–16

warnings during tape dumps, 4–16

canceling offline dumps, 5–30

CHECKSUM errors, 4–13

contrasting dump media, 4–5

control file interface, 2–13

database disk I/O errors, 4–13

deadlock situations, preventing, 2–7

debugging information, printing

unexpectedly, 4–10

deleted large objects items of an existing

structure, deleting, 13–3

disabling the database, 11–28

DMUTILITY commands, 4–1

enabling a database, 11–28

large objects of a deleted structure,

deleting, 13–3

LIST statement, 11–30

loads, tape I/O errors, 4–12

LOBCLEANUP command, DMUTILITY,

13–3

LOBCOMBINE command, 13–3

operator interface, for disk dumps, 4–8

purpose, 4–1

QUIESCE command, DMUTILITY, 14–2

read error messages, 4–13

restoring original configuration of quiesce

database copy, 14–6

RESUME command, DMUTILITY, 14–5

retry error messages, 4–13

RETRYIO error messages, 4–13

running, 4–3

tape encryption, 15–1

task values for DMUTILITY, 4–4

write error messages, 4–13

WRITE statement, 11–30

DONTOVERWRITE command

DMCONTROL, 5–8

DUMP command

ACCUMULATED option, 6–20

BLOCKSIZE clause, 6–29, 6–32

ACCUMULATED option, DUMP

command, 6–20

COMPRESSED option, 6–28

CORRECTREADERROR option, 6–15

DATACOMPRESSION option, 6–15

disk and tape output, 6–43

disk output, 6–40

dump clause, 6–20

dump list clause, 6–22

dump selector clause, 6–24

DUMPDISKSIZE option, 6–15

exclude list clause, 6–24

file name clause, 6–23

file title clause, 6–34

FORWARD COMPARE option, 6–13

INCREMENTAL option, 6–18

multidump tape specification, 6–31

NONCOMPRESSED option, 6–28

overview, 2–15

OVERWRITEDISK option, 6–16

portion selector clause, 6–25

SCRATCHPOOL option, 6–30

serial number specification, 6–30

tape density specification, 6–29

tape output, 6–34

tape serial number specification, 6–30

TAPES clause, 6–27

BY FAMILYINDEX option, 6–26

BY FAMILYINDEX option, DUMP

command, 6–26

CORRECTREADERROR option, DUMP

command, 6–15

DATACOMPRESSION option, DUMP

command, 6–15

density specification, 6–29

disk requirements for database backups,

6–31

dump disk specification, 6–31

dump list clause, DUMP command, 6–22

dump selector clause, DUMP command,

6–24

dump tape specification, 6–27

DUMPDISKSIZE option, DUMP command,

6–15

ENCRYPTTYPE option, 6–15

ENCRYPTTYPE option, DUMP command,

6–15

exclude list clause, DUMP command,

6–24

INCREMENTAL option, DUMP command,

6–18

NOCOMPARE option, 6–14

NOENCRYPT option, 6–15

NOENCRYPT option, DUMP command,

6–15

Index

8600 0759-622 Index–13

OFFLINE option, 6–16

OVERWRITEDISK option, DUMP

command, 6–16

portion selector clause, DUMP command,

6–25

syntax, 6–9

tape requirements for database backups,

6–27

WAITTIME option, 6–16

WAITTIME option, DUMP command, 6–16

WORKERS option, 6–12

dump directory

adding entries, 6–62

adding entries for duplicates of dumps,

6–51

building, 6–68

ADD command, 6–62

adding entries to a dump directory, 6–62,

6–65

disabling, 6–62

dump information, 6–63

dump information for a family index, 6–64

enabling use of, 6–61

identifying dumps, 6–65

limiting the information stored, 6–62

listing, 6–53

locked row information, 6–64

main directory, 6–64

maintaining, 6–57

program, 6–60

program syntax, 6–60

rows with read errors, 6–64

BUILDDUMPDIRECTORY command,

6–68

DELETE command, 6–62

deleting entries, 6–63

DISABLE command, 6–62

dump information, 6–63

ENABLE command, 6–61

inserting entries in a dump directory, 6–62

locked row information, 6–64

locked row information, generating, 6–64

main directory, 6–58, 6–64

PACKNAME option, 6–62

read error information, generating, 6–64

recovering, 6–69

SYSTEM/DMDUMPDIR program, 6–57

TAPEDIRECTORY command, 6–53

DUMP statement, 2–15

DUMPDIR option

DUPLICATEDUMP command, 6–51

dumping databases

limitations, 4–6

warnings, 4–16

input/output errors, 4–12

media selection, 4–5

omitting tape options, 4–6

overview, 2–15

restarting, 4–8

tape input/output errors, 4–11

dumps

copying, 6–45

duplicating, 6–45

listing information, 6–63

retaining information about, 6–62

verifying, 6–44

COPYDUMP command, 6–46

copying backup dumps, 6–45

duplicating backup dumps, 6–45

offline, recovering from failure, 5–30

permanent directory databases, 16–4

printing dump information, 6–63

DUPLICATEDUMP command

destination dump tape clause, 6–51

source dump tape clause, 6–51

destination dump disk clause, 6–52

DUMPDIR option, 6–51

examples, 6–52

FORWARD COMPARE option, 6–51

options clause, 6–51

source dump disk clause, 6–52

syntax, 6–50

WORKERS option, 6–51

duplicating backup dumps

destination dump tape clause, 6–51

DUPLICATEDUMP command, 6–46

source dump tape clause, 6–51

destination dump disk clause, 6–52

DUMPDIR option, 6–51

examples, 6–52

FORWARD COMPARE option, 6–51

options clause, 6–51

source dump disk clause, 6–52

storing information in dump directory,

6–51

syntax, 6–50

WORKERS option, 6–51

dynamic database parameters, 2–3, 2–8

Index

Index–14 8600 0759-622

E
encryption algorithms

AES, 15–2

TDES, 15–2

END command

BYE command, Database Certification

program, 11–10

Database Certification, 11–10

Enterprise Database Server

errors during halt/load recovery, 24–2

entry point parameters

AUDIT_CLOSE, 20–15

AUDIT_CLOSE entry point parameters,

20–15

AUDIT_NEXT_ABSN, 20–16

AUDIT_NEXT_ABSN entry point

parameters, 20–16

AUDIT_NEXT_RECORD, 20–18

AUDIT_NEXT_RECORD entry point

parameters, 20–18

AUDIT_OPEN, 20–13

AUDIT_OPEN entry point parameters,

20–13

AUDIT_RANDOM_ABSN, 20–17

AUDIT_RANDOM_ABSN entry point

parameters, 20–17

entry points

declaring, 3–2

DMEXCEPTIONNAME, 3–1

DMEXCEPTIONTEXT, 3–2

DMSTRUCTURENAME, 3–1

ALGOL entry point example, 3–4

DMAuditLib library, 20–1, 20–12

DMSUPPORT library, 3–1

example programs, 3–3

equation specification

criteria for equation, 17–8

in LOADDUMP, 17–8

mapping, 17–9

rules for, 17–8

errors

during disk stream loads, 4–13

during halt/load recovery, 24–2

during tape loads, 4–12

effect on copying audit files, 9–16

messages for COPYAUDIT program, C–1

and warnings in Visible DBS, 12–2

RETRYIO messages, 4–13

returning structure name, using

DMSTRUCTURENAME entry

point, 3–1

COPYAUDIT program, 9–16

during disk dumps, 4–12

during halt/load recovery, 24–1

during tape dumps, 4–11

handling in DMUTILITY, 4–11

results in DMAuditLib library, 20–20

returning exception category, using

DMEXCEPTIONNAME entry

point, 3–1

returning text, using DMEXCEPTIONTEXT

entry point, 3–2

exception

DMEXCEPTIONNAME entry point, 3–1

DMEXCEPTIONNAME entry point, 3–1

DMEXCEPTIONTEXT entry point, 3–2

DMSTRUCTURENAME entry point, 3–1

for COPYAUDIT program, C–1

returning the structure name by using the

DMSTRUCTURENAME entry

point, 3–1

exclusive

access to database during reorganization,

7–55

exclusive functions, 2–7

F
failures, during

disk dumps, 4–12

tape dumps, 4–11

disk loads, 4–13

I/O errors disk dumps, 4–12

I/O errors tape dumps, 4–11

tape loads, 4–12

families

assigning by using DMCONTROL, 5–2

altering families by using DMCONTROL,

5–2

resetting the change bit, 5–2

changes and control file recovery, 5–28

changing families by using DMCONTROL,

5–2

family assignments, changing by using

DMCONTROL, 5–2

LOCKEDFILE file attribute, 5–3

name for structures, 2–6

FAMILY command

DMCONTROL, 5–23

field audit selection

syntax, 10–20

introduction, 10–20

Index

8600 0759-622 Index–15

record type audit selection, 10–21

file attributes for audit files, 2–4

files

compatibility, 2–8

guard, 2–4

initializing, 5–30

listing contents, 11–30

partition files, row recovery, 8–18

partition, recovering rows, 8–18

WRITE statement in DMUTILITY, 11–30

flags

recovery, 2–7

structure state, 2–5

tape directory, 2–4

format

level in control file, 2–2

timestamp for structures, 2–5

WRITE command, 11–31

block range, specifying, 11–31

hex block address, specifying, 11–32

LIST command, 11–31

Visible DBS program, 12–1

FORWARD COMPARE option

COPY command, 9–25

DUMP command, 6–13

DUPLICATEDUMP command, 6–51

QUICKCOPY command, 9–22

G
global transactions, using, 1–5

guard files, 2–4, 2–5

H
halt/load recovery

messages, 24–2

remedies for failed, 24–1

halt/load recovery program, overview, 2–11

HELP command, designating in

Database Certification, 11–6

host language commands

OPEN INQUIRY, 2–11

OPEN UPDATE, 2–11

I
identifier for partitions, 2–6

indicating

number of tape drives during a copy, 8–55

number of tape drives used during a

recovery, 8–8

number of tasks during verification

process of a recovery, 8–10

INITIALIZE command

DMCONTROL, 5–7

INITIALIZE statement

DMUTILITY ALL option, 5–33

DMUTILITY = option, 5–33

DMUTILITY designating structures, 5–33

DMUTILITY syntax, 5–32

failure recovery, 2–14, 5–30

options, 5–33

backing up a database, 6–1

dumping databases, 6–1

MIGRATEDB Command, 5–36

REDISTRIBUTE command, 5–34

initializing

structures, syntax, 5–33

inquiring, OPEN INQUIRY host language

command, 2–11

interfaces, control file, 2–10

Accessroutines, 2–10

DASDL compiler, 2–10

interlock control, 2–7

INTERNAL FILES

option, BUILDREOGRDG utility, 7–47

internationalizing messages, 1–4

intervals for PRINTAUDIT output

relative block syntax, 10–14

serial number syntax, 10–13

time syntax, 10–12

relative block, 10–14

relative block intervals for PRINTAUDIT

output, 10–14

serial number, 10–13

serial number intervals for PRINTAUDIT

output, 10–13

in-use bit

effect of opening the database, for inquiry,

2–11

effect of opening the database, for

update, 2–11

I/O errors

database disk, 4–13

databases, 4–13

disk stream loads, 4–13

tape loads, 4–12

disk stream loads, I/O errors, 4–13

disks, I/O errors, 4–13

loading information, I/O errors, 4–13

Index

Index–16 8600 0759-622

reorganization, 7–83

L
large objects

consolidating space of deleted objects,

13–3

LOBSQUASH command, DMUTILITY,

13–3

maintaining databases with, 13–1

consolidating, 13–3

consolidating large object tank data sets,

13–3

LOBCOMBINE command, DMUTILITY,

13–3

quiesced database, using, 14–1

last assigned partition number, control file,

2–4

limitations

reorganization processes, 7–51

dump numbers, 6–62

reorganization, 7–91

TASKLIMIT phrase in reorganization, 7–51

LIST statement in DMUTILITY

overview, 2–15

LOADDUMP

COBOL74 MOVE algorithm, with

examples, 17–12

file specification, 17–5

load dump specification, 17–11

compiler control options, 17–12

database specification, 17–5

database specification in LOADDUMP,

17–5

DATASET clause, LOADDUMP, 17–5

DB clause, LOADDUMP, 17–5

DUMP option, LOADDUMP, 17–11

equation specification, 17–8

EXCLUDE clause, LOADDUMP, 17–5

FD name for LOADDUMP file, 17–6

file specification, LOADDUMP, 17–5

load dump specifications, 17–11

LOAD option, LOADDUMP, 17–11

RECORD clause, LOADDUMP, 17–6

RUN statement, 17–3

SOURCE clause, LOADDUMP, 17–6

steps for using LOADDUMP, 17–2

VIA <index structure> construct,

LOADDUMP, 17–11

localizing messages, 1–4

locked control files

unlocking after a dump, 6–17

unlocking, 2–14

unlocking control files, syntax, 5–29

unlocking syntax, 5–29

LOCKEDFILE command

DMCONTROL, 5–10

LOCKEDFILE file attribute

database backup, 6–5

DMUTILITY program, 5–31

COPY command, 9–10

copying audit files, 9–9

QUICKCOPY command, 9–9

M
main directory

listing, 6–64

listing locked row information, 6–64

listing rows with read errors, 6–64

printing locked row information, 6–64

printing rows with read errors, 6–64

writing, 6–64

writing locked row information, 6–64

printing, 6–64

writing rows with read errors, 6–64

MAXUPDATEPERTR command

DMCONTROL, 5–17

MEMORY RESIDENT

option in STRUCTURE CHANGE

command, 12–33

STATUS HISTORY command, Visible DBS

program, 12–34

messages

exception category by using

DMEXCEPTIONNAME entry

point, 3–1

for COPYAUDIT program, C–1

structure name by using the

DMSTRUCTURENAME entry

point, 3–1

translating, 1–4

common syntactic items, A–1

database statement, syntax, A–1

db statement, syntax, A–1

digit, syntax, A–2

dump name, syntax, A–2

family name, syntax, A–2

file name, syntax, A–3

halt/load recovery, 24–2

identifier syntax, A–3

Index

8600 0759-622 Index–17

integer, syntax, A–2

path name, A–4

range, syntax, A–5

reports, statistics, B–1

string6, syntax, A–5

string, syntax, A–5

tape name, syntax, A–4

text by using DMEXCEPTIONTEXT entry

point, 3–2

time, B–1

multidump tapes

creating and accessing, 4–5

listing, 6–54

recreating fast access directory file, 6–54

N
naming convention for audit file names

COPY command, 9–10

QUICKCOPY command, 9–8

No File condition

RoboHost units, effect on PRINTAUDIT

program, 8–42, 10–5

running PRINTAUDIT program, 8–42, 10–5

TAPESERVER system option, effect on

PRINTAUDIT program, 8–42, 10–5

NOZIP option

partial database recovery, 8–6

recovering the database, 8–6

row recovery, 8–6

whole database recovery, 8–18

number of

forced overlays in buffer statistics, B–4

last assigned partition, 2–4

I/O statistics, B–4

partition structures, 2–6

O
offline

certification failure, recovering from, 5–30

copy failure, recovering from, 5–30

recovering from failure, 5–30

storing the last audit file, 6–17

canceling offline certification, 5–30

canceling offline copies, 5–30

certification, offline, recovering from

failure, 5–30

copy offline, recovering from failure, 5–30

selecting, 6–4

OFFLINE option

BUILDREORG utility, 7–56

DUMP command, 6–16

OFFLINE reorganization

OFFLINE FIXUP Exchange error, 7–86

status of reorganization, displaying, 7–86

online dump

disadvantages for disk dumps, 4–7

selecting, 6–4

process, 6–17

Open Distributed Transaction Processing

overview, 1–5

OPEN INQUIRY, host language command,

2–11

open options, BUILDREORG utility

combinations, 7–57

OPEN UPDATE, host language command,

2–11

opening databases

during backups, 6–4

during reorganizations, 7–53

inquiry only, 7–54

no access allowed, 7–55

OPEN INQUIRY host language command,

2–11

OPEN UPDATE host language command,

2–11

unaudited databases, availability during

dump, 6–4

ordered data sets

crosscheck certification options for, 11–17

internal certification options for, 11–16

NUMSUBBLOCKS field, 11–17

output

disk requirements for database backups,

6–31

for dumps, choosing, 6–4

tape requirements for database backups,

6–27

description of Database Certification, 11–4

disk dumps, 6–4

dump media, selecting, 6–4

tape dumps, 6–4

output parameter

BLOCK_OFFSET, 20–12

Block_Offset output parameter, 20–12

RECORD_OFFSET, 20–12

Record_Offset output parameter, 20–12

OVERRIDE AUDITBUFFERS comamnd

DMCONTROL, 5–19

Index

Index–18 8600 0759-622

OVERRIDE AUDITSECTIONS command

DMCONTROL, 5–20

OVERRIDE FAMILY command

DMCONTROL, 5–20

OVERRIDE GUARDFILETITLE command

DMCONTROL, 5–21

OVERRIDE HL command

DMCONTROL, 5–20

OVERRIDE POPULATIONWARN command

DMCONTROL, 5–21

OVERWRITE command

DMCONTROL, 5–8

modifying the control file, 5–9

P
pack name for structures, 2–6

parameters

dynamic, 2–3

dynamic database, 2–8

partial database recovery

FLUSHDB option, 8–8

partition files, 8–18

recovery specification, 8–13

FLUSHDB option, 8–8

in an RDB environment, 8–7

NOZIP option, 8–7, 8–8

Quickfix process, 8–12

recover specification, 8–13

steps to avoid extra processing, 8–7

using the NOZIP option, 8–6

WORKERS option, 8–8

partition directory descriptor, 2–3

partitioned records

audit and recovery considerations, 19–3

directory overview, 19–1

in the control file, 2–6

audit and recovery considerations for

partitioned records, 19–3

audit reader library, 20–1

controlling, 19–1

directory details, 19–2

DMAuditLib library, 20–1

partitions

identifier in the control file, 2–6

identifying in Database Certification,

11–11

last assigned number, 2–4

structure number in the control file, 2–6

permanent directory database

replication, 8–26

permanent directory databases

creating, 16–1

LOADDUMP, 17–1

reorganizing, 16–3

working with dumps, 16–4

PRINTAUDIT program

block zero information, 10–9

by block number, 10–18

by field, 10–20

by mix number, 10–16

by program identifier, 10–17

by record type, 10–21

command syntax, 10–32

customized PRINTAUDIT program, 10–35

designating intervals, 10–9

developing the code, 10–28

directing output, 10–7

examples, 10–32

formatting output, 10–9

identifying audit files for analysis, 10–4

initiating, 10–2

initiating batch mode, 10–3

initiating interactively, 10–3

introduction, 10–26

overview, 10–1, 10–2

PRINTIT variable, 10–28

quick reference, 10–39

relative block intervals, 10–14

RoboHost units, 8–42, 10–5

SELECT command, 10–31

selecting audit data, 10–15

serial number intervals, 10–13

stopper pattern information, 10–29

stopping, 10–8

syntax, 10–6

USERPROCEDURE procedure, 10–28

USERWRAPUP procedure, 10–28

by stack number, 10–15

by structure name, 10–18

by structure number, 10–18

command syntax, 10–34

compiling, 10–27

extra output, 10–9

file equations, 10–27

identifying DASDL source files, 10–5

partial audit files, 10–9

TAPESERVER system option, 8–42, 10–5

time intervals, 10–12

variables, 10–28

printing audit files

batch mode, 10–3

Index

8600 0759-622 Index–19

block zero information, 10–9

by block number, 10–18

by field, 10–20

by mix number, 10–16

by program identifier, 10–17

by record type, 10–21

by stack number, 10–15

by structure name, 10–18

by structure number, 10–18

compiling, 10–27

customizing the PRINTAUDIT program,

10–26

designating intervals, 10–9

developing the code, 10–28

directing output, 10–7

ending the PRINTAUDIT program, 10–8

examples, customized PRINTAUDIT

program, 10–35

examples, PRINTAUDIT commands,

10–32

extra output, 10–9

file equations, 10–27

formatting output, 10–9

identifying audit files for analysis, 10–4

initiating the PRINTAUDIT program, 10–2

interactive mode, 10–3

alphanumeric audit file information,

generating, 10–9

overview, 10–1, 10–2

partial audit records, 10–9

PRINTIT variable, 10–28

quick reference, 10–39

relative block intervals, 10–14

RoboHost units, 8–42, 10–5

SELECT command, 10–31

selecting audit data, 10–15

serial number, 10–13

serial number intervals, 10–13

stopper pattern information, 10–29

syntax, 10–6

tape directory, 9–26

TAPESERVER system option, 8–42, 10–5

time intervals, 10–12

USERPROCEDURE procedure, 10–28

USERWRAPUP procedure, 10–28

variables, 10–28

block number audit selection, 10–18

block zero information, printing, 10–9

hexadecimal audit file information,

generating, 10–9

identifying DASDL source files, 10–5

mix number audit selection introduction,

10–16

mix number audit selection syntax, 10–17

mnemonics for audit records, 10–22

monitoring commands, Visible Recovery,

8–42

partial audit records, printing, 10–9

PRINTAUDIT program, 10–1

program identifier audit selection, 10–17

selecting audit data for PRINTAUDIT

output, 10–15

stack number audit selection, introduction,

10–15

stack number audit selection, syntax,

10–16

stopper pattern information, 10–29

tuning commands, Visible Recovery, 8–42

USERPROCEDURE procedure, using to

customize PRINTAUDIT, 10–28

USERWRAPUP procedure in PRINTAUDIT

program, 10–28

variables available for PRINTAUDIT

program, 10–28

Visible Recovery commands, 8–42

printing dump information

for a family index, 6–64

processes

for backing up a database, 6–3

rollback recovery, 2–11

programs

ABORT recovery, 2–11

Database Certification, discontinuing,

2–17

DMCONTROL, running, 5–1

DMDATARECOVERY, 2–11

halt/load recovery, 2–11

REORGANIZATION, overview, 2–16

DMUTILITY, control file interface, 2–13

example illustrating entry points, 3–3

Q
QDCVERIFY option

COPY statement, 8–56

RECOVER statement, 8–10

QDCWORKERS option

COPY statement, 8–56

RECOVER statement, 8–10

FAMILYINDEX specification, COPY

statement, 8–57

Index

Index–20 8600 0759-622

QUICKCOPY command, COPYAUDIT

program

overview, 9–6

quick-reference information

COPYAUDIT statement, 9–29

PRINTAUDIT statement, 10–39

quiesce database

creating incremental/accumulated

dumpse, 14–21

quiesce database copy

restoring original configuration, 14–6

restoring the control file to the live

environment, 14–31

as a copy source, 14–22

as a recovery source, 14–22

CFRESTORE command, DMUTILITY,

14–31

CREATE QDC command, DMCONTROL,

14–12

QDCVERIFY option for copy, 8–56

QDCVERIFY option for recovery, 8–10

QDCWORKERS option, 8–56

QDCWORKERS option for recovery, 8–10

QUIESCE HISTORY option, DMUTILITY

WRITE command, 14–30

QUIESCE QDC command, DMUTILITY,

14–6

restoring control file of live database using

quiesce database copy, 14–31

quiesce database copy recovery source

QDCVERIFY option, 8–10

QDCWORKERS option, 8–10

QUIESCE DB recovery sources

VERIFY option, 8–9

QUIESCEDBRESET command

DMCONTROL, 5–26

R
random data sets

internal certification options for, 11–18

REBLOCK

option in STRUCTURE CHANGE

command, 12–28

REBLOCK RESET

option in STRUCTURE CHANGE

command, 12–28

REBLOCK SET

option in STRUCTURE CHANGE

command, 12–28

REBLOCKFACTOR

BUFFERS option, STRUCTURE CHANGE

command, 12–32

option in STRUCTURE CHANGE

command, 12–28

POPULATIONINCR option, in

STRUCTURE CHANGE command,

12–28

POPULATIONWARN option, STRUCTURE

CHANGE command, 12–31

REBUILD process

continuing, 4–10

and reorganizations, 7–80

whole database recovery, 8–18

time point, for recovery, 8–24

whole database recovery, 8–18

RECONSTRUCT program

compiling Enterprise Database Server

software, 18–3

continuing, 4–10

DMINTERPRETER, compiling Enterprise

Database Server software, 18–4

records

creation timestamp, 2–5

family name, 2–6

partition, 2–6

preallocating for direct data sets, 5–33

state flag, 2–5

version timestamp, 2–5

format timestamp, 2–5

guard file, 2–5

partitioned, 19–1

structure, 2–5

RECOVER INITIALIZE command

DMCONTROL, 5–19

RECOVER PARTITIONS command

DMCONTROL, 5–18

RECOVER statement

BYCYCLE option, 8–9

DMUTILITY, 8–1

FLUSHDB option, 8–8

overview, 2–15

QDCVERIFY option, 8–10

VERIFY option, 8–9

WORKERS option, 8–8

examples, 8–30

QDCWORKERS option, 8–10

VERIFYTASKS option, 8–10

VERIFYTASKS option, RECOVER

statement, 8–10

Index

8600 0759-622 Index–21

RECOVER UPDATE command

DMCONTROL, 5–17

RECOVER UPDATE statement

potential problems, 5–26

RECOVERTPSINFO option, problems,

5–26

recovery

ABORT program, 2–11

audit files, using, 9–10

control file, family changes, 5–28

control file, procedure, 5–28

database, 2–11

DMDATARECOVERY program, 2–11

flag, 2–7

halt/load program, 2–11

partial database recovery of partition files,

8–18

RECOVER statement, 2–15

restrictions for tape dumps, 8–28

row recovery, 8–6

row recovery using the NOZIP option, 8–6

whole database, 8–18

continuing, 4–10

control file, 5–27

database, D–3

deadlock situations, preventing, 2–7

DMUTILITY COPY statement, 8–51

DMUTILITY RECOVER statement, 8–1

partial database recovery, 8–6

QUICKCOPY audit files, using, 9–9

RESTORE option recovery, 8–6

rollback process, 2–11

row recovery using the NOZIP option, 8–6

running, 8–40

synchronized TPS, 2–8

relative block intervals for PRINTAUDIT

output

syntax, 10–14

reloading control file, 2–14

reloading database, 2–14

Remote Database Backup facility

overview, 1–5

reorganization

OFFLINE option, 7–56

improving performance, 7–87

permanent directory databases, 16–3

REORGANIZATION program

overview, 2–16

SORT errors, 7–85

certifying the database, discontinuing,

2–17

finishing, 7–76

nonusercoded databases, reorganizing,

7–69

phases, 7–67

preparation tasks, 7–67

RECESS directive, 7–78

reorganization status report, 7–77

running, 7–66

starting, 7–68

reorganizing the database

compiler control options, 7–22

explicitly generating structures, 7–37

GENERATE statement, 7–29

generating from index structures, 7–34

INTERNAL FILES phrase, 7–47

algorithm, 7–15

ALLOWEDCORE phrase, 7–49

OFFLINE option, 7–16

record format conversion, 7–3, 7–17

REORGDB option, 7–17

SORT phrase, 7–39

availability of structures during

reorganization, 7–70

backing up files, 7–15

BUILDREORG utility, 7–20

central data set control options, 7–46

Central Data Set GENERATE statement,

7–29

central data set sequence statement,

7–51

central data set sequence statement in

reorganization, 7–51

data errors, 7–84

disk storage requirements, 7–89

disk storage requirements for

reorganization, 7–89

DMSUPPORT library file name changes,

7–7

effect of TPS, 7–69

EXCLUSIVE option, 7–55

EXTRACT phrase, 7–39

file format conversion, 7–3

garbage collection, 7–2

generating a data set, 7–30

generating from a data set, 7–33

index control option, 7–37

INQUIRYONLY option, 7–54

introduction, 7–1

I/O errors, 7–83

limitations, 7–91

LOADFACTOR phrase, 7–38

Index

Index–22 8600 0759-622

MAXWAIT, 7–71

nonusercoded databases, 7–69

OFFLINE option, 7–56

ONLINE option, 7–15

ONLINE reorganization, 7–15

open options, 7–53

order of processes, 7–51

ORDERBYCORE phrase, 7–50

performance enhancement, 7–87

preparation tasks, 7–67

PREVERIFY option, 7–55

procedure sequence option, 7–45

process, 7–5

rebuild recoveries, 7–80

record format conversion, 7–4, 7–5

reorg global control statement, 7–53

reorganization order, 7–45

REORGANIZATION program, 2–16

REORGANIZATION program, running,

7–66

REORGDB memory usage, 7–19

resource control, 7–37

restarting, 7–79

rollback recoveries, 7–83

running, 7–66

SORT errors during reorganization, 7–85

space requirements for reorganization,

7–89

starting, 7–68

status, 7–86

storage requirements for reorganization,

7–89

structure availability, 7–70

structure COPY TO option, 7–40

swap phase, database reorganization,

7–73

syntax, 7–24

TASKLIMIT phrase, 7–51

types of reorganization, 7–2

UPDATE option, 7–27

USEREORGDB option, 7–17

REORGDB control

CAPTUREUPDATETRAN phrase,

BUILDREORG utility, 7–43

COPY TO option, 7–41

REORGDB reorganization

recessing, 7–78

AUTOSWAP option, 7–64

CAPTUREUPDATETRAN phrase, 7–43

MAXUPDATERS phrase, 7–43

REORGDB control COPY TO option, 7–41

REORGDBALLOWEDCORE option, 7–66

REORGDBTITLE phrase, 7–63

STRCOPYCORE phrase, 7–44, 7–65

terminating, 7–78

TOTALCOPYCORE phrase, 7–44, 7–65

TOTALCOPYCORE phrase, BUILDREORG

utility, 7–44, 7–65

USEREORGDB option, 7–61

USEREORGDB option, BUILDREORG

utility, 7–61

replication

permanent directory database, 8–26

requesting

number of processes for a quiesce

database copy copy, 8–56

number of processes for a quiesce

database copy recovery, 8–10

preverification of data during a recovery,

8–9

tasks for each cycle during a copy, 8–55

tasks for each cycle during a recovery, 8–9

verification for a quiesce database copy

copy, 8–56

verification for a quiesce database copy

recovery, 8–10

restart data sets

internal certification options for, 11–19

crosscheck certification option for, 11–19

restarting

DMUTILITY tape dumps, 4–8

Database Certification, 11–4

DMUTILITY disk dumps, 4–8

reorganizations, 7–79

restrictions

recovery, 8–28

certifying the database, restrictions, 11–13

disadvantages of online disk dumps, 4–7

incompatibility problems for disk dumps,

4–7

online disadvantages, 4–7

resource contention, 4–7

resource contention for disk dumps, 4–7

tape incompatibility, 4–7

tape incompatibility for disk dumps, 4–7

use of Database Certification, 11–13

usercode, 4–7

usercode limits, for disk dumps, 4–7

RETRYIO error messages

examples, 4–15

rollback process

continuing, 4–10

Index

8600 0759-622 Index–23

and reorganizations, 7–83

recovery process, 2–11

whole database recovery, 8–18

rollover of the ABSN, 2–10

row recovery

EXTRACT option, filtering, 8–11

FLUSHDB option, 8–8

partition files, 8–18

Quickfix process, 8–12

recover specification, 8–13

recovering the database, 8–6

recovering the database using the NOZIP

option, 8–6

EXTRACT option, filter option, 8–11

Quickfix process, example of row

recovery, 8–12

Quickfix process, row recovery, 8–12

RESTORE option recovery, 8–13

WORKERS option, 8–8

S
SCRATCHPOOL option

DUMP command, 6–30

SCRATCHPOOL option, requesting for

copying audit files, 9–21

SECAUDITFAMILY command

DMCONTROL, 5–24

<security file title change>, 5–25

secondary audit files

copying as primary audit files, 9–17

security file title change command

DMCONTROL, 5–25

SELECT command in PRINTAUDIT program

syntax, 10–31

using to customize PRINTAUDIT program,

10–31

defining the interval, 10–31

options, 10–32

selecting audit data for PRINTAUDIT output

by block number, 10–18

by field, 10–20

by mix number, 10–16

by program identifier, 10–17

by record type, 10–21

by stack number, 10–15

by structure name, 10–18

by structure number, 10–18

SENSITIVEDATA command

DMCONTROL, 5–11

state flag for structures, 2–5

statistics

audit, B–13

database usage, B–9

transaction, B–15

audit, B–12

audit statistics, B–12, B–13

buffer, B–2

buffer statistics, B–2

global lock, B–16

global lock statistics, B–16

guidelines for use, B–18

header, B–1

interpreting database, B–1

interpreting database statistics, B–1

I/O, B–4

reports, statistics, 8–50

structure lock, B–11

structure lock statistics, B–11

transaction statistics, B–15

Visible Recovery statistics report, 8–50

VSS2 optimization, B–9

STRUCTURE command

DMCONTROL, 5–23

structure directory descriptor, 2–3

structures

attributes kept in the control file, 2–6

availability during reorganization, 7–70

access statistics, B–5

copying during reorganizations, 7–40

creation timestamp, 2–5

directory description, 2–5

directory of structures, 2–5

explicitly generating, 7–37

family name, 2–6

format timestamp, 2–5

name audit selection, introduction, 10–18

name, specifying, Database Certification,

11–11

numbers for partitions, 2–6

records, 2–5

recovering from failure, 5–30

returning the name in an exception, 3–1

specifying, WRITE command, 11–31

state flag, 2–5

syntax, 5–33

version timestamp, 2–5

control file, 2–2

copying during reorganization, 7–41

initializing, 5–30

number audit selection introduction,

10–18

Index

Index–24 8600 0759-622

numbers, specifying, Database

Certification, 11–11

partition name, specifying, 11–31

section specifying, LIST command, 11–31

section specifying, WRITE command,

11–31

specifying, LIST command, 11–31

usage statistics, B–9

VSS2 optimization, B–9

SYMBOL/DMAUDITLIB file

declaring the DMAuditLib library, 20–2

synchronized recovery, TPS, 2–8

SYSTEM/DMDUMPDIR program

disabling, 6–62

examples, 6–65

fatal error, 8–16

disabling use of a dump directory, 6–62

enabling, 6–61

enabling use of a dump directory, 6–61

T
table of contents, control file, 2–2

tailored software, compatibility checking, 2–8

tailoring the PRINTAUDIT program

examples, 10–35

tape directory flag, 2–4

tape dumps

contrasting with disk dumps, 4–5

forward comparison, 6–13

input/output errors, 4–11

no comparison, 6–14

number of tape workers, 6–12

warnings, 4–16

directory, 6–57

media selection for database dumps, 4–5

multidump tapes; specification, 6–31

multiple dumps to a single backup tape,

6–31

NOCOMPARE option, DUMP command,

6–14

operator interface, 4–8

restarting, 4–8

verifying, 6–45

tape encryption

algorithms, 15–2

architecture, 15–1

DASDL syntax, 15–3

DMUTILITY syntax, 15–3

Advanced Encryption Standard (AES),

15–2

AES (Advanced Encryption Standard),

15–2

COPYAUDIT syntax, 15–4

Data Encryption Standard (DES), 15–2

DES (Data Encryption Standard), 15–2

examples, 15–5

tape serial number specification

DUMP command, 6–30

tape serial number, requesting for

backups, 6–30

TAPEDIRECTORY command

overview, 2–14

syntax, 6–53

syntax, examples, 6–54

fast access directory file, 6–54

TAPESET DIRECTORY command, 6–54

TAPEDIRECTORY statement, 2–14

tapes

appending audit files, 9–11

multiple-reel, using with audit files, 9–6

compressed audit files, using with, 9–8

maximizing audit tape usage, 9–7

maximizing usage for audit files, 9–7

multiple audit file copies, creating, 9–6

multiple-reel tapes, using with audit files,

9–6

TAPESET numbers

COPYAUDIT program, 9–15

TAPESET specification

QUICKCOPY command, 9–17

text directory, control file, 2–4

text directory descriptor, 2–4

time intervals for PRINTAUDIT output

syntax, 10–12

timestamp of the database, 2–3

timestamps

control file, universal version, 2–8

control file, using to verify file

compatibility, 2–9

mismatch error during database backup,

6–5

structure creation, 2–5

structure format, 2–5

structure version, 2–5

listing, 2–14

TPS, 2–4

Transaction Processing System (TPS)

effect on database reorganization, 7–69

conflicts with RECOVER UPDATE

statement, 5–26

overview, 2–4

Index

8600 0759-622 Index–25

synchronized recovery, 2–8

transaction, using global, 1–5

translating messages, 1–4

U
unlocking control files, 2–14

unordered data sets

internal certification options for, 11–21

crosscheck certification options for, 11–22

UPDATE command

DMCONTROL, 5–9

update level in the control file, 2–3

updating OPEN UPDATE host language

command, 2–11

UPPERCASE

command, Database Certification, 11–9

utilities overview, 1–2

controlling databases, 1–3

initializing databases, 1–3

maintaining databases, 1–3

running, 1–3

verifying databases, 1–4

V
variables

state variables in the control file, 2–3

VERIFYDUMP command

designating a disk dump, 6–45

designating a tape dump, 6–45

WORKERS option, 6–45

replicating backup dumps, 6–45

verifying

data during a quiesce database copy copy,

8–56

data during a quiesce database copy

recovery, 8–10

data before recovery, 8–9

VERIFY option, RECOVER statement, 8–9

version timestamp for structures, 2–5

Visible DBS program

DBS STATUS command, 12–2

errors and warnings, 12–2

GARBAGE COLLECT command, 7–2,

12–17 , 12–33

LOCKSTATISTICS command, 12–21

SNAPSHOT command, 12–21

STATISTICS command, 12–23

STATUS MIX command, 12–39

STRUCTURE CHANGE command, 12–27

SUPERCP RESTOREDBFILES command,

12–44

AUDIT CLOSE command, 12–11

AUDIT CLOSE command Visible DBS

program, 12–11

AUDIT PROCESSOR TIMES command,

12–10

AUDIT PROCESSOR TIMES command,

Visible DBS program, 12–10

AUDIT QUICKCOPY MAXFILESPERTAPE

command, 12–14

AUDIT QUICKCOPY MAXFILESPERTAPE

command, Visible DBS program,

12–14

AUDIT SCRATCHPOOL command, 12–13

AUDIT SCRATCHPOOL command, Visible

DBS program, 12–13

USEREORGDB TERMINATE command,

12–45

DBS CHANGE command, 12–5

DBS STATUS command, Visible DBS

program,, 12–2

DONTFORCE, 12–13

GARBAGE COLLECT command, Visible

DBS program, 12–17, 12–33

garbage collection, overview, 7–2

LOCKSTATISTICS command, Visible DBS

program, 12–21

MAXFILESPERTAPE value, changing

setting, 12–14

online garbage collection, 12–17, 12–18 ,

12–33

SNAPSHOT command, Visible DBS

program, 12–21

STATISTICS command, Visible DBS

program, 12–23

STATUS HISTORY command, 12–34

STATUS MIX command, Visible DBS

program, 12–39

STATUS RDB command, 12–42

STATUS RDB command in Visible DBS

program, 12–42

STATUS REORG command, 12–43

STATUS REORG command in Visible DBS

program, 12–43

STATUS STRUCTURE command, 12–24

STATUS STRUCTURE command, Visible

DBS program, 12–24

STRUCTURE CHANGE command, Visible

DBS program, 12–27

Index

Index–26 8600 0759-622

SUPERCP RESTOREDBFILES command

in VISIBLE DBS program, 12–44

USEREORGDB DISCARD command,

12–45

USEREORGDB DISCARD command in

VISIBLE DBS program, 12–45

USEREORGDB TERMINATE command in

VISIBLE DBS program, 12–45

Visible Recovery commands

ALLOWEDCORE = <integer> command,

8–43

OVERLAYGOAL = <decimal value>

command, 8–44

STATISTICS CLEAR command, 8–49

STATISTICS CLEAR command, Visible

Recovery program, 8–49

STATISTICS command, 8–49

STATISTICS command, Visible Recovery

program, 8–49

STATUS command, 8–46

STATUS command, Visible Recovery

program, 8–46

tuning commands, 8–42

WRITEDELAYFACTOR = <decimal value>

command, 8–44

W
warnings

using entry points to return information,

3–1

during dumps, 4–16

WFL jobs

certifying the database, 11–3

DATABASE/WFL/COMPILEACR, 18–1

initiating COPYAUDIT, 9–5

initiating PRINTAUDIT, 10–4

compiling Enterprise Database Server

software, 18–1

DATABASE/WFL/COMPILEACR, 18–1

DATABASE/WFL/COMPILEDB, 18–1

parameters for compiling Enterprise

Database Server software, 18–1

task values for Database Certification,

11–3

whole database recovery

NOZIP option, 8–18

REBUILD process, 8–18

ROLLBACK process, 8–18

WORKERS option

COPY statement, 8–55

DUMP command, 6–12

DUPLICATEDUMP command, 6–51

RECOVER statement, 8–8

VERIFYDUMP command, 6–45

controlling restart intervals for a recovery,

8–8

X
XE features

generating structures explicitly, 7–37

migrating to, performance

recommendations for set

generation, 7–36

performance recommendations for set

generation, migrating to XE

features, 7–36

Index

8600 0759-622 Index–27

Index

Index–28 8600 0759-622

.

86000759-622
8600 0759-622

Copyright © 2019 Unisys Corporation.

All rights reserved.

	Contents
	Figures
	6-1. Dump Tape Directory
	7-1. Creation of a New Database Description File
	7-2. Creation of a Reorganization Description File (Scenario 1)
	7-3. Creation of a Reorganization Description File (Scenario 2)
	7-4. Creation of a REORGANIZATION Program
	8-1. Standard Buffer Access/Write Operation Scenario
	8-2. Buffer Access/Write Operation Scenario with WRITEDELAYFACTOR Effect
	8-3. Sample Visible Recovery Status Display
	8-4. Sample Visible Recovery Statistics Report
	14-1. QUIESCE Command in a Database System Environment
	14-2. Single Server, One Live Database, Two Quiesce Database Copies
	14-3. Single Server, One Live Database, Two Quiesce Database Copies, Live Database Backed Up from QDC ON BACKUPPK
	14-4. Single Server, One Live Database, Two Quiesce Database Copies
	14-5. Single Server, One Live Database, Two Quiesce Database Copies, Live Database Backed Up from QDC ON BACKUPPK
	14-6. Rebuild of a Live Database Using a Quiesce Database Copy
	14-7. Using a Quiesce Database Copy as a Recovery Source
	17-1. LOADDUMP Components
	23-1. Compile-Time Database Encryption Configuration
	23-2. Run-Time Database Encryption Configuration

	Tables
	4-1. DMUTILITY Commands
	4-2. Elements of RETRYIO Messages
	6-1. Tasks Related to Creating and Managing Database Backups
	7-1. Control File Handling for Rebuild Recoveries
	8-1. Recover Specification and Source for Tape Dumps
	8-2. Recover Specification and Source for Disk Dumps
	9-1. Tasks That Can Be Accomplished by Using the COPYAUDIT Program
	10-1. Record Type Mnemonics
	10-2. PRINTAUDIT File Equations
	10-3. Variables Available to the USERPROCEDURE and USERWRAPUP Procedures
	10-4. Audit Data Block Information
	10-5. Stopper Pattern Information
	14-1. Tasks Related to Quiesce Databases or Quiesce Database Copies
	18-1. Compilation WFL Job Parameter Keywords
	20-1. Error Results
	22-1. Tasks Related to Using the LOGACCESS specification
	22-2. DMVERB Access

	Section 1. Introduction
	 Documentation Updates
	 What's New?
	 Utility Tasks
	 Initializing the Database
	 Running Enterprise Database Server Utilities
	 Controlling the Database
	 Maintaining the Database
	 Verifying the Database

	 Translating Messages
	 Using the Remote Database Backup Facility
	 Using the Open Distributed Transaction Processing Product

	Section 2. Control File
	 Control File Provisions
	 Control File Structure
	 Table of Contents
	 Text Directory/Records
	 Guard File Directory/Records
	 Structure Directory
	 Structure Records
	 Partition Records

	 Control File Functions
	 Controlling Database Interlock
	 Storing Information
	 Checking Compatibility
	 Verifying Interfile Version Compatibility
	 Handling Discontinuities
	 Handling Audit Block Serial Number (ABSN) Rollover

	 Control File Interface with Database Software
	 DASDL Compiler
	 Accessroutines Program
	 Database Recovery
	 DMUTILITY Program
	 REORGANIZATION Program
	 Database Certification Program

	Section 3. Using the DMSUPPORT Library
	 Entry Points
	 Entry Point Declarations
	 Example Programs

	Section 4. Using DMUTILITY
	 DMUTILITY Commands
	 Running DMUTILITY
	 Dump Media: Tape Dump Versus Disk Stream Dump
	 Tape Dumps
	 Disk Stream Dumps
	 Operator Interface to DMUTILITY for Tape Dumps
	 Operator Interface to DMUTILITY for Disk Stream Dumps
	 Restarting DMUTILITY for Tape and Disk Stream Dumps

	 Continuing DMUTILITY
	 DMUTILITY Error Handling
	 Tape Input/Output Errors During Dump
	 Disk Stream Input/Output Errors During Dump
	 Tape Input/Output Errors During Load
	 Disk Stream Input/Output Errors During Load
	 Database Disk Input/Output Errors
	 DMUTILITY Warnings During Dump

	Section 5. Initializing and Maintaining
	 Initializing and Maintaining the Control File
	 Running DMCONTROL

	 DMCONTROL Statement
	 Potential Problems with RECOVER UPDATE
	 Control File Recovery
	 Control File Recovery and Change of Family
	 Control File Recovery and Change of Population Control Attributes

	 DMUTILITY CANCEL Statement
	 Initializing Database Files
	 Rules for Initialization

	 DMUTILITY INITIALIZE Statement
	 REDISTRIBUTE Command
	 MIGRATEDB Command

	Section 6. Backing Up a Database
	 Tools Available for Creating and Managing Database Backups
	 Understanding the Database Backup Process
	 Tasks Related to Creating and Managing Database Backups
	 DUMP and APPEND Commands (DMUTILITY)
	 Dump Option
	 OFFLINE Option
	 INCREMENTAL Option
	 ACCUMULATED Option
	 Dump Clause
	 Dump List Clause
	 Dump Selector Clause
	 Portion Selector Clause
	 BY FAMILYINDEX Option
	 Dump Tape Specification
	 Multidump Tape Specification
	 Dump Disk Specification
	 DUMP Command Examples Where the Backup Medium Is Single Dump Tape
	 DUMP and APPEND Examples Where the Backup Medium Is Multidump Tape
	 DUMP Command Examples Where the Backup Medium Is Disk
	 DUMP Command Examples Where the Backup Medium Is Both Single Dump Tape and Disk

	 VERIFYDUMP Command (DMUTILITY)
	 Copying Database Backups
	 COPYDUMP Command (DMUTILITY)
	 DUPLICATEDUMP Command
	 TAPEDIRECTORY Command (DMUTILITY)
	 TAPESET DIRECTORY Command (DMUTILITY)
	 Cataloging the Information in Database Backups
	 DMDUMPDIR Program
	 ENABLE Command
	 DISABLE Command
	 ADD Command
	 DELETE Command
	 LIST and WRITE Commands

	 BUILDDUMPDIRECTORY Command (DMUTILITY)
	 Recovering Database Backup Catalog Information
	 Quick-Reference Information

	Section 7. Reorganizing the Database
	 Understanding Types of Reorganization
	 Garbage Collection
	 File Format Conversion
	 Record Format Conversion

	 Understanding the Database Reorganization Process
	 Understanding the Reorganization Algorithm
	 Running the BUILDREORG Utility
	 Running Through a Batch Job

	 Syntax for the BUILDREORG Utility
	 Using the BUILDREORG UPDATE Option
	 Using an Alias Name
	 Using the Central Data Set GENERATE Statement
	 Using the GENERATE Statement
	 Using the Central Data Set Sequence Statement
	 Using the Reorg Global Control Statement

	 Running the REORGANIZATION Program
	 Preparing to Reorganize
	 Understanding the Phases of Reorganization
	 Starting the REORGANIZATION Program
	 Reorganizing a Nonusercoded Database
	 Using the Transaction Processing System (TPS) During Reorganization
	 Availability of Structures During Reorganization
	 Updating During Generation: The Fixup Process
	 Finishing the Reorganization Process
	 Reorganization Status Report
	 Terminating and Recessing the REORGDB Reorganization Process
	 Restarting a Reorganization
	 Rebuild Recoveries and Reorganizations
	 Rollback Recoveries and Reorganizations
	 Row Recoveries and Reorganizations
	 Reorganization I/O Errors
	 Reorganization Data Errors
	 Displaying Reorganization Status
	 Enhancing Reorganization Performance
	 Disk Storage Requirements
	 Limitations of Database Reorganization

	Section 8. Recovering the Database
	 RECOVER Statement (DMUTILITY)
	 Partial Database Recovery
	 Designating How to Recover
	 Reconstructing Rows Using the Quickfix Process
	 Designating What to Recover and Where
	 Designating a Backup Dump
	 Partial Database Recovery of Partition Files
	 Whole Database Recovery
	 Recovery Methods

	 Database Recovery Using Incremental and Accumulated Dumps
	 Running Recovery
	 Visible Recovery Commands
	 ALLOWEDCORE = integer Command
	 OVERLAYGOAL = decimal value Command
	 WRITEDELAYFACTOR = decimal value Command
	 STATUS Command
	 STATISTICS and STATISTICS CLEAR Commands

	 COPY Statement (DMUTILITY)
	 Tape Dumps
	 Disk Dumps

	 DMUTILITY TAPECLONE Statement
	 STRUCTURECLONE Statement (DMUTILITY)

	Section 9. Copying Audit Files
	 Why Copy Audit Files?
	 Facilities Provided by the COPYAUDIT Program
	 Initiating the COPYAUDIT Program
	 Checking the Results of a COPYAUDIT Run
	 Methods for Copying Audit Files
	 Using the QUICKCOPY Command
	 Using the COPY Command
	 Using the DIRECTORY Command to Display Audit File Tape Directories
	 Using the VERIFY Command to Verify Audit File Contents
	 Quick-Reference Information

	Section 10. Printing, Viewing, and Extracting Audit Information
	 PRINTAUDIT Program Overview
	 Initiating the PRINTAUDIT Program
	 Overview of PRINTAUDIT Commands
	 Basic Command Syntax
	 Designating Intervals
	 Designating a Time Interval
	 Designating a Serial Number Interval
	 Designating a Relative Block Interval

	 Selecting Audit Data
	 Selecting Records by Stack Number
	 Selecting Records by Program Mix Number
	 Selecting Records by Program Identifier
	 Selecting Records by Structure Identifier or Block Number
	 Specifying an Alias Name in a Structure Identifier
	 Selecting Records by Field
	 Selecting Records by Record Type

	 Generating a Customized Version of the PRINTAUDIT Program
	 Developing the ALGOL Code
	 Using the SELECT Statement with the ALGOL Code
	 Examples of PRINTAUDIT Commands

	 Quick-Reference Information

	Section 11. Checking Integrity and Performance
	 Database Certification
	 Running Database Certification
	 DBCERTIFICATION Command
	 ONLINE Command
	 HELP Command
	 INTERNAL FILES Command
	 OPTIONS Command
	 SORT Command
	 UPPERCASE Command
	 LOWERCASE Command
	 QUIT Command
	 CERTIFY Command

	 CERTIFY Options for Structure Types
	 Data Sets
	 Sets and Subsets

	 DMUTILITY DBDIRECTORY Statement
	 DMUTILITY DISABLE/ENABLE Statement
	 DMUTILITY LIST/WRITE Statement

	Section 12. Communicating with the Database
	 Entering Visible DBS Commands
	 Visible DBS Commands
	 Errors and Warnings

	 DBS STATUS Command
	 DBS CHANGE Command
	 AUDIT ANALYZE AFN Command
	 AUDIT PROCESSOR TIMES Command
	 AUDIT CLOSE Command
	 AUDIT SCRATCHPOOL Command
	 AUDIT QUICKCOPY MAXFILESPERTAPE Command
	 AUDIT QUICKCOPY SYNCTAPESET Command
	 CPSTATS Command
	 GARBAGE COLLECT Command
	 Alternative to a Reorganization
	 Disk Storage Requirements
	 How the GARBAGE COLLECT Command Works
	 After the GARBAGE COLLECT Operation

	 LOCKSTATISTICS Command
	 SNAPSHOT Command
	 STATISTICS Command
	 STATUS STRUCTURE Command
	 STRUCTURE CHANGE Command
	 STATUS HISTORY Command
	 STATUS MIX Command
	 STATUS RDB Command
	 STATUS REORG Command
	 SUPERCP RESTOREDBFILES Command
	 USEREORGDB TERMINATE Command
	 USEREORGDB DISCARD Command
	 DIAGNOSTICS Command

	Section 13. Maintaining Databases Containing Large Objects
	 Tank Sizes Available for LOBS
	 LOBANALYZE Command (DMUTILITY)
	 LOBCLEANUP Command (DMUTILITY)
	 LOBCOMBINE/LOBSQUASH Command (DMUTILITY)
	 Interpreting the LOBANALYZE Report

	Section 14. Using a Quiesce Database
	 Tasks Related to Quiesce Databases
	 QUIESCE Command (DMUTILITY)
	 RESUME Command (DMUTILITY)
	 QUIESCE QDC Command (DMUTILITY)
	 CREATE QDC Command (DMCONTROL)
	 RESTORE FROM QDC Command (DMCONTROL)
	 Creating Incremental/Accumulated Dumps from a Quiesce Database
	 Using a Quiesce Database Copy as a Recovery or a Copy Source
	 High Availability QUIESCE
	 QUIESCE HISTORY Option of the WRITE Command
	 CFRESTORE Command (DMUTILITY)
	 Quick-Reference Information

	Section 15. Using Database Tape Encryption
	 Architecture
	 Encryption Algorithms
	 DASDL Syntax
	 DMUTILITY Syntax
	 COPYAUDIT Syntax
	 DASDL Example
	 DMUTILITY Examples
	 COPYAUDIT Examples

	Section 16. Using Permanent Directory Databases
	 Creating a Permanent Directory Database
	 Reorganizing a Permanent Directory Database
	 Working with Dumps

	Section 17. Loading and Dumping Conventional Files
	 Steps for Using LOADDUMP
	 LOADDUMP
	 COBOL74 or COBOL85 MOVE Algorithm
	 Compiler Control Options for LOADDUMP

	Section 18. Compiling Software
	 Compilation WFL Job Parameters
	 DMSUPPORT
	 RECONSTRUCT
	 DMINTERPRETER
	 RMSUPPORT

	Section 19. Controlling Partitioned Records
	 Partition Directory Overview
	 Partition Directory Details
	 Audit and Recovery Considerations

	Section 20. Using the Audit Reader Library Interface
	 Audit Reader Library Overview
	 Using the ALGOL Interfaces
	 ALGOL Array Reference AUDIT_INFO [0]
	 Linkage and Operational Information
	 Logical Audit File Information
	 Internal Buffer Information
	 Audit Section Information
	 Block List Information
	 ALGOL Array Reference AUDIT_BUFFERS [0, 0]

	 Entry Points
	 AUDIT_OPEN Entry Point Parameters
	 AUDIT_CLOSE Entry Point Parameters
	 AUDIT_NEXT_ABSN Entry Point Parameters
	 AUDIT_RANDOM_ABSN Entry Point Parameters
	 AUDIT_NEXT_RECORD Entry Point Parameters

	 Error Results

	Section 21. Database Events Management
	 Events Management Overview
	 Event Log Files
	 Using the Programmatic Interface

	Section 22. Logging Data Access
	 System Logging Options
	 DASDL LOGACCESS Option
	 Enabling the LOGACCESS Option
	 Changing the LOGACCESS DMVERB List
	 Enabling LOGACCESS Option with Visible DBS
	 Using the DMCONTROL LOGACCESS Command
	 LOGACCESS Analysis

	Section 23. Database Encryption
	 Database Encryption Components and Interdependencies
	 Using Database Encryption
	 Error Handling
	 Performance Impact and Best Practices

	Section 24. Troubleshooting
	 Events That Cause Halt/Load Recoveries to Fail
	 Handling I/O Errors During a Halt/Load Recovery
	 Enterprise Database Server Errors During a Halt/Load Recovery
	 DATAENCRYPT Option Error during a DASDL Compilation
	 REQUIRES *PK DISK Error during a Reorganization

	Appendix A. Common Syntactic Items
	Appendix B. Interpreting Database Statistics
	 Header
	 Buffer Statistics
	 Input/Output (I/O) Statistics
	 VSS2 Optimization
	 VSS3 Optimization
	 Database Usage Statistics
	 Structure Lock Statistics
	 Audit Statistics (First Part)
	 Audit Statistics (Second Part)
	 Transaction Statistics
	 Global Lock Statistics
	 Control Point Buffer Statistics
	 Using Statistics

	Appendix C. COPYAUDIT Error Messages
	 COPYAUDIT Errors
	 COPYAUDIT Fatal Errors
	 COPYAUDIT Nonfatal Errors

	Appendix D. Using Mirrored Disks for Disaster Recovery
	 Which Enterprise Database Server Files to Mirror?
	 Environment Considerations
	 Backup Procedures
	 Recovery Procedures
	 Control File Integrity
	 Data File Integrity
	 Audit File Integrity

	Appendix E. Understanding Railroad Diagrams
	 Railroad Diagram Concepts
	 Paths
	 Bold Faced Words
	 Constants and Variables
	 Constraints

	 Following the Paths of a Railroad Diagram
	 Railroad Diagram Examples with Sample Input

	Index

