
unisys

ClearPath Enterprise Servers

WEBAPPSUPPORT

Application Programming Guide

ClearPath MCP 18.0

April 2017 3826 5286–007

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related information

described herein is only furnished pursuant and subject to the terms and conditions of a duly executed agreement to

purchase or lease equipment or to license software. The only warranties made by Unisys, if any, with respect to the

products described in this document are set forth in such agreement. Unisys cannot accept any financial or other

responsibility that may be the result of your use of the information in this document or software material, including

direct, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the

laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such

changes and/or additions.

Notice to U.S. Government End Users: This software and any accompanying documentation are commercial items

which have been developed entirely at private expense. They are delivered and licensed as commercial computer

software and commercial computer software documentation within the meaning of the applicable acquisition

regulations. Use, reproduction, or disclosure by the Government is subject to the terms of Unisys’ standard

commercial license for the products, and where applicable, the restricted/limited rights provisions of the contract

data rights clauses.

Unisys and other Unisys product and service names mentioned herein, as well as their respective logos, are

trademarks or registered trademarks of Unisys Corporation.

All other trademarks referenced herein are the property of their respective owners.

3826 5286–007 iii

Contents

Section 1. Introduction to Application Support

Documentation Updates .. 1–1
What’s New? .. 1–1
MCP Web Enablement Application Programming Interfaces 1–2

Web Transaction Server .. 1–2
WEBAPPSUPPORT Library APIs ..1–4

WEBPCM HTTP Server Applications .. 1–5
WEBPCM Overview .. 1–5
Why Use the WEBPCM? .. 1–8
How the WEBPCM Works .. 1–10

XML Parser .. 1–12
What Is XML? .. 1–12
What is the XML Parser? ... 1–13
XML Parser Architecture ... 1–13
Hardware Requirements ... 1–15
Software Requirements .. 1–15
Major Functions ... 1–15
Standards Supported .. 1–16
XSL Transformations (XSLT) Support 1–18
XML Path Language (XPath) Support 1–19
XML Encryption .. 1–19
JavaScript Object Notation (JSON) Support 1–20

HTTP Client .. 1–21
What is HTTP Client? .. 1–21
HTTP Client Architecture ... 1–21
HTTP Client Features .. 1–22
Hardware Requirements ... 1–22
Software Requirements .. 1–22
Standards Supported .. 1–22

Regular Expressions .. 1–23

Section 2. WEBPCM Transaction Server to Internet Application

Programming

Acquiring and Installing WEBPCM... 2–1
Modifying Transaction Server Applications to Serve HTTP 2–1
Using WEBPCM without Modifying the Transaction Server

Application ... 2–3
Example: Web Enabling Existing Applications 2–5
Software Modules Necessary to Support the

WEBPCM.. 2–6

Contents

iv 3826 5286–007

Summary: Getting Applications to Work with the

WEBPCM.. 2–7
Application Design Considerations .. 2–10

Programming Languages Supported by WEBPCM 2–10
Remote Files versus Direct-Window Applications............ 2–10
Transaction Server Synchronized Recovery 2–11
Delivery Confirmation ... 2–11
Processing Items ... 2–11
Character Sets .. 2–12
String Terminations ... 2–12
Serving Both Web and Non-Web Users 2–12
Inactivity Timeout ... 2–13
Transaction Server Station Closure 2–13
Learning About HTTP and HTML .. 2–14
Using External HTML Versus Internal HTML 2–14
User Authorization .. 2–14
Internationalization Considerations .. 2–16

Processing Input and Generating Output 2–17
Merging Data .. 2–17

Maintaining Session State Dialogs ... 2–18
Using Cookies to Maintain Session State 2–18
Using Hidden HTML Fields to Maintain

Session State .. 2–18
Maintaining Stateless Dialogs ... 2–19
Performance Considerations ... 2–20
Transaction Flow .. 2–21
Server Side Includes (SSIs).. 2–21

Programming Considerations .. 2–23
Application Response .. 2–23
Transaction Server Message Interface................................. 2–24
Header and Message Formats .. 2–25
HTTP Tutorial ... 2–27

Sample Applications .. 2–29
COBOL Examples ... 2–29
ALGOL Examples .. 2–33

Section 3. WEBAPPSUPPORT Library Interface

Overview ... 3–1
WEBAPPSUPPORT Connection Library Interface 3–1
WEBAPPSUPPORT EAE Interface .. 3–2
WEBAPPSUPPORT General Parameters File ... 3–3
WEBAPPSUPPORT Commands .. 3–4
Returned Result Values for WEBAPPSUPPORT Procedures 3–10
Procedure Groupings .. 3–11
General Procedures .. 3–11

CLEANUP .. 3–12
CREATE_KEY .. 3–12
CURRENT_UTIME .. 3–14
DATE_TO_TIME57 ... 3–15
DECODE_BINARY64 ... 3–16

 Contents

3826 5286–007 v

DECODE_UTF8 ... 3–17
DECRYPT_DATA .. 3–19
DEFLATE_DATA ... 3–21
ENCODE_BINARY64 ... 3–24
ENCODE_UTF8 ... 3–25
ENCRYPT_DATA .. 3–26
ESCAPE_TEXT .. 3–29
GENERATE_UUID .. 3–32
HTML_ESCAPE .. 3–33
HTML_UNESCAPE... 3–34
HTTP_DATE_TO_INT .. 3–35
HTTP_ESCAPE .. 3–36
HTTP_UNESCAPE .. 3–37
INFLATE_DATA .. 3–38
INT_TO_HTTP_DATE .. 3–40
INT_TO_TIME57 ... 3–41
INTERFACE_VERSION .. 3–41
MERGE_DATA .. 3–43
MERGE_FILE_AND_DATA ... 3–45
MERGE_I18NFILE_AND_DATA ... 3–50
RELEASE_KEY .. 3–52
SET_OPTION... 3–53
SET_STRING_TERMINATE .. 3–56
SET_TRACING .. 3–56
SET_TRANSLATION .. 3–57
TIME57_TO_HTTP_DATE ... 3–58
TIME57_TO_INT ... 3–59
TRACE_WEB_MSG ... 3–59

Using the WEBAPPSUPPORT Trace File... 3–60
WEBPCM Procedures .. 3–63

GET_COOKIE .. 3–63
GET_DIALOG_ID .. 3–63
GET_HEADER, GET_n_HEADERS... 3–64
GET_MESSAGE_LENGTH .. 3–67
GET_MIME_TYPE .. 3–68
GET_POSTED_DATA... 3–68
GET_REAL_PATH ... 3–69
GET_REQUEST_INFO .. 3–70
GET_SERVER_PORT.. 3–71
GET_USER_AUTHORIZED ... 3–71
GET_USER_PRIVILEGE ... 3–72
GET_USER_PRIVILEGED .. 3–73
PARSE_COOKIES .. 3–73
PARSE_HEADER .. 3–75
PARSE_POST_DATA... 3–76
PARSE_QUERY_STRING .. 3–77
SET_CONTENT ... 3–78
SET_CONTENT_TYPE ... 3–79
SET_COOKIE ... 3–80
SET_HEADER .. 3–81
SET_REDIRECT ... 3–82
SET_SSI .. 3–83

Contents

vi 3826 5286–007

SET_STATUS_CODE ... 3–83
VALIDATE_REQUEST ... 3–84

XML Procedures ... 3–86
HTTP Client Procedures .. 3–86
Regular Expressions Procedures ... 3–86

Section 4. XML Parser Administration

Installing the XML Parser ...4–1
On MCP Java...4–1
On Microsoft Windows ...4–1
Installed Files ... 4–2
Installing Updates ... 4–3

Configuring the XML Parser ... 4–3
WEBAPPSUPPORT XML Parser Configuration File 4–3
Java Parser Module (JPM)كم�he XML file

jpmconfig.xml in the directory

*DIR/XMLJPM/JPM<n>/CONFIG/= configures

the JPM. ... 4–9
Multiple JPMs .. 4–10

Updating the XML Parser JPM .. 4–12
Updating the JPM When the JPM Runs on One

Server and Always Uses the Same Port 4–13
Updating the JPM When the JPM Uses a Non-

Default Port ... 4–14
Updating the JPM When the JPM Runs on Two

Servers ... 4–16
Preparing to Use the XML Parser ... 4–16

Securing the XML Parser .. 4–16
XML Parser Configuration File 4–16
XML Parser Trace Files.. 4–16
Communication between the

WEBAPPSUPPORT Library and the JPM 4–17
JPM Port ... 4–17
JPM Log Files ... 4–17
JPM Configuration File .. 4–17
Securing XML documents on HTTP servers 4–18

Improving XML Parser Performance 4–18
Allocating Enough Memory to the JVM...................... 4–18
Setting the Maximum Number of JPM

Threads ... 4–18
Configuring EVLAN Communication between

the MCP and the JProcessor 4–19
Locating External DTD and Schema Files for

Fast Access ... 4–19
Ensuring Efficient Communication between

the JPM and HTTP Servers 4–20
Disabling Processing of External General

Entity References .. 4–20

 Contents

3826 5286–007 vii

Section 5. Developing an XML Parser Application

Using the XML Parser API ... 5–1
Examples of Using the API .. 5–1

Reading Specific Data in an XML Document 5–1
Reading Data in an XML Document Sequentially 5–2
Creating an XML Document ... 5–2
Modifying a Node Value .. 5–3
Setting or Deleting an Attribute Value 5–3
Deleting a Node and the Children of the Node 5–4
Releasing an XML Document .. 5–4
Encrypting an Element .. 5–5
Encrypting Data into an XML Document 5–5
Encrypting Data into a File and Generating a

Cipher Reference ... 5–5
Decrypting an XML Element .. 5–6
Decrypting an XML Document Containing a Cipher

Reference .. 5–6
Generating a Simple Data Set as JSON Text from

an MCP Application ... 5–6
Generating a Structured Data Set as JSON Text

from an XML Source ... 5–7
Using HTTP Servers ... 5–7
Validating an XML Document by Using a Schema or DTD 5–8
Specifying a Schema .. 5–8
Specifying Character Sets .. 5–9

Specifying the Application Character Set 5–9
Specifying the Document Character Set 5–10

Using Entity References ... 5–12
Using General Entity References ... 5–12
Using Attribute Node Entity References 5–13
Using Predefined and Character Entity References 5–13

Using Namespaces .. 5–14
Identifying Files ... 5–14

Identifying Files on an MCP File System 5–15
Identifying Files on an HTTP Server 5–16
Identifying Files on a JPM Server File System 5–16

Locking an XML Document .. 5–16
Using Sample Source Code ... 5–17
Using WEBAPPSUPPORT Library Trace Files .. 5–17

Section 6. WEBAPPSUPPORT Library Interface for the XML

Parser

XML Mapping Structure ... 6–1
Level 1 Formatting ... 6–1
Examples... 6–6

WEBAPPSUPPORT Library Procedures for the XML Parser 6–8
APPEND_CHILD ... 6–8
CONVERT_COMMA_TEXT_TO_JSON 6–10
CONVERT_JSON_TO_XML_DOCUMENT 6–12

Contents

viii 3826 5286–007

CONVERT_XML_DOCUMENT_TO_JSON 6–14
CONVERT_XML_TO_JSON ... 6–16
CREATE_ATTRIBUTE_NODE .. 6–18
CREATE_CDATA_NODE .. 6–20
CREATE_CIPHER_REFERENCE ... 6–21
CREATE_COMMENT_NODE ... 6–23
CREATE_DOCTYPE_NODE .. 6–24
CREATE_ELEMENT_NODE .. 6–26
CREATE_ENTITYREF_NODE ... 6–27
CREATE_PI_NODE ... 6–28
CREATE_TEXT_ELEMENT .. 6–30
CREATE_TEXT_NODE ... 6–33
CREATE_XML_DOCUMENT .. 6–34
DECRYPT_XML_DOCUMENT ... 6–36
DECRYPT_XML_TO_DATA .. 6–37
ENCRYPT_DATA_TO_XML .. 6–39
ENCRYPT_XML_DOCUMENT ... 6–43
GET_ATTRIBUTE_BY_NAME .. 6–46
GET_ATTRIBUTES ... 6–47
GET_CHILD_NODES .. 6–49
GET_DOCUMENT_ELEMENT .. 6–50
GET_DOCUMENT_ENCODING ... 6–51
GET_DOCUMENT_NODE ... 6–52
GET_DOCUMENT_VERSION ... 6–53
GET_ELEMENTS_BY_TAGNAME ... 6–54
GET_FIRST_CHILD ... 6–56
GET_LAST_CHILD .. 6–57
GET_NEXT_ITEM .. 6–58
GET_NEXT_SIBLING .. 6–60
GET_NODE_BY_XPATH ... 6–61
GET_NODE_NAME .. 6–62
GET_NODES_BY_XPATH ... 6–64
GET_NODE_TYPE .. 6–65
GET_NODE_VALUE ... 6–66
GET_PARENT_NODE .. 6–68
GET_PREVIOUS_SIBLING .. 6–69
GET_XML_DOCUMENT ... 6–70
GET_XML_RECORD .. 6–72
HAS_ATTRIBUTE ... 6–74
INSERT_CHILD_BEFORE .. 6–75
PARSE_JSON_TO_XML ... 6–77
PARSE_XML_DOCUMENT .. 6–79
RELEASE_XML_DOCUMENT .. 6–81
REMOVE_NODE .. 6–82
SET_ATTRIBUTE .. 6–83
SET_NODE_VALUE ... 6–85
SET_XML_OPTION .. 6–87
TRANSFORM_XML_DOCUMENT .. 6–91
XML_ESCAPE ... 6–95

 Contents

3826 5286–007 ix

Section 7. Using Sample Source Code for Parsing an XML

Document

COBOL85 Code for Parsing an XML Document .. 7–1
ALGOL Code for Parsing an XML Document .. 7–2

Section 8. Monitoring the XML Parser

Using the WEBAPPSUPPORT Library STATUS Command 8–1
Checking the JPM Log ... 8–3

Section 9. HTTP Client Applications

Developing HTTP Client Applications ... 9–1
Objects ... 9–1
Request Handling ... 9–2

Default Request Headers ... 9–2
Tanking Large Data ... 9–3
Request Header—Expect: 100-Continue.................................. 9–3
Chunked Content .. 9–3
Synchronous and Asynchronous Requests 9–4
Cookie Handling .. 9–4
Character Set Handling .. 9–5
Compressed Content .. 9–5
Security ... 9–6
Storing Credentials ... 9–8

Scenarios .. 9–8
Basic Request Scenario .. 9–8
Subsequent Request Scenario .. 9–8
SSL Request (https) Scenario .. 9–9
Request Complete ... 9–9

WEBAPPSUPPORT HTTP Client Procedures ... 9–9
BIND_HTTP_SOCKET ... 9–9
CREATE_HTTP_CLIENT ... 9–11
CREATE_HTTP_HOST ... 9–12
CREATE_HTTP_OBJECTS .. 9–13
CREATE_HTTP_REQUEST ... 9–14
CREATE_HTTP_SOCKET .. 9–15
EXECUTE_HTTP_REQUEST ... 9–16
FREE_HTTP_CLIENT .. 9–17
FREE_HTTP_HOST .. 9–18
FREE_HTTP_REQUEST ... 9–19
FREE_HTTP_SOCKET .. 9–20
GET_HTTP_COOKIE_STRINGS ... 9–20
GET_HTTP_RESPONSE_COOKIES ... 9–22
GET_HTTP_RESPONSE_CONTENT ... 9–25
GET_HTTP_RESPONSE_HEADER .. 9–27
GET_HTTP_RESPONSE_HEADERS .. 9–28
GET_HTTP_RESPONSE_STATUS ... 9–30
GET_HTTP_SOCKET_OPTION .. 9–31
INIT_HTTP_REQUEST ... 9–33

Contents

x 3826 5286–007

SET_HTTP_CLIENT_ATTR .. 9–34
SET_HTTP_OPTION .. 9–36
SET_HTTP_REQUEST_CONTENT .. 9–39
SET_HTTP_REQUEST_HEADER ... 9–41
SET_HTTP_REQUEST_QUERY ... 9–42
SET_HTTP_SOCKET_OPTION ... 9–43

Section 10. Using Regular Expressions

PCRE API Mapping to WEBAPPSUPPORT Procedures 10–1
WEBAPPSUPPORT Library Procedures for Regular

Expressions ... 10–5
COMPILE_RE_PATTERN .. 10–5
EXECUTE_RE .. 10–6
FREE_RE_PATTERN .. 10–8
GET_RE_VERSION ... 10–8
SET_RE_OPTION.. 10–9

Index ... 1

3826 5286–007 xi

Figures

1–1. Flow of HTTP Requests/Responses using Web Transaction Server 1–3

1–2. WEBAPPSUPPORT Library APIs ...1–4

1–10. Simple Representation of HTTP Client Architecture ... 1–21

1–11. PCRE Library .. 1–23

Figures

xii 3826 5286–007

3826 5286–007 xiii

Tables

1–1. MCP Web Enablement APIs and Supported Languages .. 1–2

10–1. PCRE Functions Mapped to WEBAPPSUPPORT Procedures 10–1

Tables

xiv 3826 5286–007

3826 5286–007 1–1

Section 1
Introduction to Application Support

This guide describes how to write applications that use the WEBAPPSUPPORT library

for the following capabilities:

• Responding to HTTP requests received by MCP Web Transaction Server

• Processing XML documents with the XML Parser feature

• Making HTTP requests with the HTTP Client feature

This guide also explains how to install and administer the XML Parser for ClearPath

MCP and provides information for writing applications that use the XML Parser.

Documentation Updates

This document contains all the information that was available at the time of

publication. Changes identified after release of this document are included in problem

list entry (PLE) 19153126. To obtain a copy of the PLE, contact your Unisys

representative or access the current PLE from the Unisys Product Support website:

http://www.support.unisys.com/all/ple/19153126

Note: If you are not logged into the Product Support site, you will be asked to do

so.

What’s New?

New or Updated Information Location

Modified TRACE and TRACEERRORS

Commands

Section 3:

WEBAPPSUPPORT Library Interface

Modified GET_XML_DOCUMENT procedure Section 6:

WEBAPPSUPPORT Library Interface for the

XML Parser

Modified XML Mapping Structure Section 6:

WEBAPPSUPPORT Library Interface for the

XML Parser

Modified GET_HTTP_RESPONSE_STATUS

procedure

Section 9:

HTTP Client Applications

http://www.support.unisys.com/all/ple/19153126

Introduction to Application Support

1–2 3826 5286–007

MCP Web Enablement Application Programming

Interfaces

Several Web enablement application programming interfaces (APIs) are available for

the ClearPath MCP environment. Table 1–1 lists the primary interfaces and shows the

application languages supported.

Table 1–1. MCP Web Enablement APIs and Supported Languages

API COBOL 74 COBOL 85 ALGOL, NEWP AB Suite, EAE

WebTS AAPI X

WEBPCM X X X

XMLParser X X X

HTTP Client X X X

Regular

Expressions

 X X X

Web Transaction Server

The Web Transaction Server is a highly scaleable, standards-based, high performance

Hypertext Transfer Protocol (HTTP) Web server that runs in an extremely reliable MCP

environment. It communicates with browsers using HTTP 1.1 over a TCP/IP network. It

is written in native code, so it is not a portation.

The Web Transaction Server software incorporates Web server capabilities into a

ClearPath enterprise server. It gives users the ability to access and distribute

hypertext documents and hyperlinked multimedia information, including text, images,

audio, video, and Java applets. A variety of client workstations can access the Web

Transaction Server as a document repository or as a gateway to custom applications.

The Web Transaction Server provides a Web Transaction Server application

programming interface (AAPI) that allows user-written applications in ALGOL,

DMALGOL, DCALGOL, and NEWP to process HTTP requests from browser clients

such as Microsoft Internet Explorer and Mozilla Firefox. Its purpose is to provide a

high-performance, scaleable, and robust programming interface for the development

of custom Web applications and application gateways.

The Web Transaction Server supports a direct application interface called AAPI, which

uses a Connection Library interface. The applications must be written in ALGOL or

NEWP.

Refer to the Web Transaction Server for ClearPath MCP Administration and

Programming Guide for more information about this capability.

 Introduction to Application Support

3826 5286–007 1–3

Figure 1–1 shows the flow of the applications receiving HTTP requests through the

Web Transaction Server and then generating responses.

Figure 1–1. Flow of HTTP Requests/Responses using Web

Transaction Server

Introduction to Application Support

1–4 3826 5286–007

WEBAPPSUPPORT Library APIs

The APIs of the WEBAPPSUPPORT library enable you to modernize COBOL, ALGOL,

and AB Suite applications. Also, some miscellaneous capabilities are available with

Web Transaction Server or one of the APIs described in this document. These

miscellaneous capabilities are

• Merge Data: You can use this capability in your application to merge data into

templates (HTML, XML, and so forth). See the MERGE_DATA,

MERGE_FILE_AND_DATA, and MERGE_I18NFILE_AND_DATA procedures.

• UTF-8 Translation: You can use this capability in your applications to translate

character sets to/from UTF-format. See the DECODE_UTF8 and ENCODE_UTF8

procedures.

• Binary64 encoding/decoding: You can use this capability in your applications to

encode binary data to/from Binary64 so you can send binary data as text. See the

DECODE_BINARY64 and ENCODE_BINARY64 procedures.

• Deflate/Inflate: You can use this capability in your applications to supply data in

either an application array or MCP file to be compressed into or decompressed

from the zlib or gzip formats, using the compression algorithm defined in the

DEFLATE RFC 1951. This capability requires a Java Parser Module (JPM). See the

DEFLATE_DATA and INFLATE_DATA procedures.

Figure 1–2 lists the APIs described in this document; it also includes the release in

which the capability was introduced.

The subsequent topics in this section provide general overview information about the

interfaces listed in Figure 1-2 except for the miscellaneous capabilities. Refer to the

specific topics in the appropriate document for the miscellaneous capabilities.

Figure 1–2. WEBAPPSUPPORT Library APIs

 Introduction to Application Support

3826 5286–007 1–5

WEBPCM HTTP Server Applications

WEBPCM Overview

WEBPCM is a programming environment for interfacing Transaction Server

applications to Web Transaction Server so that those applications can process

requests from HTTP (Web) users. WEBPCM supports programming languages such as

COBOL and ALGOL.

WEBPCM comprises two software modules:

• A PCM (Protocol Converter Module) in the Custom Connect Facility (CCF) called the

WEBPCM. This PCM routes requests from users using the AAPI interface in Web

Transaction Server to Transaction Server applications through the CUCIPCM

module of CCF.

• A support library called WEBAPPSUPPORT for accessing the HTTP request and

constructing the HTTP response.

Two modules are used so that terminating CCF does not discontinue (DS) all

applications linked into the WEBPCM.

Figure 13 provides a global view of the WEBPCM environment.

Note: Not all CCF components are shown in this diagram; any components shown

that are not WEBPCM components are those required for Web Enabler.

Figure 1–3. WEBPCM Environment (Global View)

As a gateway into Transaction Server, WEBPCM enables the following application

types to interface to HTTP (intranet/Internet) users using normal Transaction Server

mechanisms:

• Transaction Server Direct Window applications

• Transaction Server Remote File applications

Introduction to Application Support

1–6 3826 5286–007

An additional library, WEBAPPSUPPORT, is included with the WEBPCM for processing

the Message Objects, which are messages that represent the request and the

response.

Figure 1–4 provides a more detailed view of the WEBPCM environment.

Figure 1–4. WEBPCM Environment (Detailed View)

This illustration shows some additional CCF modules that are typically used in CCF, and

how the WEBPCM fits into the CCF structure.

All communication with Transaction Server is completed through the CUCIPCM, which

uses the Transaction Server PSH (Protocol-Specific Handler) interface. Some PCMs,

such as TCPIPPCM and NAMEDPIPEPSH, typically use terminal services provided by

the TERMPCM before sending their messages to Transaction Server using CUCIPCM.

The WEBPCM sends all messages directly to Transaction Server.

The WEBPCM interfaces to Web Transaction Server using the Web Transaction Server

API (Application Programming Interface).

 Introduction to Application Support

3826 5286–007 1–7

Without the WEBPCM in the Environment

Without the WEBPCM, the environment for your MCP applications to interface to the

Transaction Server might appear as shown in Figure 1–5.

Figure 1–5. MCP Applications Without the WEBPCM

Although a number of components are not shown in this picture, the important point

is that when MCP applications interface to Transaction Server, they expect the

T27-compliant devices to act as the typical station.

Introduction to Application Support

1–8 3826 5286–007

With the WEBPCM in the Environment

With the WEBPCM in the environment, your application environment appears more

like the layout shown in Figure 1–6.

Figure 1–6. MCP Applications With the WEBPCM

In the environment shown in Figure 1–6, browser users have a normal Web page view,

not a terminal emulator view. The MCP applications generate responses with graphics,

links, sound, frames, and so forth.

The extra band of shading in the applications boxes shown in the figure indicates that

changes are needed in the applications to interface to Web users.

This environment is a two-tier solution in which no Windows or UNIX programming or

configuration is needed. The advantages of this type of environment are increased

scalability, stability, and ease of maintenance.

Why Use the WEBPCM?

The WEBPCM offers you numerous benefits.

• It is easy to program.

• Because WEBPCM is processor efficient, it requires a minimal amount of

processor to handle requests.

• It is scalable and capable of processing many requests simultaneously.

 Introduction to Application Support

3826 5286–007 1–9

• WEBPCM supports Web (HTTP) access to COBOL, ALGOL, and other language

Transaction Server applications. The application has full HTTP access with the

ability to see all HTTP headers on input and to set any HTTP headers on output.

This capability is important for controlling any HTTP caches, determining the

browser level (that is, capability), and so forth.

• Most routers and firewalls allow port 80 to pass through. HTTP uses port 80 as its

default port. Because opening other ports can be complicated and difficult to

manage, the usage of port 80 as the default eliminates some of these problems .

• Samples are provided for the COBOL and ALGOL languages; however, other
languages are also supported.

• Because the application is generating an HTML response, no further screen-

scraping (mapping) is needed, which reduces system overhead/response time

delays.

• The WEBPCM is included with all MCP systems, and no additional licensing fees

(no per-seat licensing) are required.

• WEBPCM has no specific browser requirements. A wide range of browsers on

different platforms work with applications using the WEBPCM.

Other aspects of using the WEBPCM include the following:

• The application can serve both Web users and non-Web users from the same

application.

• Applications do not require major changes (modifications are minor). You can use

the WEBPCM without modifying the application.

• Applications using either the Direct Window interface into Transaction Server or

the Remote File interface do not need to implement a new interface to Web users

(such as the direct interface into Web Transaction Server). The application can

continue to use its current interface.

− The source is easy to identify. The first 17 bytes of the input message contain

text that the application can examine to determine the source. The Direct

Window application can use the Transaction Server Trancode feature, which

drives off of the initial text in the message.

− Input and output processing items can be used to translate to and from Web

input and output.

− Code for parsing input and building output needs to change in the application,

but core processing logic can remain the same.

• Migration is easily managed and inexpensive. Because both Web and non-Web

users can use the application at the same time, migrating users to Web interfaces

is more easily managed. Web client software (browsers) can be both easier and

less expensive to acquire and update.

• Because the WEBPCM is a two-tier structure that does not require Windows or

UNIX programming or configuration, it offers higher scalability and stability, plus

reduced management.

Introduction to Application Support

1–10 3826 5286–007

• Standard Transaction Server features are supported, such as Agendas, Security,

and Delivery Notification. This support means applications dependent on those

features do not need modification.

• Transaction Server stations can be kept open for multiple transactions with each

Web user.

• Character translation (ASCII to EBCDIC or other translations supported by the MCP)

is provided. The Web is ASCII-based, and the WEBPCM can optionally convert

Web messages from ASCII to EBCDIC or from EBCDIC to ASCII. It is designed so

that applications do not have to deal with ASCII.

Using WEBPCM, you can modernize current MCP application interfaces without

porting or rewriting to another platform, and you can modernize MCP application

interfaces without modifying the application or with making only minor changes.

With WEBPCM, you can stay with the enterprise server advantages, and you maintain

the Transaction Server interface (Direct Window or Remote File) rather than changing

to a new interface.

WEBPCM supports session dialogs. The Web is generally “stateless,” meaning that,

after a user makes a request and receives a response, the dialog is terminated and a

new dialog must be created for the next request. The WEBPCM supports several

options for maintaining a session with a Web user, keeping the station open for

multiple transactions with the application.

With the WEBPCM, your users can switch to using a browser as their end-user

interface, which increases and facilitates user productivity because of the graphical

interface. Also, the use of hypertext linkage increases ease-of-use.

By using browsers for the end-user interface, updating client software is easier and

cheaper. Also, using off-the-shelf browsers enables you to eliminate or reduce

expensive client terminals or emulation software.

WEBPCM Demonstrations

Demonstrations are released with the WEBPCM. You can access them through the

Web Transaction Server Administration Web site. COBOL and ALGOL demonstrations,

as well as instructions for manually configuring the Transaction Server, CCF, Web

Transaction Server, and WEBAPPSUPPORT are included. The demonstrations show

how Transaction Server applications can interface with Web users through the CCF

component WEBPCM.

How the WEBPCM Works

WEBPCM uses the Web Transaction Server to interface to Web users. The Web

Transaction Server provides fast, efficient, and scalable access; parses the HTTP Web

requests; serves static files, such as HTML and graphic files; and optionally recognizes

Server Side Include (SSI) directives for including dynamic content.

WEBPCM converts HTTP Web requests into a Message Object, which is then passed

to the application. The application does not examine the Message Object, except for

the first 17 bytes.

 Introduction to Application Support

3826 5286–007 1–11

• To access the request, the application links to and calls a support library to

retrieve information from the request, such as the type of browser used, any form

data the user entered, check boxes selected, and so forth.

• To generate a response, the application calls the support library again to place the

response text into the object and set any additional HTTP headers. It then sends or

writes the object back to the station.

WEBPCM receives the message and passes output to the Web Transaction Server,

which sends the response to the user.

Input Flow

Figure 1–7 shows the input flow to WEBPCM.

Figure 1–7. Input Flow to WEBPCM

Each step refers to a number in the preceding Figure 1–7.

1. A user at a Web browser, usually Microsoft Internet Explorer or Mozilla Firefox,

clicks on a link that is addressed to a TCP/IP port on the MCP host on which the

Web Transaction Server is listening. The browser builds an HTTP request and

sends it to the Web server.

2. Web Transaction Server recognizes that the request is to be handled by the

WEBPCM, so it signals the WEBPCM that input exists. The WEBPCM collects the

information from the request and builds the Message Object. If no dialog (station)

is open to the application, the WEBPCM opens the dialog.

3. The message is passed through CCF and into Transaction Server.

4. Transaction Server delivers the message to the application.

5. The application recognizes that the message came from a Web user and passes

the Message Object to the WEBAPPSUPPORT library to access information in the

request. The exact nature of the request is then interpreted by the application, and

the request can be processed.

Introduction to Application Support

1–12 3826 5286–007

Output Flow

Figure 1–8 shows the output flow to WEBPCM.

Figure 1–8. Output Flow to WEBPCM

Each step refers to a number in the preceding Figure 18.

1. The application builds the response by making calls into the WEBAPPSUPPORT

library, which updates the Message Object with the response information. Usually

the response is in HTML syntax.

2. The application writes the Message Object back to the station with a SEND or

WRITE.

3. Transaction Server passes the message to CCF, and the message is routed to the

WEBPCM.

4. The WEBPCM calls Web Transaction Server with the output, setting HTTP

response headers and the message content.

5. Web Transaction Server sends the HTTP response to the browser, and the

browser displays the response.

XML Parser

What Is XML?

Extensible Markup Language (XML) is a set of rules for defining semantic tags that

organize data. XML is a recommended standard of the World Wide Web Consortium

(W3C), whose website is at http://www.w3.org/.

The following is an example of a simple XML document:

<?xml version="1.0">

<PRODUCT>

 <NAME>Widget</NAME>

 <PARTNUM>1234</PARTNUM>

http://www.w3.org/

 Introduction to Application Support

3826 5286–007 1–13

<PRICE CURRENCY="USD">7.99</PRICE>

</PRODUCT>

 In the preceding example, note the following:

• On the first line, ?xml indicates that this is an XML document, and version=”1.0”

identifies the level of the XML specification to which the document format

conforms.

• The rest of the document contains data.

• The document contains only text characters that represent both text and numeric

information.

Storing numeric data in text, rather than binary format, makes XML very portable.

Interpreting binary format on different systems can be difficult.

• The tags in the example are PRODUCT, NAME, PARTNUM, and PRICE. The user

who creates an XML document, not a standards body, defines the document tags.

What is the XML Parser?

The XML Parser is an API that a COBOL85, an ALGOL, or a NEWP application can use

to parse, create, transform (XSLT), or modify XML documents.

In the application you can easily include calls to XML Parser procedures rather than

write the code required for XML documents. The procedures are in the

WEBAPPSUPPORT library. Using these procedures, you can read or modify parts of, or

an entire XML document, or create an XML document.

The XML Parser translates characters from the XML document character set to the

application character set. The XML documents must be encoded in an ASCII-based

character set, such as iso-8859-1 or UTF-8. An example of a supported application

character set is ASERIESEBCDIC.

The XML Parser requires that a Java module supplied by Unisys be installed on a MCP

Java system or on a separate system that can run Java. For example, the Java system

can be a Windows or Linux system.

XML Parser Architecture

The XML Parser is implemented in two locations: the WEBAPPSUPPORT library of the

CCF WEBPCM product and the Java Parser Module (JPM), which is a Java wrapper to

the Apache Xerces product. Figure 19 shows the XML Parser architecture.

Introduction to Application Support

1–14 3826 5286–007

Figure 1–9. XML Parser Architecture

In Figure 1–9, an ALGOL or a COBOL85 application calls the WEBAPPSUPPORT library

to access or create an XML document. The application can perform the following

tasks.

• Make a current document available to the XML Parser by putting the document in

any of the following places:

− In an application array

− In an MCP file

− On an HTTP server

• Ask the WEBAPPSUPPORT library to create a new document and make the

document available to the XML Parser

WEBAPPSUPPORT uses TCP sockets to communicate with JPM. The JPM is a Java

application that wraps the Xerces XML Parser and parses XML documents. Multiple

worker threads in the JPM can parse XML documents concurrently. The JPM also

uses the Apache log4J package to log events.

The XML Parser returns the parsed or new document to the application or saves the

document in an MCP file.

 Introduction to Application Support

3826 5286–007 1–15

Hardware Requirements

The JPM can run on any of the following:

• An MCP Java 6.0 Java Processor

• A Microsoft Windows system running Sun JRE 6.0 or higher

• A Linux system

Software Requirements

The XML Parser requires the following software:

• Base MCP Release

• Sun Java Runtime Environment (JRE) 6.0 or 7.0

• Any application that runs on a currently supported MCP system and that is written

in one of the following MCP programming languages:

− COBOL85

− ALGOL, all variants

− NEWP

Major Functions

The XML Parser can perform the following:

• Parse and validate an XML document

An application can supply any of the following to the XML Parser:

− An XML document in an array

− A reference to an MCP file containing an XML document

− An HTTP URL that identifies the document location on an HTTP server

The application can ask the XML Parser to parse and optionally validate the

document.

• Provide an XML document to an application

An application can ask the XML Parser to provide all data in an XML document

sequentially (SAX-mode) or to provide specific data in an XML document

(DOM-mode).

• Create or modify an XML document

The XML Parser can create an XML document or modify a parsed XML document.

The XML Parser can return the new or modified document to the application or

save the document in an MCP disk file.

Introduction to Application Support

1–16 3826 5286–007

• Access an XML document using XPath expressions

• Transform XML documents into other documents using XSLT

The XML Parser can transform XML documents into other XML documents or into

other document types such as text.

• Monitor the following in each of the JPMs

− Status

− Version

− Number of connections

− Worker threads

− Memory use

− Documents parsed

• Enable applications to encrypt or decrypt XML documents (requires licensed

encryption component)

• Convert XML to JavaScript Object Notation (JSON)

Standards Supported

The XML Parser supports XML standards and has a standard document structure.

XML Standards Supported

The XML Parser supports XML 1.0 standards for the following:

• Document format

See http://www.w3.org/TR/2006/REC-xml-20060816/.

• Namespaces

See http://www.w3.org/TR/2006/REC-xml-names-20060816/.

• XSL Transformations

See http://www.w3.org/TR/1999/REC-xslt-19991116.html

The XML Parser supports XML Path Language (XPath) 1.0 expressions. The XML Path

Language (XPath) 1.0 standard enables an application to use an expression to find data

in an XML document. More information is available at http://www.w3.org/TR/xpath/.

http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/1999/REC-xslt-19991116.html
http://www.w3.org/TR/xpath/

 Introduction to Application Support

3826 5286–007 1–17

XML Document Structure

The XML Parser supports the following document structure:

<document>

 +-------> <DTD> (one only)

 +-------> <comment>

 +-------> <processing instruction>

 +-------> <element> (one only)

 +-----> <element>

 +-----> <text>

 +-----> <comment>

 +-----> <entity reference>

 (read-only)

 +-----> <element>

 +-----> <text>

 +-----> <comment>

 +-----> <CDATA section>

 +-----> <processing instruction>

 +-----> <entity reference>

 +-----> <CDATA section>

 +-----> <processing instruction>

 +-----> <attribute>

 +-------> <text>

 +-------> <entity reference>

The <document> node can contain the following:

• One <DTD> node (optional)

This node contains only a text representation of the Document Type Definition

(DTD) and does not contain any child nodes.

• Any number of <comment> and <processing instruction> nodes

• One top-level <element> node> (required)

Introduction to Application Support

1–18 3826 5286–007

This node can contain any number of the following nodes:

− <element>

This node can contain any nodes that the top-level <element> node can

contain. An XML document can contain any number of levels of <element>

nodes under other <element> nodes.

− <text>

− <comment>

− <entity reference>

− <CDATA section>

− <processing instruction>

− <attribute>

Limitations

The XML Parser has the following limitations:

• The application cannot access individual Document Type Definition (DTD) items,

such as entity nodes and parameter entities.

The application can get a document type declaration as one string and can change

the document type declaration by replacing the whole DTD node.

• The XML Parser cannot handle document fragments.

• The XML Parser can parse only XML data encoded in an ASCII-based character set,

not data encoded in EBCDIC-based character sets.

If an application has XML data encoded in an EBCDIC-based character set, the

application must translate the XML data into an ASCII-based character set. Unisys

also recommends that the XML declaration in the XML document identify the

ASCII character set.

• The maximum number of nodes in an XML document that can be parsed is not

limited by a specific size. The maximum XML document size depends on the

available memory in the JPM and on the MCP.

• The maximum number of XML documents that can be stored in the

WEBAPPSUPPORT library is 65,536.

• The XML Parser does not support unparsed entities.

XSL Transformations (XSLT) Support

The implementation of the XSL Transformations feature satisfies the following

requirements:

• It supports transformation of the XML documents using the W3C-defined rules for

the XSLT 1.0 language (http://www.w3.org/TR/xslt).

• Applications can supply the stylesheet separately from the XML document or can

reference the stylesheet in the XML document.

http://www.w3.org/TR/xslt

 Introduction to Application Support

3826 5286–007 1–19

• Applications can receive the transformed document, or the transformed document

can be written to an MCP file.

XML Path Language (XPath) Support

The implementation of the XPath feature supports the W3C XPath 1.0 syntax for

expressions that can access an XML document. See the GET_NODE_BY_XPATH and

GET_NODES_BY_XPATH procedures to use XPath.

Limitations for XPath support are as follows:

• The following node set functions are not supported: id(), namespace-uri().

• The following Boolean functions are not supported: lang().

• Variable References are not supported.

• Calculations that result in NaN (not a number), infinity, or a divide-by-zero are not

supported. Positive and negative zero also are not supported.

• Only one operator can be used in a predicate or parenthesis grouping. For

example, to write (1 + 2 * 3) where the multiplication should be done first, use

(1 + (2 * 3)).

XML Encryption

The XML Encryption feature enables applications to encrypt and decrypt part or all of

an XML document.

Applications must identify the data to be encrypted; the data can be one of the

following:

• An XML document (either parsed or on disk)

• An element of a parsed XML document

• A text node of a parsed XML document

• Other data, such as a jpeg file or key file

Applications can control how encrypted data is represented in the resulting XML

document—for example, whether or not the associated key information is put into the

EncryptedData element.

When an application identifies the part of an encrypted XML document to decrypt, it

gets back an updated XML document with unencrypted data. The encrypted data in an

XML document can be decrypted to an application array or to an MCP file.

Unencrypted data that is being encrypted or that has been decrypted is not

transmitted across networking interfaces where it could possibly be seen.

Introduction to Application Support

1–20 3826 5286–007

Site Requirements for XML Encryption

To use XML Encryption, the following requirements must be met at the client site:

• One or more Java Parser Modules (JPMs) to parse XML documents

• MCP Cryptography

• The XML Encryption key

Note: If public key encryption is needed, the public keys must be stored in the

Security Center database prior to the application creating objects that use the public

keys.

XML Encryption Licensing

XML Encryption is a licensed feature. Therefore, the XML Encryption key must be

installed for applications to be able to call the XML Encryption interfaces. Key

presence is checked

• When WEBAPPSUPPORT initiates.

• When a RESTARTXML command is processed by WEBAPPSUPPORT.

Key Management

Applications must create key objects in WEBAPPSUPPORT that are to be used for

encryption or decryption. The key objects can reference existing keys stored in the

Security Center database or can be symmetric keys that are supplied to

WEBAPPSUPPORT for temporary storage in MCP Cryptography.

If the application delinks from WEBAPPSUPPORT, all of the created keys are

discarded. The application must recreate the key objects when it relinks to

WEBAPPSUPPORT.

JavaScript Object Notation (JSON) Support

The XML feature that supports the JavaScript Object Notation (JSON) enables an MCP

application to work with JSON, which can be used with JavaScript applications.

Support for JSON includes these capabilities:

• Converting XML in a file or an array to JSON text

• Converting XML in WEBAPPSUPPORT memory to JSON text

• Converting comma-delimited text to JSON text

 Introduction to Application Support

3826 5286–007 1–21

HTTP Client

What is HTTP Client?

HTTP Client is an application interface that allows MCP applications to make HTTP

requests (GET, POST, PUT, and so forth) to HTTP (Web) servers and to receive

responses.

HTTP Client Architecture

Figure 1–10 shows a simple representation of the HTTP Client architecture.

Figure 1–10. Simple Representation of HTTP Client Architecture

When applications want to send HTTP requests, the applications first link to the

WEBAPPSUPPORT library. They pass a URL and a hostname or IP address. Optionally,

they can specify a port and content data.

The WEBAPPSUPPORT library then opens a socket to the HTTP server, sends the

HTTP request, and receives the HTTP response.

The applications can then access elements in the response.

An application can create reusable objects in WEBAPPSUPPORT that represent the

HTTP server (host), the application (client), the socket, and the request-response.

These objects can store special attributes such as security, cookies, and credentials.

They can be reused for multiple requests. Also, multiple requests can be made over

the same socket.

Introduction to Application Support

1–22 3826 5286–007

HTTP Client Features

• Handles the HTTP 1.0 or 1.1 protocol on behalf of the application

• Can automatically follow redirection responses sent by the server

• Supports secure sockets (https) and sending client certificates

• Can use proxy servers

• Allows content for the request to come from the application or an MCP file

• Supports automatic storing of cookies set by the server and sending in

subsequent requests

• Supports HTTP Basic and NTLM authentication methods

• Supports automatic sending of credentials

• Translates EBCDIC data supplied by the application to ASCII for the request and

ASCII data from the response into EBCDIC for the application

• Allows the application to set request headers and to access the response headers

from the server

• Supports decompressing content compressed by the server and compressing

data for sending to the server

• Supports non-WEBPCM MCP applications through the Client HTTP interface

• Supports COBOL85 as the only officially supported COBOL version

Hardware Requirements

HTTP Client runs on currently supported hardware.

Software Requirements

The HTTP Client feature requires the ClearPath MCP 13.0 (or later) release.

Standards Supported

The following are the standards supported:

• W3C RFC 2616 Hypertext Transfer Protocol – HTTP/1.1

• W3C RFC 2617 HTTP Authentication: Basic and Digest Access Authentication

(Basic only)

• W3C RFC 2965 HTTP State Management Mechanism

• W3C RFC 2109 HTTP State Management Mechanism

• Netscape Corp. Persistent Client State HTTP Cookies

 Introduction to Application Support

3826 5286–007 1–23

Regular Expressions

You can use the WEBAPPSUPPORT procedures that provide the Regular Expressions

feature to enable your applications to apply expressions to data, similar to the way

you can use the Perl Compatible Regular Expressions (PCRE) package. Your

applications can process Regular Expressions against subject strings and then get

back substrings that match.

The PCRE library is a set of functions that implements regular expression pattern

matching whose syntax and semantics are as close as possible to those of the Perl 5

language. The PCRE library is a part of WEBAPPSUPPORT. For more information about

PCRE, see http://www.pcre.org/.

The CCF component that implements the Regular Expressions capability is

REGEXPRESSION.

Figure 1–11 illustrates this capability.

Figure 1–11. PCRE Library

Limitations

The Regular Expressions feature has the following limitations:

• The maximum length of a subject string is 15.5 MB.

• The maximum length of a pattern is 31 KB.

• PCRE callouts are not supported.

• Subject and pattern strings supplied by the application must be in UTF-8 encoding

or in a character set that can be translated into either 7-bit ASCII (such as

ASERIESEBCDIC) or into UCS2 (such as LATIN1EBCDIC).

http://www.pcre.org/

Introduction to Application Support

1–24 3826 5286–007

Character Set Handling

Applications use Regular Expressions processing in their own character set. The

patterns to be compiled and the string to match against are supplied in the character

set of the application, for example ASERIESEBCDIC. The substrings returned are also

in the character set of the application. The character set of the application is defined

by the setting of the MLS_APPLICATON_SET parameter to the SET_TRANSLATION

procedure.

The Regular Expressions feature supports the following application character sets:

• ASCII (5)

• UCS2 (85)

• Any character set that can be converted by the MCP MultiLingual System (MLS) to

either ASCII or UCS2

• Latin1ISO (13)

• UTF-8 (2)

3826 5286–007 2–1

Section 2
WEBPCM Transaction Server to
Internet Application Programming

Acquiring and Installing WEBPCM

The WEBPCM is released as follows:

• As a part of the Custom Connect Facility (CCF).

• With ClearPath MCP systems as part of the operating environment. It includes the

WEBAPPSUPPORT library, sample application sources, and demonstrations.

The WEBPCM supports only applications that have been modified to support HTTP

users. That is, applications must generate HTML instead of T27-formatted output. You

cannot use WEBPCM to directly access MARC or CANDE.

WEBPCM is installed by using the standard installation tools Simple Installation (SI) or

Installation Center.

Note: The Web Transaction Server supports the WEBPCM and is required for using

the WEBPCM.

Modifying Transaction Server Applications to Serve

HTTP

You can make coding changes to the application in the following ways:

• Add code to input handler to determine message source.

The application must be modified so that when it reads a message, it looks for the

message source and handles the request appropriately (assuming that non-Web

requests still need to be supported).

• Add code for parsing Web input.

The application needs an interface to the WEBAPPSUPPORT library to parse the

Message Object and to build up a response in it. For ALGOL programs, an Include

file is provided with the release that contains the entry points into the

WEBAPPSUPPORT library plus other useful declarations.

WEBPCM Transaction Server to Internet Application Programming

2–2 3826 5286–007

• Add code for building a Web response instead of a non-Web response.

Logic must be added to the application to generate a response for the Web user,

usually in HTML format. The HTML can be hard-coded in the MCP application, or

external HTML files can be used and data merged into them, which can reduce the

need for future application updates.

Note: New applications can also use the WEBPCM.

Sample sources for applications, in both COBOL and ALGOL languages, are released

with the WEBPCM. You can also run online demonstrations to see how the

applications work.

Note: Code for parsing input and building output needs to change in the application,

but core processing logic can remain the same.

Using External HTML Files

Merging application data into external HTML files is a powerful feature of the

WEBPCM. Figure 21 shows this process.

Figure 2–1. Merging Application Data Into External HTML Files

The numbers in the following steps correspond to those in Figure 2-1.

1. Use an HTML editor, such as Microsoft FrontPage or Microsoft Notepad, to create

the HTML file. Then place the file on the MCP file system, perhaps using a Client

Access Services share. You can also make future updates to the HTML file with

the editor.

2. The application calls WEBAPPSUPPORT with data to be inserted into the HTML

file. The HTML file must have tags that WEBAPPSUPPORT can recognize as

locations to insert the data.

 WEBPCM Transaction Server to Internet Application Programming

3826 5286–007 2–3

3. WEBAPPSUPPORT reads the HTML file and merges in the application data.

4. WEBAPPSUPPORT returns the merged HTML to the application. The application

can then insert the HTML into a Message Object for the response. The merged

HTML can also be saved (cached) by the application for subsequent requests.

Using WEBPCM without Modifying the Transaction

Server Application

Rather than modifying Transaction Server applications to work with the WEBPCM, you

can use processing items to achieve the same results.

• The input processing item can process the input message before the application

sees it, and rebuild the message as if it came from a terminal. The input

processing item program looks at any content data in the request and converts it

to forms input, such as taking the text field from an HTML form and building the

buffer as if it came from a T-27 terminal.

• The output processing item can examine the output from the application, build a

matching HTML response, and send that response instead of the application

response. The output processing item program looks at the screen that the

application generated for its response, and maps (screen scrapes) that response

to an HTML file.

Notes:

• Using processing items might be more work overall (including maintenance)

than directly modifying the application. You should evaluate each situation

individually.

• Processing Items work only with Direct Window applications.

As an alternative, consider using Web Enabler. Web Enabler can run applications in a

browser without modifying the application. Refer to “Why use the WEBPCM?” in

Section 1 for a list of reasons to consider using the WEBPCM. If those reasons do not

satisfy your requirements, consider using Web Enabler.

WEBPCM Transaction Server to Internet Application Programming

2–4 3826 5286–007

Processing Item Concept

Figure 2-2 shows the work flow for a processing item.

Figure 2–2. Work Flow for a Processing Item

The following steps outline the path that the data takes when you use processing

items to give an existing unmodified Direct Window application access to Web users:

1. The Message Object first comes to the Input Processing Item.

2. The Input Processing Item calls WEBAPPSUPPORT to extract information from the

request and convert it to input the application expects to see.

3. The Input Processing Item routes the T27-style input through Transaction Server

to the application.

4. The application response is routed to the Output Processing Item.

5. The Output Processing Item examines the output, maps that output to a specific

HTML, then uses WEBAPPSUPPORT to update the Message Object (saved by the

Input Processing Item) with the response.

6. The Output Processing Item sends the Message Object back to the station, where

the WEBPCM sends out the response.

 WEBPCM Transaction Server to Internet Application Programming

3826 5286–007 2–5

Example: Web Enabling Existing Applications

On a Web page, the user filled out a form that created a query string with two name

and value pairs, as shown in Figure 23.

Figure 2–3. Application Handling a Query String

This example shows how an application can handle a query string that contains input

data.

The HTML source for the form in this example might look like the following:

<CENTER><FORM ACTION="/ordertracker" METHOD=GET>
 <TABLE><TR><TD>Request Type: </TD>
 <TD WIDTH=30%><INPUT TYPE="radio" CHECKED NAME="action" VALUE="inq">
Inquiry

<INPUT TYPE="radio" NAME="action" VALUE="upd"> Update</TD>
 <TD>Order Number: <INPUT TYPE="text" NAME="ordernum" SIZE=9>

<INPUT NAME="submit" VALUE="Submit" TYPE=SUBMIT></TD></TR>
 </TABLE></FORM></CENTER>

When the user clicks Submit, the HTTP request is sent to the host with the relative

universal resource indicator (URI) /ordertracker, which has been configured in Web

Transaction Server to map to the WEBPCM application. The request is passed to the

WEBPCM to handle. The WEBPCM is configured to map the path “/ordertracker/” to

the Transaction Server window ORDERTRACKER. The HTTP request is converted to a

Message Object and sent to the ORDERTRACKER application.

The resulting name and value pairs as seen by the application are

Name Value

action inq

ordernum 174632

WEBPCM Transaction Server to Internet Application Programming

2–6 3826 5286–007

The ORDERTRACKER application (COBOL) might look like the following:

01 NAME-VALUE-BUFFER.
 03 NAME-VALUE-PAIR OCCURS 10 TIMES.
 05 QUERY-NAME PIC X(10).
 O5 QUERY-VALUE PIC X(20).

CALL "PARSE_QUERY_STRING OF WEBAPPSUPPORT"
 USING COMS-MESSAGE-AREA, MAX-LEN-10, MAX-LEN-20,
 NAME-VALUE-BUFFER, NUM-PAIRS
 GIVING WEBAPP-RESULT.
IF WEB-OK
* good result, analyze data
 IF QUERY-NAME(1) IS EQUAL TO "action"
 IF QUERY-VALUE(1) IS EQUAL TO "inq"
* process the inquiry
* and so on

COMS-MESSAGE-AREA contains the Message Object.

Software Modules Necessary to Support the WEBPCM

The WEBPCM supports Transaction Server applications by implementing two

software modules (released with CCF):

• WEBPCM (Web Protocol Converter Module) routes requests from users using the

API in Web Transaction Server to Transaction Server applications using the

CUCIPCM module of CCF. This PCM is released as code file

*SYSTEM/CCF/PCM/WEB.

• WEBAPPSUPPORT is a library for accessing the HTTP request and constructing

the HTTP response. This support library is released as

*SYSTEM/CCF/WEBAPPSUPPORT. *SYSTEM/CCF/WEBAPPSUPPORT is created as

a support library (SL command) with the function name WEBAPPSUPPORT without

any special SL attributes. It has the following characteristics:

− It is a shared-by-all library

− It is used by Transaction Server applications to parse requests and assist with

generating responses

− It exists separately from the WEBPCM so that if CCF is terminated, the

Transaction Server applications are not automatically terminated.

 WEBPCM Transaction Server to Internet Application Programming

3826 5286–007 2–7

Figure 24 shows the various software modules necessary to support WEBPCM plus

additional components required for the Web Enabler.

Figure 2–4. Software Modules Required to Support WEBPCM

Summary: Getting Applications to Work with the WEBPCM

Follow this process to get applications to work with the WEBPCM:

Design Web Pages

1. Prototype with an HTML editing tool; view pages in a browser.

Start laying out your HTML pages and design the flow of screens that the browser

user must follow through your Web site. You can use an HTML editing tool such

as Microsoft Front Page to visually design the pages.

2. When the pages are ready, either use the HTML as an external HTML to the

application (the preferred method) or insert the HTML source into the application.

Modify or Write the Application

1. Modify input and output handling routines to detect and generate Web output.

• On input, use either the trancode (the first 17 bytes of the input message) or

the station name to determine if the input message came from a browser

user. Then the input message (the Message Object) is passed by the

application to the WEBAPPSUPPORT library to access information from the

request, such as input form field data.

WEBPCM Transaction Server to Internet Application Programming

2–8 3826 5286–007

• On output, the application should insert the HTML page into the response with

the SET_CONTENT call to the WEBAPPSUPPORT library, along with any special

output headers needed. The response is then written back to the Transaction

Server station.

2. Refer to the released WEBPCM demonstration programs (accessible through the

Web Transaction Server Administration Web site) for examples.

• Examples of programs that use WEBPCM are included with the WEBPCM

releases. Direct your browser to the Web Transaction Server Administration

Web site, which is usually port :2488 on your MCP system, and follow the

links to the WEBPCM examples. You must be a privileged user on the MCP

system to access the Web Transaction Server Administration site.

• If you used Simple Install or Installation Center to install the WEBPCM (which

is installed by installing CCF and Transaction Server), the WEBPCM

demonstrations should be preconfigured in Transaction Server and CCF. If not,

the WEBPCM demonstrations page contains detailed instructions on how to

configure Web Transaction Server, CCF, and Transaction Server to run the

WEBPCM demonstrations.

Configure Web Transaction Server Virtual Directories

Decide what the first node should be in the URL and use that node as a virtual

directory that maps to the WEBPCM application.

Web Transaction Server treats the first node in a URL that comes after the host name

as the virtual directory. For requests that are to be handled by a Transaction Server

application using the WEBPCM, that virtual directory must map to the WEBPCM

application.

The following URL has /products/ as the virtual directory:

http://www.acme.com/products/order?id=widget&quantity=1

The node/order might tell the Transaction Server application what specific function is

desired in the products category.

Multiple virtual directories in Web Transaction Server can map to the WEBPCM, and

the WEBPCM can map to the same Transaction Server application, if desired. The

Transaction Server application can determine from the Message Object which virtual

directory was used by using the GET_HEADER ($APPLICATION-PATH) function in the

WEBAPPSUPPORT library.

You might also want to have another virtual directory that maps to HTML files,

graphics, and so on. With that approach, browser users can access a home page, and

the Transaction Server application can generate HTML that references the graphics.

Note: Although the WEBPCM demonstrations are run with the ATLASADMIN

provider, most production work should be done with another Web Transaction

Server provider, such as ATLASSUPPORT, so that ATLASADMIN is always available

for administration functions.

http://www.acme.com/products/order?id=widget&quantity=1

 WEBPCM Transaction Server to Internet Application Programming

3826 5286–007 2–9

Configure CCF (WEBPCM Service)

You need only minimal settings to configure CCF.

Each virtual directory in Web Transaction Server that should map its requests to a

Transaction Server application using the WEBPCM must map to a unique service in

WEBPCM (ADD SERVICE WEBPCM command). Minimally, the Path and Service

attributes must be set, and the Window attribute should also be set.

The path attribute is the same as the virtual directory name in Web Transaction Server.

The service attribute is usually CUCIWEBSERVICE, which is a service defined in

CUCIPCM (ADD SERVICE CUCI command) with no attributes. WEBPCM sets the

CUCIPCM attributes at dialog establishment time.

The Window attribute is the name of the Transaction Server window to which

requests are passed.

Other WEBPCM Service (ADD SERVICE WEBPCM command) attributes that might

need to be set are listed in the following table.

Attributes Description

StringTerminate and

Translate

These attributes default to FALSE and TRUE respectively,

which are the values most likely used by COBOL

applications (pad strings with blanks and convert ASCII to

EBCDIC on input, EBCDIC to ASCII on output).

StationControl The default for station control is for WEBPCM to use

Cookies to identify each user, and map their session to a

specific station in Transaction Server. Another setting that

might be desired is Permanent, so that only one station is

used and all requests are mapped to that station.

CheckUserAuth If you want to restrict access to the Transaction Server

applications to only those users who have valid MCP

usercodes, set this attribute to TRUE. Note the privileged

status of the user is not checked by this setting; the

application can check the user's privilege status with the

GET_USER_PRIVILEGED procedure in the

WEBAPPSUPPORT library.

Usercode If the Usercode attribute is not specified in the WEBPCM

service, the usercode sent to Transaction Server when the

dialog opens is the user's usercode if CheckUserAuth is

TRUE, or else the Web Transaction Server provider

anonymous usercode if CheckUserAuth is FALSE. To

ensure that a specific usercode is used, set this attribute in

the WEBPCM service.

WEBPCM Transaction Server to Internet Application Programming

2–10 3826 5286–007

Configure Transaction Server Window/Program/Agenda

This step is needed only if there is not already an existing Transaction Server

definition.

If you are modifying an existing application, you might not need to change the

Transaction Server configuration. Instead, ensure that the WEBPCM service maps to

the existing Transaction Server window. Otherwise, configure the Transaction Server

window, program, and agenda for the application.

Note: You might need to increase the Maximum Message Text Size setting in the

Global section of the Transaction Server Utility window if the amount of data your

application sends back to the station is greater than the current setting.

Test the Application

Use WEBAPPSUPPORT library tracing to debug the program.

Now you are ready to test your application. The application can request tracing to be

done for its calls into WEBAPPSUPPORT by first calling the SET_TRACING procedure in

the WEBAPPSUPPORT library. Using this procedure makes debugging an application

much easier.

Application Design Considerations

This subsection discusses application design considerations.

Programming Languages Supported by WEBPCM

The following application programming languages are supported by WEBPCM:

• COBOL74

• COBOL85

• ALGOL

• NEWP

• C

• Pascal

Refer to Section 3, “WEBAPPSUPPORT Library Interface” to see which procedures

should be used for the programming language chosen.

Remote Files versus Direct-Window Applications

As gateway into Transaction Server, WEBPCM allows the following applications to

interface to HTTP (intranet or Internet) users who use the following normal

Transaction Server mechanisms:

• Transaction Server Direct Window applications

• Transaction Server Remote File applications

 WEBPCM Transaction Server to Internet Application Programming

3826 5286–007 2–11

Supported applications use the Direct Window interface or use the Remote File

interface and run in a Transaction Server window.

No special requirements apply to using the Transaction Server headers for other than

normal Transaction Server mechanisms such as Trancode Routing. The data sent to

and from the user uses the standard application message buffers.

Transaction Server Synchronized Recovery

The Transaction Server feature Synchronized Recovery is supported with the

WEBPCM with the restriction that an application should not use any of the following

WEBAPPSUPPORT procedures if Synchronized Recovery is required:

• GET_HEADER ($PATH-TRANSLATED) (other GET_HEADER calls can be used)

• getHeader ($PATH-TRANSLATED) (other getHeader calls can be used)

• GET_MIME_TYPE

• getMimeType

• GET_REAL_PATH

• getRealPath

These procedures require processing by the Web Transaction Server, and the Web

Transaction Server must be waiting on the response to the user’s request to process

the above calls. Applications that want to use the above functions and need recovery

should migrate their databases to use REAPPLYCOMPLETED and

INDEPENDENTTRANS.

Requests that exceed 60,000 bytes for an input message object are not supported for

Synchronized Recovery.

Delivery Confirmation

The Transaction Server feature Delivery Confirmation is supported with the WEBPCM:

• A positive delivery confirmation is returned to the application if the data was

successfully written to the network provider (TCP/IP) for delivery to the client.

• If the data could not be sent, then no delivery confirmation is sent to the

application. Failure to send the data can be caused by the client (browser user)

terminating the connection, such as by clicking on another Web page link.

Processing Items

Transaction Server processing items process the input to and output from the

Transaction Server application for Web messages, just as for other Transaction Server

messages.

WEBPCM Transaction Server to Internet Application Programming

2–12 3826 5286–007

You do not necessarily need to modify the existing application. Instead you can have a

processing item modify the request on input, converting the message so that it looks

as though it came from a non-Web user, and modifying the application response,

converting the output into appropriate HTML.

The processing items make the calls to WEBAPPSUPPORT instead of, or in addition to,

the Transaction Server application.

Character Sets

HTTP and HTML use ASCII-based character sets. The WEBPCM supports converting

ASCII strings to EBCDIC on input, and back to ASCII on output, so that applications can

use their native character set for processing text strings.

Character set translation is configured with the TRANSLATE option in the WEBPCM

service definition. For more information, refer to the WEBPCM ADD SERVICE

command. The default is to convert ASCII to EBCDIC.

For generating output in character sets other than ASCII, applications must generate

the codes appropriate for the destination. For example, HTML responses that are to

contain characters in the Extended Latin1ISO character set should use escaped

characters, for example è (hex E8), which is a decimal reference to the

character è.

Use the HTML_ESCAPE procedure in WEBAPPSUPPORT to translate escaped

characters for Extended ASCII HTML text. As an alternative, applications can generate

output in the APPLICATIONCCS service setting, and WEBPCM translates the output to

the CLIENTCCS setting by using the MCP MultiLingual System.

String Terminations

Text strings passed to and from the Transaction Server application can either be

optionally terminated with a null character or padded to the right with blanks.

COBOL applications typically expect strings to be terminated by blanks.

If terminated by a null character, the rest of the buffer is undefined.

Use the STRINGTERMINATE option in the WEBPCM ADD SERVICE command to

control how text strings are terminated.

Serving Both Web and Non-Web Users

An existing application that currently serves non-Web users (such as users using

T27-compliant devices) can be modified to also serve Web users and still serve users

with the existing interface. The application must first determine the type of device

from which the request was sent. By using the WEBPCM, this determination can be

accomplished by checking either of the following:

• Trancode field of the Message Object

 WEBPCM Transaction Server to Internet Application Programming

3826 5286–007 2–13

• StationName of the request, which can be named differently from other station

types

The Trancode field of the Message Object always contains fixed text configured with

the TRANCODE option in the WEBPCM service definition. Refer to the WEBPCM ADD

SERVICE command.

Applications can check the first 17 bytes of the message to determine the message

source. Alternately, the Transaction Server Trancode feature can be used to indicate

the message source. Refer to Message Object Format (Input/Output Message Format)

for information on the format of the Message Object, and see Transaction Server

documentation on Trancode functionality.

Use the STATIONNAME option in the ADD SERVICE WEBPCM command to configure

StationName format.

Inactivity Timeout

Because of the stateless nature of the Web, users can stop in the middle of a

transaction, use other applications, or even turn their systems off. In these cases, the

host does not know that the user has gone and might keep application dialogs open

that will never be continued.

The WEBPCM supports an optional timeout on inactivity. If no input is received for a

station for the elapsed time, the station closes. The default timeout is 12:00:00

(12 hours).

Use the INACTIVITYTIMEOUT option in the WEBPCM ADD SERVICE command to

configure inactivity timeout.

Transaction Server Station Closure

If the WEBPCM detects that the station has closed in Transaction Server, it responds

to any outstanding request with an error message and closes the dialog.

The error message returned is a response with the HTTP Status Code set to 503

(Service Unavailable), and the following text:

The service <X> has become unavailable.

In this message, <X> is the PROGRAMID attribute value of the WEBPCM ADD

SERVICE command or WEBPCM MODIFY SERVICE command. A Retry-After header is

not sent with the response, which means the user must retry the request manually.

For more information, refer to “Using External HTML Versus Internal HTML” later in

this section and “Inactivity Timeout” earlier in this section.

Dialogs (stations) can also be closed by an operator with the WEBPCM CLEAR

DIALOGS command.

A Transaction Server dialog cannot be closed from the client side.

WEBPCM Transaction Server to Internet Application Programming

2–14 3826 5286–007

Learning About HTTP and HTML

Application developers must understand the following two standards to process Web

user requests and generate responses:

• HTTP (Hypertext Transfer Protocol) is the protocol used between the Web server

(Web Transaction Server) and the client, usually a Web browser. It is defined by

the W3C standards organization, and a specification for the protocol is available

online at their Web site: http://www.w3c.org/.

Different browsers support different HTTP levels, and design consideration might

be needed for the client level, which can be determined with the $PROTOCOL

header name in a call to the GET_HEADER procedure in WEBAPPSUPPORT.

• HTML (Hypertext Markup Language) is the language definition that browsers use

to lay out pages. Numerous books on HTML are available. Software tools that

generate HTML without the user needing to know the language are also available.

Using External HTML Versus Internal HTML

The Transaction Server application can generate its own HTML responses if it

chooses. But generating HTML requires the application to be modified and recompiled

with each HTML change, and HTML changes can be frequent. It also might be

desirable to edit the HTML file with an HTML editor.

Another option is to reference an external HTML file, one that is maintained outside

the program. Three ways to do this are as follows:

• Direct or redirect the user to view a file by returning a 302 (Found) response. Use

the SET_REDIRECT procedure in the WEBAPPSUPPORT library for this.

• Read the HTML file into the application and return the file contents to the user.

• Use the MERGE_HTML_FILE_AND_DATA or MERGE_DATA procedure in the

WEBAPPSUPPORT library to replace tagged parts of the HTML with fields supplied

by the program.

The first two methods work if the HTML data is static. Often, however, fields in the

HTML page need to be filled in with data contained in the application or in a database.

Use the third method to easily update an HTML page from the application. Refer to

MERGE_FILE_AND_DATA or MERGE_DATA procedure and the “Using an External

HTML File” example in “Sample Applications.”

User Authorization

WEBPCM

WEBPCM supports these authentication methods:

• HTTP Basic

• NTLM

http://www.w3c.org/

 WEBPCM Transaction Server to Internet Application Programming

3826 5286–007 2–15

The authentication method used is controlled by the AUTHENTICATIONTYPE service

attribute.

If the WEBPCM service is configured with CHECKUSERAUTH = TRUE, the WEBPCM

verifies that the usercode in the request authorization header is a valid MCP usercode.

If the usercode is not valid or if no Authorization header is present in the request or for

the dialog, the WEBPCM returns to the client a 401 response (Unauthorized), which

causes the browser to prompt a user for a usercode and password.

When it validates users, WEBPCM (by way of the Web Transaction Server) uses the

SECURITYSUPPORT library of a user, if it is present. For details, refer to

“SECURITYSUPPORT Library Support”.

Transaction Server Application

The usercode sent to Transaction Server is determined by the following criteria in the

WEBPCM SERVICE command:

• If the USERCODE attribute is set in the WEBPCM service, that usercode is sent.

• If the USERCODE attribute is not set and CHECKUSERAUTH = TRUE, the usercode

of the client is sent.

• If the USERCODE attribute is not set and CHECKUSERAUTH = FALSE, the

anonymous usercode of the Web Transaction Server provider is sent.

• If the USERCODE attribute is not set and STATIONCONTROL = PERMANENT, the

usercode sent is the usercode of the first user to use the dialog of the service.

The Transaction Server application can check the MCP privilege status of a user who

has passed authorization with the GET_USER_PRIVILEGED procedure of

WEBAPPSUPPORT.

In the WEBPCM SERVICE command, the following criteria can affect security:

• If CHECKUSERAUTH = FALSE, the WEBPCM does not do any security checking

before sending the request to the application.

• If SHOWPW = TRUE and CHECKUSERAUTH = FALSE, the application can see the

password in the Authorization header through the $REMOTE-USER attribute

returned from GET_HEADER procedure of WEBAPPSUPPORT. This option enables

the application to maintain its own passwords, which should not be the MCP

passwords.

Refer to the WEBPCM ADD SERVICE or the WEBPCM MODIFY SERVICE command in

the Custom Connect Facility Administration and Programming Guide for information

about CHECKUSERAUTH, USERCODE, STATIONCONTROL, and SHOWPW attributes.

WEBPCM Transaction Server to Internet Application Programming

2–16 3826 5286–007

SECURITYSUPPORT Library Support

When validating users, WEBPCM (through the Web Transaction Server) uses the

SECURITYSUPPORT library of a user, if it is present. WEBPCM takes the following

action:

• Determines at initialization if SECURITYSUPPORT is present.

• Calls the LOGONCHECK procedure in SECURITYSUPPORT when a user has passed

or failed USERDATA authorization. (LOGONCHECK is called for both successful and

unsuccessful USERDATA validation.)

The Web Transaction Server calls LOGONCHECK when it validates user authorization

for nonanonymous requests.

The default SYMBOL/SECURITYSUPPORT source file has an identification of

10=NXATLAS for MCS TYPE.

If LOGONCHECK returns a result with the field INSTALLATION DETERMINED ERROR

CODE set to nonzero, then the Web Transaction Server acts as though USERDATA had

rejected the user and returns a 401 (Unauthorized) HTTP response.

For the SECURITY parameter, the following criteria applies:

• A STATION IDENTIFIER is not supplied.

• The USERCODE field contains the usercode being authorized.

• CHARGECODE and ACCESSCODE are not supplied.

• INVALID LOGON ATTEMPT NUMBER is always zero.

If a fault occurs in the SECURITYSUPPORT library, the Web Transaction Server stops

calling LOGONCHECK. Web Transaction Server must be terminated and restarted for it

to resume calling LOGONCHECK.

Note: The ATLASSECURITY library works to lock out users who exceed the MCP

LOGONATTEMPTS setting for log-in retries.

Refer also to the Security Administration Guide for more information on WEBPCM

and security. Refer to the Custom Connect Facility Administration and Programming

Guide for more information about WEBPCM commands.

Internationalization Considerations

WEBPCM applications can process input and generate responses containing character

set encodings other than the defaults of LATIN1EBCDIC or LATIN1ISO. The data

supplied by the application can be a different character set encoding than that

intended for the response if the CENTRALSUPPORT installed on the MCP supports

translation between the two character set encodings.

For example, an application can generate the response in the JapanEBCDICJBIS8

character set encoding, and WEBPCM can translate the output to CODEPAGE932 (also

known as Shift_JIS).

 WEBPCM Transaction Server to Internet Application Programming

3826 5286–007 2–17

The data merging functions also support translations. For example, an HTML file could

be coded in the CODEPAGE932 encoding, and data in the JapanEBCDICJBIS8 character

set could be merged into the file contents.

HostCCS System Option

The HostCSS system option enables the default host character set to be specified

when the default CCSVERSION is ASERIESNATIVE. WEBPCM uses the HostCSS setting

in the CENTRALSTATUS() call, if the setting exists, for use as the CCS_HOST_DEFAULT.

Processing Input and Generating Output

WEBPCM determines the character sets used by the application and the client for

processing input and output in one of two ways:

• A new configuration setting in the WEBPCM service

• A procedure call that the application makes to the WEBAPPSUPPORT library

If configured in the service, the following service attributes should be set:

• APPLICATIONCCS

• CLIENTCCS

The application can override the settings in the WEBPCM service by making a call to

the SET_TRANSLATION procedure in the WEBAPPSUPPORT library. This call

determines the character sets to be used for all subsequent processing for that

application process.

Restrict non-USASCII characters in HTTP headers to situations where you are sure that

all of the users of your site will use only the one character set that your application

and CLIENTCCS are designed to handle. This restriction exists because it is not

possible to determine the HTTP request that the character set used in the headers.

It is generally good practice to set the Content-Type header in the response to

indicate the character set used in the response content. For example, you can set the

Content-Type header to the following:

text/html; charset=Shift_JIS

Merging Data

Before calling the MERGE_DATA or MERGE_FILE_AND_DATA procedures in

WEBAPPSUPPORT to merge data into HTML, an application should do the following:

1. Set the CHARSET parameter to the application character set, for example, what

the application has coded the DATA_BUFF contents in, and what the application

expects the data returned to it in RESULT_BUFF to be coded in.

2. Set the INPUT_CHARSET parameter (MERGE_DATA procedure) to the character

set that INPUT_BUFF is coded in.

WEBPCM Transaction Server to Internet Application Programming

2–18 3826 5286–007

If an external file contains characters other than LATIN1 characters, such as

CODEPAGE932, use the MERGE_I18NFILE_AND_DATA procedure and set the

FILE_CHARSET parameter to the character set of the file.

Maintaining Session State Dialogs

HTTP (Web) dialogs are stateless. The client (browser) opens a TCP/IP connection to

the server, makes one or a few closely related requests, such as images on an HTML

page, waits for the response, and then closes the dialog. This sequence does not

match the host application paradigm of a dialog that is kept open through multiple

steps of a transaction (or multiple transactions).

The WEBPCM supports two methods for maintaining a session with a user:

• Cookies

• Hidden HTML fields

Use the STATIONCONTROL option in the ADD SERVICE WEBPCM command to

configure session options. Refer to the Custom Connect Facility Administration and

Programming Guide for information about the WEBPCM ADD SERVICE command.

Using Cookies to Maintain Session State

When you configure a service using the WEBPCM ADD SERVICE command or the

WEBPCM MODIFY SERVICE command to maintain a session with cookies, an initial

request in the session does not have the appropriate cookie header. This situation

might result because the “Cookie: header” has expired or has an invalid value from a

previous dialog that terminated. In these cases, the WEBPCM creates a cookie for that

dialog and uses the “Set-Cookie: header” with a reserved name of WEBPCMTRANSID

in the HTTP response. Cookie expiration is not set, so that if the browser is terminated

at the client, a new dialog (station) is opened on the next use from that client.

Applications using their own cookies should not use a Cookie called

WEBPCMTRANSID.

If cookies are sent to a client that has cookies disabled, successive Transaction Server

dialogs (stations) are created for each request from that user, and old ones are left

open. Administrators should consider a timeout value for dialogs, either by using the

WEBPCM Inactivity Timeout feature, or by implementing a timeout.

Using Hidden HTML Fields to Maintain Session State

If the application developer is concerned that users might have cookie support

disabled but still wants sessions to be maintained, the WEBPCM service can be

configured to store session information in hidden HTML fields or HTML links using the

WEBPCM ADD SERVICE command or WEBPCM MODIFY SERVICE command.

 WEBPCM Transaction Server to Internet Application Programming

3826 5286–007 2–19

HTML Fields

If the application developer uses HTML fields, the application puts a hidden field with a

reserved name of WEBPCMTRANSID into the HTML form. The WEBPCM then routes

subsequent requests with that hidden field to the same Transaction Server dialog. The

name used for the reserved field is the same as that used for a cookie.

Here is an HTML example:

<FORM ACTION="/comsprog1/name" METHOD=POST>
 <INPUT NAME=WEBPCMTRANSID VALUE="0000021,0002307" TYPE="HIDDEN">
 <INPUT NAME=FIRSTNAME VALUE="" TYPE="TEXT" SIZE=30>
 <INPUT NAME="T" VALUE="Transmit" TYPE="SUBMIT">
</FORM>

In this example

• The string 0000021,0002307 came from the Message Object through the

GET_DIALOG_ID procedure in the WEBAPPSUPPORT library.

• The FORM METHOD used in the HTML can be either GET or PUT.

If multiple forms exist on the HTML page, each form needs to have the hidden field in

order to maintain the session.

If the HTML fields are used and the application sends a response without the reserved

hidden field, the WEBPCM closes the Transaction Server dialog (station) after the

response is sent out. This closure includes sending error responses.

HTML Links

If the HTML links are used to maintain session state, an application can generate code

like the following:

Next<A/>

In this example, the response content must include the cookie name,

WEBPCMTRANSID. It must be preceded by NAME=, NAME="<name>", or simply =, as

shown here.

The result of this HTML code is that when WEBPCM sends the response to the client,

WEBPCM leaves the Transaction Server dialog open.

Maintaining Stateless Dialogs

You can configure the WEBPCM to not retain individual Web users sessions. Two

options exist:

• Permanent stations

• Single request stations

WEBPCM Transaction Server to Internet Application Programming

2–20 3826 5286–007

Permanent Stations

You can use the WEBPCM ADD SERVICE command or the WEBPCM MODIFY SERVICE

command to configure the WEBPCM service so that stations are kept open

permanently, which means that the WEBPCM does not close the station after

returning a response. Also note that the WEBPCM service station is shared, and that

all requests that map to the WEBPCM service go to the same station.

The advantage of permanent stations is that you avoid the processor overhead of

opening and closing multiple stations. If the application needs to maintain session

state with a specific user, the application must manage that itself, such as with

cookies or hidden HTML fields.

Configure permanent stations by setting the STATIONCONTROL option to

PERMANENT in the WEBPCM ADD SERVICE command or the WEBPCM MODIFY

SERVICE command.

Single Request Stations

You can configure the WEBPCM service so that stations close after the completion of

each request.

Configure single request stations by setting the STATIONCONTROL option to NONE in

the WEBPCM ADD SERVICE command or the WEBPCM MODIFY SERVICE command.

Performance Considerations

For Permanent Stations

You can reduce the overhead of creating and destroying stations in Transaction Server

by declaring the WEBPCM service as having a STATIONCONTROL value of

PERMANENT. With PERMANENT, separate sessions with each user are not

maintained, and the Transaction Server station is kept open after the first request until

the application requests the close.

With permanent stations, the application can either maintain its own session if needed

or handle each request based on some attribute of the request, such as the

application path or HTML controls used by the end user.

Configure permanent station by setting the STATIONCONTROL option to PERMANENT

in the WEBPCM ADD SERVICE command or the WEBPCM MODIFY SERVICE

command.

String Termination and Character Sets

Terminating the processing of strings with a null character is more efficient than

padding strings with blanks

Avoiding the translation of ASCII to EBCDIC saves processor time if the application can

handle ASCII strings directly.

 WEBPCM Transaction Server to Internet Application Programming

3826 5286–007 2–21

Transaction Flow

User (HTTP) Request

On receiving a request that maps to the WEBPCM, Web Transaction Server signals the

AAPI newReqEvt event of the WEBPCM. The WEBPCM uses the application path from

the HTTP request to map the request to a configured WEBPCM service (WEBPCM

ADD SERVICE command or WEBPCM MODIFY SERVICE command).

If the request does not map to an existing Transaction Server dialog, the WEBPCM

then sends an open request to the matching service in CUCIPCM.

If the dialog is successfully opened, an input object is built and sent to the application

representing the HTTP request.

Before the transaction ID is sent to the application, the WEBPCM calls two AAPI

functions in Web Transaction Server on behalf of the application:

• initRsp (to initialize the response in Web Transaction Server)

• setStatusCode-200 (to create a default of a good status)

Applications do not need to set the status code if 200 (Ok) is the desired status.

Application Response

The Transaction Server application, upon receiving the incoming notification, calls the

WEBAPPSUPPORT library to access the request and build the response.

After examining the request and gathering the information requested, the Transaction

Server application performs the following actions:

• Builds the response through calls to WEBAPPSUPPORT

• Sends the message back to the user

Usually the application generates HTML that a Web browser processes or causes an

existing HTML file to be updated and inserted into the output message.

Server Side Includes (SSIs)

Server Side Includes (SSIs) are directives in HTML pages that are evaluated on the

server while the pages are being served. They allow dynamically generated content to

be added to a HTML page without having to program a server extension such as a

Common Gateway Interface program. Optionally, the Web Transaction Server scans

static files and application responses for SSI directives. Valid directives are replaced

with the processed text.

For example if the .shtml suffix is configured in the Web Transaction Server for SSI

processing and the HTML file with an .shtml suffix contains the following:

 <p>Today′s date is <!--#echo var=″DATE_LOCAL″ -->.</p>

WEBPCM Transaction Server to Internet Application Programming

2–22 3826 5286–007

The preceding text might be replaced with the following text:

 <p>Today′s date is Wednesday, July 22, 2008 14:36:22 EDT.</p>

The implementation of this feature satisfies the following requirements:

• Implement a subset of Apache HTTP Server SSIs (ɤ) in the Web Transaction

Server.

• Include MCP files in documents that are read from MCP disk or responses that are

supplied by AAPI or WEBPCM applications.

• Support basic echo functions like time, date, and CGI variables. The time function

must be available for formatting

 WEBPCM Transaction Server to Internet Application Programming

3826 5286–007 2–23

Programming Considerations

This subsection discusses programming considerations for WEBPCM applications.

Application Response

The Transaction Server application, upon receiving the incoming notification, calls the

WEBAPPSUPPORT library to access the request and build the response.

After examining the request and gathering the information requested, the Transaction

Server application

• Builds the response through calls to WEBAPPSUPPORT

• Sends the message back to the user

Usually the application generates HTML that a Web browser processes or causes an

existing HTML file to be updated and inserted into the output message.

Application Creation of Response

The two steps to sending the response back to the Web user are

1. Optionally setting HTTP headers

2. Sending the content data (the actual response)

Setting Status Code, HTTP Headers

Responses go to Web users with an HTTP status code of 200 (OK) by default. If a

different status code is needed for the response, the application must call the

SET_STATUS_CODE procedure in the WEBAPPSUPPORT library to set the status code.

The application can set and modify HTTP headers sent with the response. For

example, the application can set its own cookie headers for its own tracking purposes.

HTTP headers are set by calling the SET_HEADER or SET_COOKIE procedures in

WEBAPPSUPPORT.

The content type of the message is set by calling the SET_CONTENT_TYPE procedure

(if it is different than the default of text/html).

A redirection response, telling the client to go to another resource can be generated

with a call to the SET_REDIRECT procedure.

Typically, all application processing to generate the response is done before setting

any headers, in case an error response needs to be sent instead.

Adding the Content Data and Returning the Response

To add the content of the response (usually the HTML document), the application calls

SET_CONTENT in the WEBAPPSUPPORT library, passing the same message received

from the user.

WEBPCM Transaction Server to Internet Application Programming

2–24 3826 5286–007

To return the response, the application does a SEND (or WRITE to the remote file) to

the station. The WEBPCM handles the calls into Web Transaction Server to send the

data.

Multiple calls to SET_CONTENT, each followed by a SEND or WRITE, can be done to

send messages larger than the maximum size for each SEND or WRITE. The size of

each segment (Message Object) sent must be small enough to fit into one response

buffer (that is, less than 392,000 bytes in length for Direct Window applications, 9K

bytes for Remote File applications).

To send multiple segments, perform the following steps:

1. Build the response in one or more internal buffers, of any length.

2. Call SET_HEADER and set the Content-Length header to the length of the total

content.

3. Call SET_CONTENT with the first segment of data and set the COMPLETE

parameter to FALSE.

4. Call GET_MESSAGE_LENGTH and send or write the message.

5. Call SET_CONTENT with DATA_LEN set to zero to clear the stored data in the

message object.

6. Repeat steps 3 through 5 for each segment of data, calling SET_CONTENT with

COMPLETE = TRUE on the last segment.

If the amount of data to be returned in the response cannot be easily determined at

the time the first part of the response is sent, perform the following steps:

1. Build the response in one or more internal buffers, of any length.

2. Call SET_HEADER and set the Connection header to the value ‘close’..

3. Call SET_CONTENT with the first segment of data and set the COMPLETE

parameter to FALSE.

4. Call GET_MESSAGE_LENGTH and send or write the message.

5. Call SET_CONTENT with DATA_LEN set to zero to clear the stored data in the

message object.

6. Repeat steps 3 through 5 for each segment of data, calling SET_CONTENT with

COMPLETE = TRUE on the last segment.

Transaction Server Message Interface

The Transaction Server message interface is applicable to both Direct Window

applications and Remote File WEBPCM applications.

Direct Window applications have access to the Transaction Server input and output

headers.

Remote File applications do not require use of Transaction Server input and output

headers during interactions with HTTP users.

 WEBPCM Transaction Server to Internet Application Programming

3826 5286–007 2–25

Note: No special requirements apply to using the Transaction Server input and

output headers to access WEBPCM functionality.

The Transaction Server interface is the interface the targeted applications use to

wait for input and to return output. Existing applications can continue to serve their

current interfaces (which can, for example, expect T27-type input and output) while

extending their support to HTTP users. This approach simplifies the application,

eliminating the need to wait on different input sources.

Through the Transaction Server Interface, applications wait for input and return the

responses. HTTP requests are passed to applications through this interface.

The following happens on input:

• Applications receive a string of data in the data buffer that uniquely identifies the

request, called the Message Object. This data is opaque to the application; that is,

the application does not examine it.

• The message is passed to the WEBAPPSUPPORT library to be examined. The

message can be thought of as an object, and the WEBAPPSUPPORT library

provides the methods that act upon that object.

• The application then makes calls to the WEBAPPSUPPORT library to collect

information on the request.

The following happens on output:

• Applications write the message object back to the station from which it was

received.

• Changes in the HTTP headers for the response are effected through the

WEBAPPSUPPORT library.

Header and Message Formats

Transaction Server Input Header Format

The following fields in the Transaction Server Input Header are important to

applications using the WEBPCM.

Field Description

Function Index If a trancode has been defined for HTTP messages on this

Window, this field contains the trancode index that indicates the

message source. Refer to the trancode field of Message Object

Format (Input/Output Message Format).

Function Status If delivery confirmation was requested, this status field contains

the result of the delivery.

WEBPCM Transaction Server to Internet Application Programming

2–26 3826 5286–007

Transaction Server Output Header Format

The following fields in the Transaction Server Output Header are important to

applications using the WEBPCM.

Field Description

Delivery Confirmation Flag Positive and negative delivery confirmation for TP-to-TP

messages are available. The confirmation for TP-to-TP

messages is similar to delivery confirmation for

messages sent to stations. This feature is invoked by

setting the Delivery Confirmation Flag to 1 and the

Delivery Confirmation Key field to a nonzero value in the

output header of the TP-to-TP message.

Delivery Confirmation Key Delivery Confirmation is supported for responses sent

through the WEBPCM.

Message Object Format (Input and Output Message Format)

The data message (sent to both Direct Window and Remote File Transaction Server

applications on input, and sent out for output) has the following format.

Field Description

Trancode Text that is always present in the first 17 bytes of the

message. It is the value set by the TRANCODE attribute

in the WEBPCM SERVICE definition, right padded with

blanks. It can be used for the Transaction Server trancode

feature, or an application can examine the field to

determine this is a message from the WEBPCM. The

character set used for the trancode is EBCDIC.

You can place the trancode into the URL, instead of

hard-coding it in the service. This practice makes it easier

to manage a system in which multiple programs are

running in one Transaction Server window. Refer to the

TRANCODE service attribute *URL setting in the Custom

Connect Facility Administration and Programming

Guide.

Input and Output store Variable-length data used by WEBAPPSUPPORT,

WEBPCM, or both to process the message. The

application should not directly modify any data in this field

but should use the functions in the WEBAPPSUPPORT

library to view or modify the contents. The length of the

entire message can be determined from the

WEBAPPSUPPORT procedure GET_MESSAGE_LENGTH.

 WEBPCM Transaction Server to Internet Application Programming

3826 5286–007 2–27

HTTP Tutorial

The following is a simplified overview of what HTTP messages contain.

Request Line HTTP Headers Content

• The Request Line identifies the method used (GET, POST, PUT), the identification

of the resource (also known as the URL), an optional query string, and the HTTP

protocol level.

• The HTTP Headers are usually name and value pairs that identify such things as

client capabilities (for example, language) and restrictions on the request (for

example, last modified date).

• Content on requests is used with POST (forms) or PUT (upload file), and is the data

for the request. It is optional.

Note: Except for the Content part, HTTP messages are in U.S. ASCII text

characters. Content format varies with the Content-Type.

The following text is a sample HTTP request, as sent by a browser. This request is a

read access (GET) of the /docs/ directory. The application does not see this raw

format. Carriage returns and line feeds are replaced with ~ and ^ respectively. No

input data is shown in this example.

GET /docs/ HTTP/1.0~^If-Modified-Since: Fri, 21 Aug 1998 13:08:34 GMT;
length=37298~^Referer: http://asn035:2488/~^Connection: Keep-Alive~^User-
Agent: Mozilla/4.5 [en] (Win95; I)~^Host: asn035:2488~^Accept: image/gif,
image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*~^Accept-
Encoding: gzip~^Accept-Language: en~^Accept-Charset: iso-8859-1,*,utf-
8~^Authorization: Basic ZmZmZmZmZmZmZmZmZmZm~^~^

HTTP Response (Server to Client)

The following is a simplified overview of what HTTP responses contain.

Status Line HTTP Headers Content

• The Status Line contains the protocol level, a status code, and explanatory text.

• The HTTP Headers are usually name-value pairs that identify such things as server

identification and content information (for example, length and format).

• The Content is the data for the response and is usually HTML.

http://asn035:2488/~

WEBPCM Transaction Server to Internet Application Programming

2–28 3826 5286–007

The following text is a sample HTTP response, as sent by a server. Carriage returns

and line feeds are replaced with ~ and ^ respectively. The Content data (HTML) has

been truncated.

HTTP/1.0 200 Document follows~^Last-Modified: Fri, 21 Aug 1998 13:08:34
GMT~^Mime-Version: 1.0~^Server: ClearPath NX/Atlas Web Server 5.0~^Date:
Thu, 28 Jan 1999 01
:16:30 GMT~^Content-Length: 37298~^Content-Type: text/html~^Connection:
Keep-Alive
~^Keep-Alive: timeout=10~^~^<HTML><HEAD><META HTTP-EQUIV="Content-Type"
CONTENT="t
ext/html; charset=iso-8859-1"><META NAME="Author" CONTENT="Mitchell
Fisher"><META NAME="GENERATOR" CONTENT="Mozilla/4.03 [en] (Win95; I)
[Netscape]"><TITLE>NX/Atlas
 Web Server Administration Site</TITLE></HEAD><BODY TEXT="#000000"
BGCOLOR="#FFFFFF">
<CENTER><IMG SRC="atlas.jpg" ALT="ClearPath MCP 8.0
NX/Atlas Web Server Documentation" BORDER=0 HEIGHT=151
WIDTH=426></CENTER> <CENTER><TABLE BORDER=0 COLS=1 WIDTH="60%"
><TR><TD><DIR><

Related Information

The standards organization, W3C, maintains the HTTP specification, which you can

download from http://www.w3.org/ (look for HTTP). This specification defines the

HTTP format, status codes, headers, and so forth that make up an HTTP message.

Also, books on CGI programming can provide information about using HTTP headers.

http://www.w3.org/

 WEBPCM Transaction Server to Internet Application Programming

3826 5286–007 2–29

Sample Applications

This subsection contains COBOL and ALGOL examples.

COBOL Examples

Basic Example

This example shows a COBOL application that uses the WEBPCM. It is a basic COBOL

Direct Window application that generates its own HTML response. It gets one HTTP

header from the WEBAPPSUPPORT library to put into the response.

This is a COBOL74 sample COMS program that serves Web users
* via NX/Atlas Web Server. It assumes that strings sent and
* received are padded by blanks and are in EBCDIC charset.
* (This compiles with both COBOL74 and COBOL85.)
*
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TEST-WEBAPP.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 COMS-MESSAGE-AREA PIC X(5000).
 01 WEB-MSG REDEFINES COMS-MESSAGE-AREA.
 03 WEB-TRANCODE PIC X(17).
 01 HTML-HEAD PIC X(54) VALUE IS
 "<HTML><HEAD><TITLE>Web App Sample</TITLE></HEAD><BODY>".
 01 HTML-TAIL PIC X(14) VALUE IS
 "</BODY></HTML>".
 01 HTML-BUFF PIC X(5000).
 77 HTML-START PIC 9(11) BINARY VALUE IS 1.
 77 HTML-LENGTH PIC 9(11) BINARY VALUE IS 0.
 77 MSG-COMPLETE PIC 9(11) BINARY VALUE IS 1.
 01 APP-PATH PIC X(17) VALUE IS "$APPLICATION-PATH".
 01 APP-PATH-VALUE PIC X(255).
 77 PTR PIC 9(11) BINARY VALUE IS 1.
 77 MSG-LENGTH PIC 9(11) BINARY VALUE IS 0.
 77 WEB-RESULT PIC S9(11) BINARY VALUE IS 0.
 88 WEB-OK VALUE 1.
 88 WEB-NO-OP VALUE 0.
 88 WEB-BADID VALUE -1.
 88 WEB-DENIED VALUE -2.
 88 WEB-SOFTERR VALUE -3.
 88 WEB-NOTAVAIL VALUE -4.
 COMMUNICATION SECTION.
 INPUT HEADER COMS-IN.
 OUTPUT HEADER COMS-OUT.

PROCEDURE DIVISION.
 CONTROLLER.
 CHANGE ATTRIBUTE LIBACCESS OF "WEBAPPSUPPORT" TO BYFUNCTION.
 CHANGE ATTRIBUTE LIBACCESS OF "DCILIBRARY" TO BYINITIATOR.
 ENABLE INPUT COMS-IN KEY "ONLINE".
 PERFORM PROCESS-INPUT THRU PROCESS-INPUT-EXIT
 UNTIL STATUSVALUE OF COMS-IN = 99.
 END-OF-TASK.
 STOP RUN.

WEBPCM Transaction Server to Internet Application Programming

2–30 3826 5286–007

 PROCESS-INPUT.
 RECEIVE COMS-IN MESSAGE INTO COMS-MESSAGE-AREA.
 IF STATUSVALUE OF COMS-IN NOT = 99
 IF NOT FUNCTIONSTATUS OF COMS-IN < 0
*
* - We have a message to handle -
*
 IF WEB-TRANCODE = "ATLAS-HTTP"
*
* - Message came from a web user -
*
 CALL "GET_HEADER OF WEBAPPSUPPORT"
 USING COMS-MESSAGE-AREA, APP-PATH, APP-PATH-VALUE
 GIVING WEB-RESULT
 IF WEB-OK
*
* - Good result for getting the header, build the HTML -
*
 MOVE 1 TO PTR
 STRING HTML-HEAD,
 "Your Application Path is " DELIMITED BY SIZE,
 APP-PATH-VALUE DELIMITED BY " ",
 HTML-TAIL DELIMITED BY SIZE
 INTO HTML-BUFF WITH POINTER PTR
 SUBTRACT 1 FROM PTR GIVING HTML-LENGTH
*
* - Update the output message with the HTML -
*

 CALL "SET_CONTENT OF WEBAPPSUPPORT"
 USING COMS-MESSAGE-AREA, HTML-BUFF, HTML-LENGTH, HTML-START,
 HTML-LENGTH, MSG-COMPLETE
 GIVING WEB-RESULT
 IF WEB-OK
*
* - We need to know how many bytes to send, get the
* length and send the message back to the station -
*
 CALL "GET_MESSAGE_LENGTH OF WEBAPPSUPPORT"
 USING COMS-MESSAGE_AREA, MSG-LENGTH
 GIVING WEB-RESULT
 MOVE MSG-LENGTH TO TEXTLENGTH OF COMS-OUT
 MOVE 1 TO DESTCOUNT OF COMS-OUT
 MOVE STATION OF COMS-IN TO DESTINATIONDESG OF COMS-OUT
 SEND COMS-OUT FROM COMS-MESSAGE-AREA.
 PROCESS-INPUT-EXIT.
 EXIT.

Using an External HTML File

You might want to use an HTML file that is external to the program, rather than hard

code HTML in the application. With this method, the application does not need to be

recompiled for each HTML change, which can happen frequently. You might also want

to use an HTML editing tool instead of hand coding the HTML.

If the HTML file is static, not needing any changes at the time of the response, the

application can direct the browser to read the file with a call to SET_REDIRECT, or

read the file and return the contents in the response.

 WEBPCM Transaction Server to Internet Application Programming

3826 5286–007 2–31

In most cases, some dynamic value might be needed for the HTML, such as data from

a database. In that case, you can use the WEBAPPSUPPORT procedure

MERGE_FILE_AND_DATA (or MERGE_DATA).

Here are example COBOL code portions that demonstrate its use.

01 FILE-NAME PIC X(255).
 01 REPLACE-DATA-BUFF.
 03 REPLACE-DATA OCCURS 5 TIMES.
 05 RD-NAME PIC X(20).
 05 RD-VALUE PIC X(30).
 01 REPLACED-BUFF PIC X(4000).
 01 RD-BUFF-LENGTH PIC 9(11) BINARY.
 01 ITEM-COUNT PIC 9(11) BINARY.
 01 ITEM-NAME-LENGTH PIC 9(11) BINARY VALUE IS 20.
 01 ITEM-VALUE-LENGTH PIC 9(11) BINARY VALUE IS 30.
 01 TRIM-BLANKS PIC 9(11) BINARY VALUE IS 1.
 :
*
* load REPLACE-DATA fields:
*
 MOVE SPACES TO REPLACE-DATA-BUFF.
 MOVE "Date" TO RD-NAME (1).
 MOVE "September 14, 1998" TO RD-VALUE(1).
 MOVE "State" TO RD-NAME (2).
 MOVE "Alabama" TO RD-VALUE(2).
 MOVE "Abbrev" TO RD-NAME (3).
 MOVE "AL" TO RD-VALUE(3).
 MOVE "State" TO RD-NAME (4).
 MOVE "Alaska" TO RD-VALUE(4).
 MOVE "Abbrev" TO RD-NAME (5).
 MOVE "AK" TO RD-VALUE(5).
 MOVE 5 TO ITEM-COUNT.
 :
 MOVE "*PUBLIC/WWWROOT/WEBAPP1/""RESPONSE.HTM""" TO FILE-NAME.
 CALL "MERGE_FILE_AND_DATA OF WEBAPPSUPPORT"
 USING CHARSET-EBCDIC, NO-STRING-TERMINATE,
 FILE-NAME, REPLACE-DATA-BUFF, ITEM-COUNT,
 ITEM-NAME-LENGTH, ITEM-VALUE-LENGTH, TRIM-BLANKS,
 REPLACED-BUFF, RD-BUFF-LENGTH
 GIVING WEB-RESULT.
 IF WEB-OK
 MOVE 1 TO PTR
 STRING HTML-HEAD DELIMITED BY SIZE,
 REPLACED-BUFF FOR RD-BUFF-LENGTH,
 HTML-TAIL DELIMITED BY SIZE
 INTO OUT-BUFF WITH POINTER PTR.
*
* (call SET_CONTENT with OUT-BUFF, send response)
*

Sample HTML for This Example:

<HTML><HEAD><TITLE>States</TITLE></HEAD>
<BODY TEXT="#000000" BGCOLOR="#FFFFFF">
<CENTER><IMG SRC="logo.jpg" ALT="ACME Logo" BORDER=0 HEIGHT=151
WIDTH=426>
<P>States & Their Abbreviations:</P>

<TABLE BORDER=0 COLS=2 WIDTH="70%">$REPLACE-BEGIN

WEBPCM Transaction Server to Internet Application Programming

2–32 3826 5286–007

<TR><TD>$REPLACE=State</TD> <TD>$REPLACE=Abbrev</TD></TR>$REPLACE-END
</TABLE>
$REPLACE=Date</CENTER></BODY></HTML>

Resulting HTML from the Previous HTML:

<HTML><HEAD><TITLE>States</TITLE></HEAD>
<BODY TEXT="#000000" BGCOLOR="#FFFFFF">
<CENTER><IMG SRC="logo.jpg" ALT="ACME Logo" BORDER=0 HEIGHT=151
WIDTH=426>
<P>States & Their Abbreviations:</P>

<TABLE BORDER=0 COLS=2 WIDTH="70%">
<TR><TD>Alabama</TD><TD>AL</TD></TR>
<TR><TD>Alaska</TD><TD>AK</TD></TR>
</TABLE>
September 14, 1998</CENTER></BODY></HTML>

In this example, the fields passed are not in the same order as the tag fields in the

HTML file. For the most efficient solution, the data fields supplied should be in the

same order as the HTML file.

 WEBPCM Transaction Server to Internet Application Programming

3826 5286–007 2–33

ALGOL Examples

ALGOL Include File

Included with the release is an include file for ALGOL programs that declares the

WEBAPPSUPPORT library, its procedures, and some useful DEFINEs.

Basic Example

This example shows a basic ALGOL Remote File application that generates its own

HTML response. It gets two HTTP headers from the WEBAPPSUPPORT library to put

into the response.

BEGIN % Sample ALGOL application that supports Web users.
 % Uses the Remote File interface.
 % Uses ASCII strings, with strings terminated by null byte.
 % The following INCLUDE file contains the WEBAPPSUPPORT library
 % declaration and all of its procedures.
$$INCLUDE "SYSTEM/CCF/WEBPCM/WEBAPPSUPPORT/INCLUDE/ALGOL"
EBCDIC VALUE ARRAY WebTrancodeText7 (7"ATLAS-HTTP" 47"00"),
 remoteUserHdrV7 ((7"$REMOTE-USER" 47"00"),
 applicationPathHdrV7 (7"$APPLICATION-PATH"
47"00");
EBCDIC ARRAY applicationPathValue [0: 255];
BOOLEAN done;
INTEGER fs, lenRead;
DEFINE maxRecSize = 9168 #; % remote file max
EBCDIC ARRAY outputArray [0: maxRecSize];
INTEGER messageLength;
POINTER p;
FILE remoteFile (KIND=REMOTE, FRAMESIZE=8, MYUSE=IO,
 MAXRECSIZE=maxRecSize);
EBCDIC ARRAY remoteUserValue [0: 100];
EBCDIC ARRAY transId [0: webTrancodeLen];
INTEGER webAppResult;
EBCDIC ARRAY webMessage [0: maxRecSize];
DEFINE
 htmlHead =
 7"<HTML><HEAD><TITLE>ALGOL Web App Sample</TITLE></HEAD><BODY>" #,
 htmlTail = 7"</BODY></HTML>" # ;
% %---------------
 PROCEDURE processWebInput ;
 % %---------------
 % We have a Web message, get two headers and build
 % a response.
 BEGIN
 webAppResult := get2Headers
 (webMessage, applicationPathHdr7, applicationPathValue,
 remoteUserHdr7, remoteUserValue);
 IF webAppResult = web_Ok
 THEN % got the two headers

BEGIN
 REPLACE p:outputArray [0] BY
 htmlHead, 7"<P>Your application path is ",
 applicationPathValue[0] UNTIL = 47"00", 7"
",
 7"Your user name is ",
 remoteUserValue[0] UNTIL = 47"00", 7".</P>",

WEBPCM Transaction Server to Internet Application Programming

2–34 3826 5286–007

 htmlTail, 47"00";
 % now place the HTML into the output message
 webAppResult := setContent
 (webMessage, outputArray, 0, OFFSET(p), TRUE);
 IF webAppResult = web_Ok
 THEN % get message length and write message
 BEGIN
 webAppResult := getMessageLength
 (webMessage, messageLength);
 WRITE (remoteFile, messageLength, webMessage);
 END; % setContent = web_Ok
 END; % get2Headers = web_Ok
 END OF processWebInput;
%------------------------ begin Main Program ---------------------------
 OPEN (remoteFile, OFFER);
 DO
 CASE WAIT (remoteFile.CHANGEEVENT, remoteFile.INPUTEVENT)
 OF BEGIN
 1: BEGIN % CHANGEEVENT
 fs := remoteFile.FILESTATE;
 done := (fs = VALUE(CLOSED)
 OR fs = VALUE(DEACTIVATED));
 END; % CHANGEEVENT
 2: BEGIN % INPUTEVENT
 REPLACE webMessage [webInTrancodeIx]
 BY " " FOR webTrancodeLen;
 READ (remoteFile, maxRecsize, webMessage);;
 IF webMessage [webInTrancodeIx]
 = webTrancodeText7 FOR webTrancodeLen
 THEN % trancode text tells us this is a Web message
 processWebInput
 ELSE
 ; % non-Web input ...
 END; % INPUTEVENT
 END % case WAIT
 UNTIL done;
END.

3826 5286–007 3–1

Section 3
WEBAPPSUPPORT Library Interface

Overview

The WEBAPPSUPPORT library is a library provided with the Custom Connect Facility

(CCF) release. The interface enables applications to call procedures in this library in

order to perform the following tasks:

• Process HTTP requests and return HTTP responses as WEBPCM applications

• Parse, create, modify, and transform XML documents

• Make HTTP requests to HTTP servers

• Compress/decompress data using the DEFLATE compression method

How Procedure Name Indicates Application Language

The procedures are described here as they are declared in the WEBAPPSUPPORT

library. You can name a procedure based on the language you are using.

• For COBOL and AB Suite applications, use underscores in the name (for example,

CREATE_KEY).

• For EAE applications, use dashes in the name (for example, CREATE-KEY).

• For applications written in other languages, especially ALGOL, do not use

underscores or dashes in the name (for example, createKey).

WEBAPPSUPPORT Connection Library Interface

The procedures documented in this guide are available to ALGOL/NEWP applications

through a Connection Library interface. The interface enables programs that call into

WEBAPPSUPPORT to not be forcibly terminated if WEBAPPSUPPORT is terminated,

such as by an operator issuing a DS command.

 The INTERFACENAME library parameter is “WEBAPPSUPPORTCL”.

An approval procedure is not used.

Note: Applications that use objects stored in WEBAPPSUPPORT, such as XML

document tags or HTTP Client objects must be able to handle the sudden loss of

those objects when the WEBAPPSUPPORT library delinks.

WEBAPPSUPPORT Library Interface

3–2 3826 5286–007

Because the Connection library definition is unique to each application,

the WEBAPPSUPPORT include file

(*SYSTEM/CCF/WEBPCM/WEBAPPSUPPORT/INCLUDE/ALGOL) is not updated with a

Connection Library definition. The following code is sample ALGOL code.

TYPE CONNECTION BLOCK WEBAPPSUPPORTCL;
BEGIN
 PROCEDURE CHGPROC (CONN_INDEX, NEW_STATE, REASON, ACTOR, IMDSED);
 VALUE CONN_INDEX, NEW_STATE, REASON, IMDSED;
 INTEGER CONN_INDEX, NEW_STATE, REASON;
 TASK ACTOR;
BOOLEAN IMDSED;
BEGIN
 (change procedure handling code)
 END; % Procedure CHGPROC

 INTEGER PROCEDURE setTracing (TRACE_ON);
 VALUE TRACE_ON;
 BOOLEAN TRACE_ON;
 IMPORTED;

 (more imported WEBAPPSUPPORT procedures)

END WEBAPPSUPPORTCL;

WEBAPPSUPPORTCL SINGLE LIBRARY
 CLWEBAPPSUPPORT (% AUTOLINK = TRUE,
 LIBACCESS = BYFUNCTION,
 FUNCTIONNAME = "WEBAPPSUPPORT.",
 INTERFACENAME = "WEBAPPSUPPORTCL.",
 CHANGE = CHGPROC);

 %--- Begin Client Program ---

 RSLT := LINKLIBRARY (CLWEBAPPSUPPORT, DONTWAITFORFILE);

 IF ISVALID (CLWEBAPPSUPPORT.setTracing)
 THEN
 BEGIN
 DISPLAY (" setTracing by CL is Valid");
 % Use reference procedures to reference the procedure to use:
 setTracingP := CLWEBAPPSUPPORT.setTracing;
 END
 ELSE % older WEBAPPSUPPORT, use server library interface
 setTracingP := setTracing;
 setTracingP (TRUE);

WEBAPPSUPPORT EAE Interface

The procedures documented in this guide are also available to applications through an

EAE interface. The following table describes the notes that appear in the parameter

descriptions of these procedures.

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–3

Notes Description

[bin] The field contains binary data that the application should not

examine or display. The application can write LOW-VALUES

into the field to set a null value.

[longa] The field contains alphanumeric data in the application’s

character set. If the first character is set to a space character,

the field is assumed null or empty.

The RESULT field contains the procedure result.

Variable size parameters (usually EBCDIC array parameters) are used with a size field

set by the EAE application that precedes the parameter, which specifies the size of

the variable size parameter. For example:

SD SOURCE-SIZE N5 SOURCE size, for example, 10000

SD SOURCE An [longa]

The application sets the SOURCE-SIZE field to the value 10000, and then sets the size

of SOURCE to 10000 bytes.

For the best performance, use 256 or 2048 for variable size parameters when

possible. If a different size is required, try to use that same size most of the time, for

example, 10000.

WEBAPPSUPPORT General Parameters File

At initialization, the WEBAPPSUPPORT library refers to an optional parameters file to

control general operation if that file exists. This parameters file operates similarly to

the parameters file for XML, *SYSTEM/CCF/WEBAPPSUPPORT/PARAMS/XML.

This parameters file is *SYSTEM/CCF/WEBAPPSUPPORT/PARAMS and exists on the

SL WEBAPPSUPPORT family. A sample file is released as

*SYSTEM/CCF/WEBAPPSUPPORT/PARAMS/EXAMPLE. It contains these directives.

% Sample WEBAPPSUPPORT General Parameters
 % TEMPFAMILY "DISK";
 % TEMPFAMILY is the MCP family used for temporary files to store
 % large amounts of data. Defaults to DL SORT family.
 % TERMINATENOUSERS FALSE;
 % If true, WEBAPPSUPPORT terminates when there are no applications
 % linked to it, otherwise WEBAPPSUPPORT continues running.
 % TRACEFAMILY "DISK";
 % TRACEFAMILY is the MCP family where WEBAPPSUPPORT trace
 % files are created. Defaults to SL WEBAPPSUPPORT family.

WEBAPPSUPPORT Library Interface

3–4 3826 5286–007

The following four directives are supported.

• TEMPFAMILY directive: The syntax for this directive is

TEMPFAMILY <family>

where <family> is a quoted string for the family where temporary files are

created. The default is the DL SORT family.

• TERMINATENOUSERS directive: The syntax for this directive is

TERMINATENOUSERS <boolean>

where <boolean> can have the following values:

− FALSE: continue running when there are no applications linked to the

WEBAPPSUPPORT library. This is the default value in MCP release 17.0 or later.

− TRUE: terminate when there are no applications linked to the

WEBAPPSUPPORT library. This is the default value in MCP releases prior to

17.0.

• TRACEFAMILY directive: the syntax for this directive is

TRACEFAMILY <family>

where <family> is a quoted string for the family where trace files are created. The

default is the SL WEBAPPSUPPORT family unless the TRACEFILE file attribute

FAMILYNAME in the *SYSTEM/CCF/WEBAPPSUPPORT codefile has been changed.

The TRACEFAMILY directive overrides the codefile modification of the TRACEFILE

file attribute FAMILYNAME attribute.

• TRACEERRORS directive: The syntax for this directive is

TRACEERRORS <boolean>

where <boolean> can have the following values:

− FALSE: application procedure errors for all applications are not traced.

− TRUE: application procedure errors for all applications are traced.

WEBAPPSUPPORT Commands

This WEBAPPSUPPORT library offers an operator interface to manage the functions of

the library. You can enter commands to WEBAPPSUPPORT through the CCF WEBPCM

module or through Accept commands to the WEBAPPSUPPORT library.

For example, from MARC issuing the command through WEBPCM, the operator would

enter the following:

NA CCF WEBPCM WEBAPPSUPPORT STATUS

The response is returned to the MARC operator.

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–5

An example of using an Accept command through the WEBAPPSUPPORT library

follows. Assume the mix number of the library is 1234:

1234AX STATUS

The response is displayed in the system messages.

Syntax

�� WEBAPPSUPPORT ��� [STATUS] ��
 �� CONFIG[URATION] ������������������������������������
 �� GC ���
 �� JPM <jpmnum> ���� LOG ������ CLOSE ���������������
 ! "�� LEVEL <log level>��! !
 �� QUIT ���
 �� RESTARTXML ���
 �� TRACE ��
 ! !
 !�� + ������� [ALL] ���[ERRORS]����
 !�� � ���! ��<mix >���! !
 ! �� DEBUG ���������������
 ! "� DUMP ����������������
 "������� CLOSE �����������������������

Where <log level> is OFF, FATAL, ERROR, INFO, WARN, or DEBUG.

Explanation

WEBAPPSUPPORT STATUS

Displays the status and some configuration for each Java Parser Module (JPM).

WEBAPPSUPPORT CONFIG

Displays for the operator the configuration currently in use in the WEBAPPSUPPORT

library and identifies the current TEMPFAMILY and TRACEFAMILY settings.

WEBAPPSUPPORT GC

Returns the number of application stacks that have had their memory returned to the

available pool. This form of the command also reduces memory used by the

WEBAPPSUPPORT library from processing large XML documents that have been

released.

This form of the command performs garbage collection on the library to make

memory previously held for applications, which have since have terminated, available

to new applications. A CU in the library stack might show much reduction in memory

held.

WEBAPPSUPPORT JPM

Enables the operator to control the release of JPM logs and the level of JPM logging.

An operator can cause the current JPM log to be closed and a new log opened. The

new log has a different timestamp in the log file name from the old log.

WEBAPPSUPPORT Library Interface

3–6 3826 5286–007

The operator can dynamically change the level of JPM logging. If the JPM terminates

and restarts, the JPM uses the log level in its configuration file.

WEBAPPSUPPORT QUIT

Directs the WEBAPPSUPPORT library to terminate when there are zero applications

linked.

WEBAPPSUPPORT RESTARTXML

Terminates and restarts XML processing.

This command allows the operator to change the XML configuration and have that

change take effect without terminating WEBAPPSUPPORT. WEBAPPSUPPORT waits

for XML requests that are being processed to complete, and then close the sockets to

the JPMs, rereads the XML configuration file, and restarts XML processing

WEBAPPSUPPORT TRACE

Displays the status of tracing for WEBAPPSUPPORT.

WEBAPPSUPPORT TRACE +
WEBAPPSUPPORT TRACE –

Turns on tracing on and off for WEBAPPSUPPORT.

WEBAPPSUPPORT TRACE + ALL
WEBAPPSUPPORT TRACE – ALL

Turns tracing on and off for all WEBAPPSUPPORT application stacks.

WEBAPPSUPPORT TRACE + <mix number>
WEBAPPSUPPORT TRACE – <mix number>

Turns tracing on and off for specified WEBAPPSUPPORT application stacks.

WEBAPPSUPPORT TRACE + DEBUG
WEBAPPSUPPORT TRACE – DEBUG

Turns tracing and internal library debugging on or off.

WEBAPPSUPPORT TRACE + DUMP
WEBAPPSUPPORT TRACE – DUMP

Turns program dumping on or off for the stack of an application when a software fault

occurs in the WEBAPPSUPPORT library.

WEBAPPSUPPORT TRACE + ALL ERRORS

WEBAPPSUPPORT TRACE - ALL ERRORS

WEBAPPSUPPORT TRACE + ERRORS

WEBAPPSUPPORT TRACE - ERRORS

Turns on or off error tracing for all applications.

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–7

WEBAPPSUPPORT TRACE + <mix> ERRORS

WEBAPPSUPPORT TRACE - <mix> ERRORS

Turns on or off error tracing for a specific WEBAPPSUPPORT application stack.

WEBAPPSUPPORT TRACE CLOSE

Closes tracing for WEBAPPSUPPORT.

Examples

Example 1

This command displays the status of WEBAPPSUPPORT:

NA CCF WEBPCM WEBAPPSUPPORT STATUS

Unisys Corporation WEBAPPSUPPORT

Version 53.189.8016 Compiled 02/07/2009 @ 11:47

Connection To WEBPCM: Linked

3 Callers Linked

XML Parser JPM1:

 Host 192.168.16.21, Port 51117

 1 Sockets Open

 Status: Available

 Standby: False

 Version: 53.1.189.8016

 Threads: Current = 10, Min = 10, Max = 40

 Logging: Level = Warn, File = logs/log.txt

 Documents Parsed/Transformed = 41

 JVM:

 Version: 1.6.0_07

 Free = 96 MB, Total = 127 MB, Max = 511 MB

XML Parser JPM2:

 Host 192.168.16.31, Port 51117

 1 Sockets Open

 Status: Available

 Standby: True

 Version: 53.1.189.8016

 Threads: Current = 10, Min = 10, Max = 40

 Logging: Level = Warn, File = logs/log.txt

 Documents Parsed/Transformed = 0

 JVM:

 Version: 1.6.0_07

 Free = 96 MB, Total = 127 MB, Max = 511 MB

Example 2

This command displays the status of tracing for WEBAPPSUPPORT:

NA CCF WEBPCM WEBAPPSUPPORT TRACE

WEBAPPSUPPORT Library Interface

3–8 3826 5286–007

Tracing for All Application Stacks Is Off

Tracing Is On For Specific Stacks: 4456, 4473

Internal Debug tracing Is Off

PDUMPS Will Not Be Taken For Faults

Tracing To File *TRACE/CCF/WEBAPPSUBPPORT/19990623/"141503.TXT" ON

521HL

Example 3

This command closes the open trace file for WEBAPPSUPPORT, tracing continues in a

new trace file:

NA CCF WEBPCM WEBAPPSUPPORT TRACE CLOSE

Tracing File *TRACE/CCF/WEBAPPSUBPPORT/yyyymmdd/"141503.TXT" ON 521HL

Released

Example 4

This command turns on TRACE and DEBUG for WEBAPPSUPPORT:

NA CCF WEBPCM WEBAPPSUPPORT TRACE + DEBUG

Trace (Internal) DEBUG Turned On

Example 5

This command turns on tracing for all WEBAPPSUPPORT application stacks:

NA CCF WEBPCM WEBAPPSUPPORT TRACE + ALL

Tracing For All Application Stacks Turned On

Example 6

This command turns on tracing for WEBAPPSUPPORT application stack 4457:

NA CCF WEBPCM WEBAPPSUPPORT TRACE + 4457

Tracing Turned On for Stack 4457

Example 7

This command executes a garbage collection:

NA CCF WEBPCM WEBAPPSUPPORT GC

Garbage Collect Complete, 12 Stacks Cleared

Example 8

This command closes the current log for JPM 1 and starts a new log:

NA CCF WEBPCM WEBAPPSUPPORT JPM 1 LOG CLOSE

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–9

Example 9

This command sets the log level for JPM 1 to debug:

NA CCF WEBPCM WEBAPPSUPPORT JPM 1 LEVEL DEBUG

Example 10

This command restarts XML processing:

NA CCF WEBPCM WEBAPPSUPPORT RESTARTXML

XML Processing Will Be Restarted

Example 11

This command returns the WEBAPPSUPPORT library configuration.

NA CCF WEBPCM WEBAPPSUPPORT CONFIG

Current Configuration:
 TEMPFAMILY DISK
 TRACEFAMILY DISK

 PARSER 1:
 HOST 192.168.16.21
 PORT 51117
 STANDBY false
 INITIATEJVM true
 TARGET 1
 JAVAFAMILY DISK
 JAVAHOMEDIR JRE6
 JVMATTRS -server -Xshare:off -XX:+UseParallelGC
 -XX:ParallelGCThreads=4 -XX:-UseAdaptiveSizePolicy
 -Xmn458m -Xms1376M -Xmx1376M
 JPMFAMILY DISK
 JPMHOMEDIR XMLJPM
 TASKATTRS MPID=XMLJPM1; FILE STDOUT=(KIND=DISK, PATHNAME=/-
/DISK/DIR/XMLJPM/JPM1/LOGS/STDOUT-$TIME.TXT, EXTMODE=ASCII,
PROTECTION=PROTECTED, UNIQUETOKEN="$"); FILE STDIN=(KIND=DI SK,
PATHNAME=/-/DISK/DIR/XMLJPM/JPM1/LOGS/STDERR-$TIME.TXT,EX TMODE=ASCII,
PROTECTION=PROTECTED, UNIQUETOKEN="$");

WEBAPPSUPPORT Library Interface

3–10 3826 5286–007

Returned Result Values for WEBAPPSUPPORT

Procedures

All procedures return the same result values unless noted under each procedure.

Value Description

 1 Successful.

 0 No-op: Possibilities include that no data is available to return.

–1 Invalid Transaction ID: Possibilities include that the browser user has

terminated the connection.

–2 Response not allowed.

–3 Software Error: Possibilities include a corrupted Message Object, a

buffer that is too small, or some other fault on the stack. When the

buffer being read from or written into is too small, a trace message is

written to the trace file and also displayed at the system ODT

indicating the likelihood is that the buffer is too small.

–4 Service Unavailable: WEBAPPSUPPORT cannot link to the WEBPCM,

or the WEBPCM is not linked to the Web Transaction Server provider.

–15 Character set not available: The CENTRALSUPPORT and CCSFILE

installed on the system do not support the character set.

–16 File character set not available: The EXTMODE of the file used is not

supported by the CENTRALSUPPORT and CCSFILE installed on the

system.

–17 Translation not available: The mapping between the input and output

character sets is not supported by the CENTRALSUPPORT and

CCSFILE installed on the system.

–18 Buffer too small: The buffer being read from or written into is too

small. A trace message is also written to the trace file and is

displayed at the system ODT to indicate the likelihood that the buffer

is too small.

Note: This error is reported only if both WEBAPPSUPPORT and

the application program are running at Interface Level 2 or higher;

otherwise, the buffer too small condition is reported as a software

error.

–20 Maximum length too small: Either the length of a returned name,

including any terminating byte, exceeds the MAX_NAME_LEN

parameter, or the length of a returned value, including any

terminating bye, exceeds the MAX_VALUE_LEN parameter.

Note: This error is reported only if both WEBAPPSUPPORT and

the application program are running at Interface Level 2 or higher;

otherwise, the maximum-length-too-small condition is reported as a

software error.

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–11

Procedure Groupings

The WEBAPPSUPPORT library procedures are grouped as follows in this section. An

explanation about “Using the Trace File” is included at the end of the General

Procedures subsection.

• General Procedures

• WEBPCM Procedures

• XML Procedures

• HTTP Client Procedures

• Regular Expressions Procedures

General Procedures

The procedure topics describe the syntax, parameters, and possible return values.

Each topic presents the syntax for

• A COBOL85 entry point, which has uppercase characters and underscores

An example is CREATE_KEY.

• An ALGOL entry point, which has lower-case and upper-case characters and no

underscores

An example is createKey.

• An EAE entry point, which has upper-case characters and dashes

An example is CREATE-KEY.

Note: For more information on EAE and the notes used in the procedure

description text of this guide, refer to “WEBAPPSUPPORT EAE Interface”

earlier in this section.

WEBAPPSUPPORT Library Interface

3–12 3826 5286–007

CLEANUP

Causes the library to clean up its structures used for the application when called by

the application.

Syntax

PROCEDURE CLEANUP;

For example, in COBOL at the program exit, use the following syntax:

CALL "CLEANUP OF WEBAPPSUPPORT"

PROCEDURE CLEANUP1 (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

GLB_PARAM has the format:

SG-GLB-PARAM GROUP
 SG-PARAM GROUP
 SD RESULT S5

CREATE_KEY

Creates a key object in WEBAPPSUPPORT.

Each application stack can have up to 65535 key objects stored at once. Key objects in

WEBAPPSUPPORT cannot be shared by application stacks. Key objects can be used

for multiple encryptions or decryptions

Syntax

INTEGER PROCEDURE CREATE_KEY
 (CONTAINER, ALGORITHM, KEY_SIZE, KEY_VALUE, PERMANENT,
 GENERATE_KEY, SERVICE_NAME, KEY_TAG);
 EBCDIC ARRAY CONTAINER, SERVICE_NAME, KEY_VALUE [0];
 INTEGER ALGORITHM, KEY_SIZE, PERMANENT,
 GENERATE_KEY, KEY_TAG;

INTEGER PROCEDURE createKey
 (CONTAINER, ALGORITHM, KEY_SIZE, KEY_VALUE, PERMANENT,
 GENERATE_KEY, SERVICE_NAME, KEY_TAG);
 VALUE ALGORITHM, KEY_SIZE, PERMANENT,
 GENERATE_KEY;
 EBCDIC ARRAY CONTAINER, SERVICE_NAME, KEY_VALUE [*];
 INTEGER ALGORITHM, KEY_SIZE, PERMANENT,
 GENERATE_KEY, KEY_TAG;

PROCEDURE CREATE-KEY (GLB_PARAM);

 EBCDIC ARRAY GLB_PARAM [0];

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–13

Parameters

CONTAINER is a string in the character set of the application that identifies the key

container and can be null if the container is to be temporary. The key container either

already exists in MCP Cryptography or is created from this procedure call.

ALGORITHM identifies the encryption algorithm to be used. Values are equivalent to

the values for the iAlgorithmID parameter to the McpCryptCryptData procedure in

MCAPISUPPORT.

KEY_SIZE is the size in bits of the key to use. If the key container exists, this value

should be zero.

KEY_VALUE is binary data that is the unencrypted key value and must be KEY_SIZE bits

long.

PERMANENT indicates whether or not the created key container should be permanent

(1) or temporary (0). Only temporary is supported in Release 14.0.

GENERATE_KEY indicates whether or not to generate a random symmetric key.

• 0 = do not generate a key. Use the KEY_VALUE parameter for the key.

• 1 = generate the key. The generated key value is returned in the KEY_VALUE

parameter..

SERVICE_NAME is a string in the character set of the application. If null, the usercode

of the applicaion must match the usercode for the key container. If non-null, the

service name of the application is checked for matching to the service name of the

key container.

KEY_TAG is the returned tag that references the key object in WEBAPPSUPPORT.

WEBAPPSUPPORT Library Interface

3–14 3826 5286–007

GLB_PARAM has the following format:
Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD CONTAINER-SIZE N5

 SD CONTAINER An

 SD ALGORITHM N12

 SD KEY-SIZE N12

 SD KEY-VALUE-SIZE N5

 SD KEY-VALUE An

 SD PERMANENT N5

 SD GENERATE-KEY N5

 SD SERVICE-NAME-SIZE N5

 SD SERVICE-NAME An

 SD KEY-TAG A6

CONTAINER size, for example, 256

[longa]

KEY-VALUE size, for example, 256

[longa]

SERVICE-NAME size, for example, 256

[longa]

[bin]

Possible Result Values

In addition to the standard return results, these possible values can be returned.

Value Description

–120 The maximum keys are stored.

–121 The XML Encryption License Key is required.

–122 The MCAPI is unavailable.

–124 The container name is invalid.

–125 The algorithm is not supported

–126 The asymmetric key container cannot be created.

–127 The key size is not supported.

–129 The key container does not exist.

–130 The key container cannot be accessed.

–131 Permanent key container is not supported.

CURRENT_UTIME

Returns to a COBOL application the current time in the ALGOL TIME(57) format, which

is the current time adjusted for UTC. UTC time is used for all Web-related times, such

as time fields in HTTP headers.

Syntax

INTEGER PROCEDURE CURRENT_UTIME (TIME57);
 REAL TIME57;

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–15

Parameter

TIME57 is the ALGOL TIME(57) value.

DATE_TO_TIME57

Behaves similarly to the HTTP_DATE_TO_INT procedure except that successful

conversion returns a real word containing the equivalent time in the ALGOL TIME(57)

format.

Syntax

INTEGER PROCEDURE HTTP_DATE_TO_TIME57
 (CHARSET, STRING_TERMINATE,

 DATE_STRING, DATE_REAL);
 INTEGER CHARSET, STRING_TERMINATE;
 EBCDIC ARRAY DATE_STRING [0];
 REAL DATE_REAL;

INTEGER PROCEDURE httpDateToTime57
 (CHARSET, STRING_TERMINATE,

 DATE_STRING, DATE_REAL);
 VALUE CHARSET, STRING_TERMINATE;
 INTEGER CHARSET, STRING_TERMINATE;
 EBCDIC ARRAY DATE_STRING [0];
 REAL DATE_REAL;

Parameters

CHARSET is the application character set: 0 = EBCDIC, 1 = ASCII.

STRING_TERMINATE indicates if the application terminates its strings with nulls:

0 = FALSE (blanks are used), 1 = TRUE.

DATE_STRING is the date in rfc1123-date, rfc850-date, or asctime-date format as

defined in the HTTP specifications. Examples of the three formats are listed

respectively below:

Fri, 12 Dec 1997 23:59:59 GMT

Friday, 12-Dec-97 23:59:59 GMT

Fri, Dec 12 23:59:59 1997

DATE_REAL is the corresponding TIME(57) format real value.

WEBAPPSUPPORT Library Interface

3–16 3826 5286–007

DECODE_BINARY64

Decodes a string of Binary 64-encoded data into the original form.

Syntax

INTEGER PROCEDURE DECODE_BINARY64
 (CHARSET, SOURCE, SOURCE_START, SOURCE_LEN,
 DEST, DEST_START, DEST_LEN);
 INTEGER CHARSET, SOURCE_START, SOURCE_LEN,
 DEST_START, DEST_LEN;
 EBCDIC ARRAY SOURCE,
 DEST [0];

INTEGER PROCEDURE decodeBinary64
 (CHARSET, SOURCE, SOURCE_START, SOURCE_LEN,
 DEST, DEST_START, DEST_LEN);
 VALUE CHARSET, SOURCE_START, SOURCE_LEN,
 DEST_START;
 INTEGER CHARSET, SOURCE_START, SOURCE_LEN,
 DEST_START, DEST_LEN;
 EBCDIC ARRAY SOURCE,
 DEST [*];

PROCEDURE DECODE-BINARY64 (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

CHARSET is the MLS character set in which the data in the SOURCE parameter is

encoded.

SOURCE is the array containing the Binary 64-encoded data.

SOURCE_START is the zero-based offset into SOURCE and indicates where the

encoded data starts.

SOURCE_LEN is the length of the data in SOURCE.

DEST is the array that receives the unencoded data.

DEST_START is the zero-based offset into DEST and indicates where the unencoded

data starts.

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–17

DEST_LEN is the length of data returned in the DEST parameter.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD CHARSET N5

 SD SOURCE-SIZE N5

 SD SOURCE An

 SD SOURCE-START N5

 SD SOURCE-LEN N5

 SD DEST-SIZE N5

 SD DEST An

 SD DEST-START N5

 SD DEST-LEN N5

SOURCE size, for example, 2048

[longa]

DEST size, for example, 256

[longa]

Possible Result Values

In addition to the standard return results, these possible values can be returned.

Value Description

–35 The procedure call did not specify a field. The start or length parameters

contained an error.

–53 Source is not valid Binary 64.

DECODE_UTF8

Decodes a UTF-8 encoded string of characters into a string of characters in the

character set specified in the application.

Syntax

INTEGER PROCEDURE DECODE UTF8
 (CHARSET, UTF_STRING, UTF_LEN,
 DECODED_STRING, DECODED_LEN);
 INTEGER CHARSET, UTF_LEN,
 DECODED_LEN;
 EBCDIC ARRAY UTF_STRING, DECODED_STRING [0];

INTEGER PROCEDURE decodeUTF8
 (CHARSET, UTF_STRING, UTF_LEN,
 DECODED_STRING, DECODED_LEN);
 VALUE CHARSET, UTF_LEN;
 INTEGER CHARSET, UTF_LEN,
 DECODED_LEN;
 EBCDIC ARRAY UTF_STRING, DECODED_STRING [*];

PROCEDURE DECODE-UTF8 (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

WEBAPPSUPPORT Library Interface

3–18 3826 5286–007

Parameters

CHARSET is the character set to which you want to decode: 0 = EBCDIC, 1 = ASCII, or

values defined in the MultiLingual System Guide as Ccsnumbers that are translatable

from UCS2. UCS2NT (84) is also supported.

UTF_STRING is the buffer that contains the UTF-8 encoded characters.

UTF_LEN is the length in bytes of UTF_STRING.

DECODED_STRING is the buffer that is to contain the decoded string.

DECODED_LEN is the length in bytes of DECODED_STRING

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD CHARSET N5

 SD UTF-STRING-SIZE N5

 SD UTF-STRING An

 SD UTF-LEN N5

 SD DECODED-STRING-SIZE N5

 SD DECODED-STRING An

 SD DECODED-LEN N5

UTF-STRING size, for example, 2048

[longa]

DECODED-STRING size, for example, 2048

[longa]

Possible Result Values

In addition to the standard return results, these possible values can be returned.

Value Description

–15 Character set not available. The CENTRALSUPPORT and CCSFILE installed on

the system does not support the character set.

–17 Translation between CHARSET and UCS2 is not available. The mapping

between the two character sets is not supported by the CENTRALSUPPORT

and CCSFILE installed on the system.

–32 Invalid UTF-8. UTF_STRING contains invalid UTF-8 value.

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–19

DECRYPT_DATA

Decrypts data from an array or from an MCP file into an array or MCP file.

Syntax

INTEGER PROCEDURE DECRYPT_DATA
 (SOURCE_TYPE, SOURCE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST, DEST_START, DEST_LEN,
 IV, REMOVE_PAD, KEY_TAG);

 INTEGER SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST_START, DEST_LEN,
 REMOVE_PAD, KEY_TAG;
 EBCDIC ARRAY IV, SOURCE, DEST [0];

INTEGER PROCEDURE decryptData
 (SOURCE_TYPE, SOURCE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST, DEST_START, DEST_LEN,
 IV, REMOVE_PAD, KEY_TAG);
 VALUE SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST_START,
 REMOVE_PAD, KEY_TAG;
 INTEGER SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST_START, DEST_LEN,
 REMOVE_PAD, KEY_TAG;
 EBCDIC ARRAY IV, SOURCE, DEST [*];

PROCEDURE DECRYPT-DATA (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

SOURCE_TYPE identifies the type of source of the data to be decrypted.

• 1 = the SOURCE parameter contains the data to be decrypted.

• 2 = the SOURCE parameter contains the MCP file name of the data to be

decrypted. See the FILENAME_FORMAT option in the SET_OPTION procedure.

SOURCE is the array containing source information. If SOURCE_TYPE is 2, the file name

in SOURCE is coded in the character set of the application.

SOURCE_START is a zero-based offset into the SOURCE array and indicates where the

supplied information starts.

SOURCE_LEN is the length in bytes of the data in the SOURCE parameter. If

SOURCE_TYPE is 2, then SOURCE_LEN can be zero.

DEST_TYPE identifies the type of destination for data to be decrypted.

• 1 = the DEST parameter contains decrypted data on procedure return.

• 2 = the DEST parameter contains the MCP file name to store the decrypted data.

See the FILENAME_FORMAT option in the SET_OPTION procedure.

WEBAPPSUPPORT Library Interface

3–20 3826 5286–007

DEST is the array containing destination information. If DEST_TYPE is 2, DEST is coded

in the character set of the application.

DEST_START is a zero-based offset into the DEST array and indicates where the

supplied information starts.

DEST_LEN is the length in bytes of the data in the DEST parameter. If DEST_TYPE is 2,

then DEST_LEN can be zero.

IV is the initialization vector that was used to encrypt the data. The size of the data in

the initialization vector depends on the encryption algorithm used.

REMOVE_PAD indicates whether or not to remove padding bytes from the decrypted

data.

• 0 = do not remove any pad bytes after decrypting.

• 1 = remove pad bytes after decrypting. The last pad byte added is the number of

pad bytes added to the unencrypted data. For example, if the block size of the

encryption method is eight, and the length in bytes of the data before being

encrypted was five, the data after decryption might be in hexadecimal:

x3132333435000003. Also, the resulting length of the returned data is reduced by

three, returning five bytes.

KEY_TAG is the key object used to decrypt the data.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD SOURCE-TYPE N5

 SD SOURCE-SIZE N5

 SD SOURCE An

 SD SOURCE-START N5

 SD SOURCE-LEN N5

 SD DEST-TYPE N5

 SD DEST-SIZE N5

 SD DEST An

 SD DEST-START N5

 SD DEST-LEN N12

 SD IV-SIZE N5

 SD IV An

 SD REMOVE-PAD N5

 SD KEY-TAG A6

SOURCE size, for example, 2048

[longa]

DEST size, for example, 2048

[longa]

IV size, for example, 256

[longa]

[bin]

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–21

Possible Result Values

In addition to the standard return results, these possible values can be returned.

Value Description

−121 The XML Encryption Key is required.

0 No-op for any of the following reasons:\

• The destination length is invalid.

• The destination length is not supported.

• An attribute error occurred creating the file.

−11 The file is not available.

−13 An error occurred setting the file name.

−25 An error occurred writing the file.

−35 The procedure call did not specify a field.

−47 The source length or start is invalid.

−55 The destination start is invalid.

−122 The MCAPI is unavailable.

−123 The key is invalid.

DEFLATE_DATA

Compresses data using the Deflate method defined in RFC 1951. The XML Parser Java

Parser Module (JPM) must be available to use this procedure.

If the source of the uncompressed data is an MCP file, that file is not read through the

WEBAPPSUPPORT library file cache.

Only stream files are supported for output.

See the SET_OPTION procedure, options DEFLATE_LEVEL and DEFLATE_STRATEGY.

See also the INFLATE_DATA procedure.

Syntax

INTEGER PROCEDURE DEFLATE_DATA
 (SOURCE_TYPE, SOURCE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST, DEST_START, DEST_LEN,
 DEFLATE_FORMAT, CRC_TYPE, CRC);
 INTEGER SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST_START, DEST_LEN,
 DEFLATE_FORMAT, CRC_TYPE, CRC;
 EBCDIC ARRAY SOURCE,
 DEST [0];

WEBAPPSUPPORT Library Interface

3–22 3826 5286–007

INTEGER PROCEDURE deflateData
 (SOURCE_TYPE, SOURCE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST, DEST_START, DEST_LEN,
 DEFLATE_FORMAT, CRC_TYPE, CRC);
 VALUE SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST_START,
 DEFLATE_FORMAT, CRC_TYPE;
 INTEGER SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST_START, DEST_LEN,
 DEFLATE_FORMAT, CRC_TYPE, CRC;
 EBCDIC ARRAY SOURCE,
 DEST [*];

PROCEDURE DEFLATE-DATA (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

SOURCE_TYPE identifies the type of the source for the data to be compressed.

• 1 = SOURCE contains the data to be compressed.

• 2 = SOURCE contains the MCP file name of the data to be compressed. The name

is in display format or pathname format. See the FILENAME_FORMAT option in the

SET_OPTION procedure.

SOURCE is the array containing the uncompressed data or the name of the file in the

application character set that contains the uncompressed data.

SOURCE_START is the zero-based offset into SOURCE array and indicates where the

uncompressed data or file name starts.

SOURCE_LEN is the length in bytes of the data in SOURCE.

DEST_TYPE identifies the type of the destination for the compressed data.

• 1 = DEST contains the compressed data.

• 2 = DEST contains the MCP file name of the file to which the compressed data is

written. The name is in display format or pathname format. The file is created new,

and an existing file of the same name is overwritten. See the FILENAME_FORMAT

and FILE_ATTRIBUTES options in the SET_OPTION procedure.

• 3 = DEST contains the MCP file name of the file to which the compressed data is

written. The name is in display format or pathname format. The file must already

exist, and the compressed data is appended. See the FILENAME_FORMAT and

FILE_ATTRIBUTES options in the SET_OPTION procedure.

DEST is the array that receives the compressed data or contains the name of the file in

the application character set to which the compressed data is to be written.

DEST_START is the zero-based offset into DEST array and indicates where the

compressed data or file name starts.

DEST_LEN is the length in bytes of the compressed data, including the headers.

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–23

DEFLATE_FORMAT is the format of the compressed output:

• 1 = zlib format as defined in RFC 1950.

• 2 = gzip format as defined in RFC 1952. A filename is not placed in the header, and

the MTIME field is zero.

CRC_TYPE is the type of CRC to calculate.

• 0 = no CRC calculation

• 1 = the Java CRC32

• 2 = the Java Adler32

CRC is the CRC value for the uncompressed data.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD SOURCE-TYPE N5

 SD SOURCE-SIZE N5

 SD SOURCE An

 SD SOURCE-START N5

 SD SOURCE-LEN N5

 SD DEST-TYPE N5

 SD DEST-SIZE N5

 SD DEST An

 SD DEST-START N5

 SD DEST-LEN N12

 SD DEFLATE-FORMAT N5

 SD CRC-TYPE N5

 SD CRC N12

SOURCE size, for example, 2048

[longa]

DEST size, for example, 2048

[longa]

Possible Result Values

In addition to the standard return results, these possible values can be returned.

Value Description

−47 An unsupported source value was supplied.

-48 Unable to open a socket to a JPM

-49 Unable to write to the JPM

-50 Unable to read from the JPM

-54 The JPM is not configured.

-55 An unsupported destination value was supplied.

-57 The JPM does not support this function.

WEBAPPSUPPORT Library Interface

3–24 3826 5286–007

ENCODE_BINARY64

Encodes an array of data into Binary 64.

Syntax

INTEGER PROCEDURE ENCODE_BINARY64
 (CHARSET, SOURCE, SOURCE_START, SOURCE_LEN,
 DEST, DEST_START, DEST_LEN);
 INTEGER CHARSET, SOURCE_START, SOURCE_LEN,
 DEST_START, DEST_LEN;
 EBCDIC ARRAY SOURCE,
 DEST [0];

INTEGER PROCEDURE encodeBinary64
 (CHARSET, SOURCE, SOURCE_START, SOURCE_LEN,
 DEST, DEST_START, DEST_LEN);
 VALUE CHARSET, SOURCE_START, SOURCE_LEN
 DEST_START;
 INTEGER CHARSET, SOURCE_START, SOURCE_LEN,
 DEST_START, DEST_LEN;
 EBCDIC ARRAY SOURCE,
 DEST [*];

PROCEDURE ENCODE-BINARY64 (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

CHARSET is the MLS character set in which the data in the DEST parameter is

encoded to.

SOURCE is the array containing the data to be encoded.

SOURCE_START is the zero-based offset into SOURCE array and indicates where the

unencoded data starts.

SOURCE_LEN is the length of the data in the SOURCE parameter.

DEST is the array that receives the encoded data.

DEST_START is the zero-based offset into DEST array and indicates where the

encoded data starts.

DEST_LEN is the length of the data returned in the DEST parameter.

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–25

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD CHARSET N5

 SD SOURCE-SIZE N5

 SD SOURCE An

 SD SOURCE-START N5

 SD SOURCE-LEN N5

 SD DEST-SIZE N5

 SD DEST An

 SD DEST-START N5

 SD DEST-LEN N5

SOURCE size, for example, 2048

[longa]

DEST size, for example, 2048

[longa]

Possible Result Values

In addition to the standard return results, these possible values can be returned.

Value Description

–35 The procedure call did not specify a field. The start or length parameters

contained an error.

ENCODE_UTF8

Encodes a string of characters in the character set specified in the application into a

UTF-8 encoded string.

Syntax

INTEGER PROCEDURE ENCODE UTF8
 (CHARSET, INPUT_STRING, INPUT_LEN,
 UTF_STRING, UTF_LEN);
 INTEGER CHARSET, INPUT_LEN,
 UTF_LEN;
 EBCDIC ARRAY INPUT_STRING, UTF_STRING [0];

INTEGER PROCEDURE encodeUTF8
 (CHARSET, INPUT_STRING, INPUT_LEN,
 UTF_STRING, UTF_LEN);
 VALUE CHARSET, INPUT_LEN;
 INTEGER CHARSET, INPUT_LEN,
 UTF_LEN;
 EBCDIC ARRAY INPUT_STRING, UTF_STRING [*];

PROCEDURE ENCODE-UTF8 (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

WEBAPPSUPPORT Library Interface

3–26 3826 5286–007

Parameters

CHARSET is the character set INPUT_STRING. 0 = EBCDIC, 1 = ASCII, or values defined
in the MultiLingual System Guide as Ccsnumbers that are translatable from UCS2.

UCS2NT (84) is also supported.

INPUT_STRING is the buffer that contains the string to be encoded.

INPUT_LEN is the length in bytes of INPUT_STRING.

UTF_STRING is the buffer that is to contain the UTF-8 encoded characters.

UTF_LEN is the length in bytes of UTF_STRING.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD CHARSET N5

 SD INPUT-STRING-SIZE N5

 SD INPUT-STRING An

 SD INPUT-LEN N5

 SD UTF-STRING-SIZE N5

 SD UTF-STRING An

 SD UTF-LEN N5

INPUT-STRING size, for example, 2048

[longa]

UTF-STRING size, for example, 2048

[longa]

Possible Result Values

In addition to the standard return results, the possible values can be returned.

Value Description

–15 Character set not available. The CENTRALSUPPORT and CCSFILE installed

on the system do not support the character set.

–17 Translation between CHARSET and UCS2 is not available. The mapping

between the two character sets is not supported by the

CENTRALSUPPORT and CCSFILE installed on the system.

ENCRYPT_DATA

Encrypts data from an array or from an MCP file into an array or MCP file. You can use

this procedure with the CREATE_CIPHER_REFERENCE procedure to build an XML

document that references the encrypted data at a URL.

See also the ENCRYPT_XML_DOCUMENT procedure.

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–27

Syntax

INTEGER PROCEDURE ENCRYPT_DATA
 (SOURCE_TYPE, SOURCE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST, DEST_START, DEST_LEN,
 USE_IV, IV, PAD, KEY_TAG);
 INTEGER SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST_START, DEST_LEN,
 USE_IV, PAD, KEY_TAG;
 EBCDIC ARRAY SOURCE, DEST, IV [0];

INTEGER PROCEDURE encryptData
 (SOURCE_TYPE, SOURCE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST, DEST_START, DEST_LEN,
 USE_IV, IV, PAD, KEY_TAG);
 VALUE SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST_START,
 USE_IV, PAD, KEY_TAG;
 INTEGER SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST_START, DEST_LEN,
 USE_IV, PAD, KEY_TAG;
 EBCDIC ARRAY SOURCE, DEST, IV [*];

PROCEDURE ENCRYPT-DATA (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

SOURCE_TYPE identifies the type of source of the data to be encrypted.

• 1 = the SOURCE parameter contains the data to be encrypted.

• 2 = the SOURCE parameter contains the MCP file name of the data to be

encrypted. See the FILENAME_FORMAT option in the SET_OPTION procedure.

SOURCE is the array containing source information. If SOURCE_TYPE is 2, the file name

in SOURCE is coded in the character set of the application.

SOURCE_START is a zero-based offset into the SOURCE array and indicates where the

supplied information starts.

SOURCE_LEN is the length in bytes of the data in the SOURCE parameter. If

SOURCE_TYPE is 2, then SOURCE_LEN can be zero.

DEST_TYPE identifies the type of destination for data to be encrypted.

• 1 = the DEST parameter contains encrypted data on procedure return.

• 2 = the DEST parameter contains the MCP file name to store the encrypted data.

See the FILENAME_FORMAT option in the SET_OPTION procedure.

DEST is the array containing destination information. If DEST_TYPE is 2, DEST is coded

in the character set of the application.

DEST_START is a zero-based offset into the DEST array and indicates where the

supplied information starts.

WEBAPPSUPPORT Library Interface

3–28 3826 5286–007

DEST_LEN is the length in bytes of the data in the DEST parameter. If DEST_TYPE is 2,

then DEST_LEN can be zero.

USE_IV indicates whether to use the initialization vector supplied by the application or

to use an internally generated vector.

• 0 = do not use the IV parameter as the initialization vector. The vector generated is

returned in the IV parameter.

• 1 = use the IV parameter as the initialization vector.

IV is the initialization vector. The size of the data in the initialization vector depends on

the encryption algorithm used.

PAD indicates whether or not to add padding bytes up to the block size for block

encryption algorithms. This parameter is ignored for nonblock encryption algorithms.

• 0 = do not add pad bytes before encrypting.

• 1 = add pad bytes before encrypting to fill out the data to a multiple of the block

size. The last pad byte added is the number of pad bytes added to the

unencrypted data. For example, if the block size of the encryption method is eight,

and the length in bytes of the data to be encrypted is five, the data to be

encrypted with padding might be in hexadecimal: x3132333435000003.

KEY_TAG is the key object used to encrypt the data.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD SOURCE-TYPE N5

 SD SOURCE-SIZE N5

 SD SOURCE An

 SD SOURCE-START N5

 SD SOURCE-LEN N5

 SD DEST-TYPE N5

 SD DEST-SIZE N5

 SD DEST An

 SD DEST-START N5

 SD DEST-LEN N12

 SD USE-IV N5

 SD IV-SIZE N5

 SD IV An

 SD PAD N5

 SD KEY-TAG A6

SOURCE size, for example, 2048

[longa]

DEST size, for example, 2048

[longa]

IV size, for example, 256

[longa]

[bin]

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–29

Possible Result Values

In addition to the standard return results, these possible values can be returned.

Value Description

−121 The XML Encryption Key is required.

0 No-op for any of the following reasons:\

• The destination length is invalid.

• The destination length is not supported.

• An attribute error occurred creating the file.

−11 The file is not available.

−13 An error occurred setting the file name.

−25 An error occurred writing the file.

−35 The procedure call did not specify a field.

−47 The source length or start is invalid.

−55 The destination start is invalid.

−122 The MCAPI is unavailable.

−123 The key is invalid.

ESCAPE_TEXT

Encodes the supplied text using different escape functions.

This procedure is useful in protecting the application users from Cross-Site Scripting

(XSS) attacks.

Syntax

INTEGER PROCEDURE ESCAPE_TEXT

 (ESCAPE_TYPE, CHARSET, ESCAPE_CHARSET,

 UNESCAPED, UNESCAPED_START, UNESCAPED_LEN,

 ESCAPED, ESCAPED_START, ESCAPED_LEN);

 INTEGER ESCAPE_TYPE, CHARSET, ESCAPE_CHARSET,

 UNESCAPED_START, UNESCAPED_LEN,

 ESCAPED_START, ESCAPED_LEN;

 EBCDIC ARRAY UNESCAPED, ESCAPED [0];

INTEGER PROCEDURE escapeText

 (ESCAPE_TYPE, CHARSET, ESCAPE_CHARSET,

 UNESCAPED, UNESCAPED_START, UNESCAPED_LEN,

 ESCAPED, ESCAPED_START, ESCAPED_LEN);

 VALUE ESCAPE_TYPE, CHARSET, ESCAPE_CHARSET,

 UNESCAPED_START, UNESCAPED_LEN,

 ESCAPED_START;

WEBAPPSUPPORT Library Interface

3–30 3826 5286–007

 INTEGER ESCAPE_TYPE, CHARSET, ESCAPE_CHARSET,

 UNESCAPED_START, UNESCAPED_LEN,

 ESCAPED_START, ESCAPED_LEN;

 EBCDIC ARRAY UNESCAPED, ESCAPED [*];

PROCEDURE ESCAPE_TEXT (GLB_PARAM);

 EBCDIC ARRAY GLB_PARAM [0];

Parameters

ESCAPE_TYPE is the type of escape or encoding function to perform:

• 1 = HTML entity encoding. The following character encoding is done:

Character Encoding

&
&

>
<

>
>

"
"

'
'

/
/

• 2 = Aggressive HTML entity encoding. All non-alphanumeric characters with ASCII

values less than 256 are encoded as their ASCII-equivalent in the format &#xHH.

This value is useful for encoding data inserted in HTML attributes.

• 3 = JavaScript escape. All non-alphanumeric characters with ASCII values less than

256 are encoded as their ASCII-equivalent in the format \xHH. Use this value only

for 8-bit character sets.

• 4 = JavaScript escape to UTF-8. All non-alphanumeric characters are encoded in

the format \xHH for each byte in UTF-8 encoding. CHARSET must be translatable

to UCS2.

• 5 = JavaScript escape to UTF-16. All non-alphanumeric characters are encoded in

the format \uHHHH for each character. CHARSET must be translatable to UCS2.

• 6 = CSS escape. All non-alphanumeric characters are encoded in the format \HH,

where HH is the Unicode value up to six hexadecimal digits long, with a space

character added after the last H character if the following character is a

hexadecimal character and HH is less than six digits long. CHARSET must be

translatable to UCS2.

• 7 = URL escape to UTF-8. All non-alphanumeric characters are encoded in the

format %HH for each byte in UTF-8 encoding. CHARSET must be translatable to

UCS2.

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–31

CHARSET is the data character set value of UNESCAPED and ESCAPED as defined in

MultiLingual System Administration, Operations, and Programming Guide as

Ccsnumbers; for example, 102(CODEPAGE932). The value 2 = UTF-8 is also supported..

See the ESCAPE_TYPE parameter for restrictions on this parameter.

ESCAPE_CHARSET is the data character set value of the data as it will be encoded, as

defined in the MultiLingual System Administration, Operations, and Programming

Guide as Ccsnumbers, and must be translatable from CHARSET. ESCAPE_CHARSET is

ignored for ESCAPE_TYPE values that require translation to UCS2.

For example, if an HTML document is to be encoded in character set iso-8859-1, and

the application has the UNESCAPED parameter encoded in Latin1EBCDIC, CHARSET is

set to Latin1EBCDIC (12) and ESCAPE_CHARSET is set to Latin1ISO (13). If

ESCAPE_TYPE is 2 (aggressive HTML entity encoding), the Latin1EBCDIC character x66

(Latin capital A with tilde) in UNESCAPED is converted to Latin1ISO xC3 and encoded

into ESCAPED as Ã.

UNESCAPED is the original text.

UNESCAPED_START is a zero-based offset into the UNESCAPED parameter and

indicates where the supplied information starts.

UNESCAPED_LEN is the length in bytes of the data in the UNESCAPED parameter. If

zero, UNESCAPED contains a string that is terminated by blanks or a null byte.

ESCAPED is the resulting text and should not overwrite UNESCAPED. It is not blank-

filled to the right or null byte terminated.

ESCAPED_START is a zero-based offset into the ESCAPED parameter and indicates

where the supplied information starts.

ESCAPED_LEN is the length in bytes of the data returned in the ESCAPED parameter.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD ESCAPE-TYPE N5

 SD CHARSET N5

 SD ESCAPE-CHARSET N5

 SD UNESCAPED-SIZE N5

 SD UNESCAPED An

 SD UNESCAPED-START N5

 SD UNESCAPED-LEN N5

 SD ESCAPED-SIZE N5

 SD ESCAPED An

 SD ESCAPED-START N5

 SD ESCAPED-LEN N5

UNESCAPED size, for example, 2048

[longa]

ESCAPED size, for example, 2048

[longa]

WEBAPPSUPPORT Library Interface

3–32 3826 5286–007

Notes:

• Text containing specially recognized HTML characters that need to be

processed by a browser should not be passed to this procedure. For example,

<P>If a < b & c > d</P> should not be passed, but If a < b & c > d can be passed.

• Blanks are not converted to nonbreaking spaces or plus signs for URLs.

Nonbreaking spaces can be coded in the HTML as " " or the hexadecimal

character xA0 (NBSP) can be used in HTML. This procedure with ESCAPE_TYPE

= 1 then converts xA0 to " ".

• The escaped text might be much longer than the unescaped text.

GENERATE_UUID

Generates a UUID, which is a unique identifier. The following types of UUID are

supported:

• A UUID that identifies the MCP system by using its MAC address, varying by the

time it was created (version 1).

• A random UUID (version 4).

Syntax

INTEGER PROCEDURE GENERATE_UUID
 (VERSION, FORMAT, UUID, UUID_LENGTH);
 INTEGER VERSION, FORMAT, UUID_LENGTH;
 EBCDIC ARRAY UUID [0];

INTEGER PROCEDURE generateUUID
 (VERSION, FORMAT, UUID, UUID_LENGTH);
 VALUE VERSION, FORMAT;
 INTEGER VERSION, FORMAT, UUID_LENGTH;
 EBCDIC ARRAY UUID [*];

PROCEDURE GENERATE-UUID (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

VERSION identifies the type of UUID to be generated.

If the value is 1, UUID is a version 1 UUID as defined in RFC 4122. It is a concatenation

of system time and the host MAC address. If UUID_LENGTH is 6 when this procedure

is called, the UUID parameter is used as the MAC address; otherwise, the first visible

MAC address returned from MCP networking is used.

If the value is 4, the UUID is a version 4 UUID as defined in RFC 4122. It is a random

value.

FORMAT identifies the format of the returned UUID parameter.

If the value is 1, the UUID is a 16-byte binary UUID.

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–33

If the value is 2, the UUID is a Base 64 encoded string of the 16-byte binary UUID, in

the application character set.

If the value is 3, the UUID is a 36-character hexadecimal representation of UUID,

including four hyphens, in the application’s character set. For example: 13CDBB01-

9F77-11E1-8001-08000B00C506.

UUID is the generated UUID value.

UUID_LENGTH is the length in bytes of UUID.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD VERSION N5

 SD FORMAT N5

 SD UUID-SIZE N5

 SD UUID An

 SD UUID-LENGTH N5

UUID size, for example, 256

[longa]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 VERSION or FORMAT parameters are not supported.

HTML_ESCAPE

Parses the supplied string for characters in the extended ASCII character set and for

four characters reserved for HTML processing: quotation marks ("), ampersand (&),

less than (<), and greater than (>). HTML_ESCAPE returns a string with the special

characters replaced by their entity reference sequence for use with HTML text.

For applications at Interface Level 3 or higher, the characters hash mark (#), left

parenthesis ((), and right parenthesis ()) are converted to entity references. (See the

INTERFACE_VERSION procedure.) This conversion is important for applications

because it protects them from cross-site scripting attacks. You should use the

HTML_ESCAPE procedure for HTML text that comes from user input and is returned in

a response.

The use of the ESCAPE_TEXT procedure is preferred over HTML_ESCAPE.

WEBAPPSUPPORT Library Interface

3–34 3826 5286–007

Syntax

INTEGER PROCEDURE HTML_ESCAPE
 (CHARSET, STRING_TERMINATE,
 UNESCAPED_STRING, ESCAPED_STRING);
 INTEGER CHARSET, STRING_TERMINATE;
 EBCDIC ARRAY UNESCAPED_STRING, ESCAPED_STRING [0];

INTEGER PROCEDURE htmlEscape
 (CHARSET, STRING_TERMINATE,
 UNESCAPED_STRING, ESCAPED_STRING);
 VALUE CHARSET, STRING_TERMINATE;
 INTEGER CHARSET, STRING_TERMINATE;
 EBCDIC ARRAY UNESCAPED_STRING, ESCAPED_STRING [*];

Parameters

CHARSET is the application character set: 0 = EBCDIC, 1 = ASCII.

STRING_TERMINATE indicates if the application terminates its strings with nulls:

• 0 =FALSE (blanks are used)

• 1 = TRUE

UNESCAPED_STRING is the original string.

ESCAPED_STRING is the resulting string, and should not overwrite

UNESCAPED_STRING.

Notes:

• Text containing specially recognized HTML characters that need to be

processed by a browser should not be passed to this procedure. For example,

<P>If a < b & c > d</P> should not be passed, but If a < b & c > d can be passed.

• Blanks are not converted to nonbreaking spaces. Nonbreaking spaces can be

coded in the HTML as “ ” or the hexadecimal character xA0 (NBSP) can be

used in the HTML. This procedure then converts it to “ ”.

• The escaped string might be up to three times longer than the unescaped string.

• The ALGOL strings demonstration shows all the characters handled by the

HTML_ESCAPE procedure.

HTML_UNESCAPE

Parses the supplied string for decimal or entity references and returns a string with

the references replaced by their actual ASCII characters.

The following entities are supported:

• Numeric character references in decimal (&#D) and hexadecimal (&#xH) formats.

• Character entity references listed in the following table.

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–35

Character Entity Reference Equivalent ASCII Character

& &

< <

> >

" "

' '

Latin1 character references that

represent characters in the range

xA0 to xFF, such as ,

¡

Latin1 characters in the range xA0 to

xFF

Syntax

INTEGER PROCEDURE HTML_UNESCAPE
 (CHARSET, STRING_TERMINATE,
 ESCAPED_STRING, UNESCAPED_STRING);
 INTEGER CHARSET, STRING_TERMINATE;
 EBCDIC ARRAY ESCAPED_STRING, UNESCAPED_STRING [0];

INTEGER PROCEDURE htmlUnescape
 (CHARSET, STRING_TERMINATE,
 ESCAPED_STRING, UNESCAPED_STRING);
 INTEGER CHARSET, STRING_TERMINATE;
 EBCDIC ARRAY ESCAPED_STRING, UNESCAPED_STRING [*];

Parameters

CHARSET is the application character set: 0 = EBCDIC, 1 = ASCII.

STRING_TERMINATE indicates if the application terminates its strings with nulls:

0 = FALSE (blanks are used), 1 = TRUE.

ESCAPED_STRING is the original string.

UNESCAPED_STRING is the resulting string, and should not overwrite

ESCAPED_STRING.

HTTP_DATE_TO_INT

Converts an HTTP date or time string to an integer value equal to the number of

seconds since year 0 time 0 until the specified date or time. See INT_TO_HTTP_DATE

for the reverse function.

Syntax

INTEGER PROCEDURE HTTP_DATE_TO_INT
 (CHARSET, STRING_TERMINATE,
 DATE_STRING, DATE_INT);
 INTEGER CHARSET, STRING_TERMINATE;
 EBCDIC ARRAY DATE_STRING [0];
 INTEGER DATE_INT;

WEBAPPSUPPORT Library Interface

3–36 3826 5286–007

INTEGER PROCEDURE httpDateToInt
 (CHARSET, STRING_TERMINATE,
 DATE_STRING, DATE_INT);
 VALUE CHARSET, STRING_TERMINATE;
 INTEGER CHARSET, STRING_TERMINATE;
 EBCDIC ARRAY DATE_STRING [*];
 INTEGER DATE_INT;

Parameters

CHARSET is the application character set: 0 = EBCDIC, 1 = ASCII.

STRING_TERMINATE indicates if the application terminates its strings with nulls:

0 = FALSE (blanks are used), 1 = TRUE.

DATE_STRING is the date in rfc1123-date, rfc850-date, or asctime-date format as

defined in the HTTP specifications. Examples of the three formats are listed

respectively below:

Fri, 12 Dec 1997 23:59:59 GMT

Friday, 12-Dec-97 23:59:59 GMT

Fri, Dec 12 23:59:59 1997.

DATE_INT is the corresponding integer value.

HTTP_ESCAPE

Parses the supplied string for control or reserved characters and returns a string with

the special characters replaced by their ASCII escaped sequence (a percent sign

followed by the two-hex digit representation of the character), for use with URIs.

The use of the ESCAPE_TEXT procedure is preferred over HTTP_ESCAPE.

Syntax

INTEGER PROCEDURE HTTP_ESCAPE
 (CHARSET, STRING_TERMINATE,
 UNESCAPED_STRING, ESCAPED_STRING);
 INTEGER CHARSET, STRING_TERMINATE;
 EBCDIC ARRAY UNESCAPED_STRING, ESCAPED_STRING [0];

INTEGER PROCEDURE httpEscape
 (CHARSET, STRING_TERMINATE,
 UNESCAPED_STRING, ESCAPED_STRING);
 VALUE CHARSET, STRING_TERMINATE;
 INTEGER CHARSET, STRING_TERMINATE;
 EBCDIC ARRAY UNESCAPED_STRING, ESCAPED_STRING [*];

Parameters

CHARSET is the application character set: 0 = EBCDIC, 1 = ASCII.

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–37

STRING_TERMINATE indicates if the application terminates its strings with nulls:

0 = FALSE (blanks are used), 1 = TRUE.

UNESCAPED_STRING is the original string.

ESCAPED_STRING is the resulting string, and should not overwrite

UNESCAPED_STRING.

Notes:

• Blank characters are not converted to plus signs (+) but to their escape

sequence instead. So a blank is converted to %20.

• The new string might be as long as up to three times the original string.

HTTP_UNESCAPE

Parses the supplied string for ASCII escape sequences and returns a string with the

escape sequences replaced by their actual ASCII characters.

The following entities are supported:

• Numeric character references in decimal (&#D) and hexidecimal (&#xH) formats.

• Character entity references:

− & to &

− < to <

− > to >

− " to "

− ' to '

− Latin1 characters in the range xA0 to xFF (such as , ¡, and ¢)

Syntax

INTEGER PROCEDURE HTTP_UNESCAPE
 (CHARSET, STRING_TERMINATE,
 ESCAPED_STRING, UNESCAPED_STRING);
 INTEGER CHARSET, STRING_TERMINATE;
 EBCDIC ARRAY ESCAPED_STRING, UNESCAPED_STRING [0];

INTEGER PROCEDURE httpUnescape
 (CHARSET, STRING_TERMINATE,
 ESCAPED_STRING, UNESCAPED_STRING);
 VALUE CHARSET, STRING_TERMINATE;
 INTEGER CHARSET, STRING_TERMINATE;
 EBCDIC ARRAY ESCAPED_STRING, UNESCAPED_STRING [*];

Parameters

CHARSET is the application character set: 0 = EBCDIC, 1 = ASCII.

WEBAPPSUPPORT Library Interface

3–38 3826 5286–007

STRING_TERMINATE indicates if the application terminates its strings with nulls:

0 = FALSE (blanks are used), 1 = TRUE.

ESCAPED_STRING is the original string.

UNESCAPED_STRING is the resulting string, and should not overwrite

ESCAPED_STRING.

INFLATE_DATA

Decompresses data using the Inflate method defined in RFC 1951. The XML Parser

JPM must be available to use this procedure.

If the source of the compressed data is an MCP file, that file is not read through the

WEBAPPSUPPORT library file cache.

Only stream files are supported for output.

Compressed data that requires a dictionary is not supported.

See the SET_OPTION procedure, INFLATE_METHOD option.

See also the DEFLATE_DATA procedure.

Syntax

INTEGER PROCEDURE INFLATE_DATA
 (SOURCE_TYPE, SOURCE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST, DEST_START, DEST_LEN,
 INPUT_FORMAT, CRC_TYPE, CRC);
 EBCDIC ARRAY SOURCE,
 DEST [0];
 INTEGER SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST_START, DEST_LEN,
 INPUT_FORMAT, CRC_TYPE, CRC;

INTEGER PROCEDURE inflateData
 (SOURCE_TYPE, SOURCE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST, DEST_START, DEST_LEN,
 INPUT_FORMAT, CRC_TYPE, CRC);
 VALUE SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST_START,
 INPUT_FORMAT, CRC_TYPE;
 EBCDIC ARRAY SOURCE,
 DEST [*];
 INTEGER SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST_START, DEST_LEN,
 INPUT_FORMAT, CRC_TYPE, CRC;

PROCEDURE INFLATE-DATA (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–39

Parameters

SOURCE_TYPE identifies the type of the source for the data to be uncompressed.

• 1 = SOURCE contains the data to be uncompressed.

• 2 = SOURCE contains the MCP file name of the file with the data to be

uncompressed. The name is in display format or pathname format. See the

FILENAME_FORMAT option in the SET_OPTION procedure.

SOURCE is the array containing the compressed data or the name of the file in the

application character set that contains the compressed data.

SOURCE_START is the zero-based offset into SOURCE and indicates where the

compressed data or file name starts.

SOURCE_LEN is the length in bytes of the data in SOURCE.

DEST_TYPE identifies the type of the destination for the uncompressed data.

• 1 = DEST contains the uncompressed data.

• 2 = DEST contains the MCP file name of the file to which the uncompressed data

is to be written. The name is in display format or pathname format. See the

FILENAME_FORMAT and FILE_ATTRIBUTES options in the SET_OPTION procedure.

DEST is the array that receives the uncompressed data or contains the name of the

file in the application character set to which the uncompressed data will be written.

DEST_START is the zero-based offset into DEST and indicates where the

uncompressed data or file name starts.

DEST_LEN is the length in bytes of the uncompressed data.

INPUT_FORMAT is the type of input:

• 1 = zlib

• 2 = gzip

CRC_TYPE is the type of CRC to calculate.

• 0 = no CRC calculation

• 1 = the Java CRC32

• 2 = the Java Adler32

CRC is the CRC value for the uncompressed data.

WEBAPPSUPPORT Library Interface

3–40 3826 5286–007

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD SOURCE-TYPE N5

 SD SOURCE-SIZE N5

 SD SOURCE An

 SD SOURCE-START N5

 SD SOURCE-LEN N5

 SD DEST-TYPE N5

 SD DEST-SIZE N5

 SD DEST An

 SD DEST-START N5

 SD DEST-LEN N12

 SD INPUT-FORMAT N5

 SD CRC-TYPE N5

 SD CRC N12

SOURCE size, for example, 2048

[longa]

DEST size, for example, 2048

[longa]

Possible Result Values

In addition to the standard return results, these possible values can be returned.

Value Description

−47 An unsupported source value was supplied.

-48 Unable to open a socket to a JPM

-49 Unable to write to the JPM

-50 Unable to read from the JPM

-54 The JPM is not configured.

-55 An unsupported destination value was supplied.

-57 The JPM does not support this function.

-66 A dictionary is required.

-67 The compressed format is invalid.

INT_TO_HTTP_DATE

Converts the number of seconds since year 0 time 0 to the rfc1123-date format.

Syntax

INTEGER PROCEDURE INT_TO_HTTP_DATE
 (CHARSET, STRING_TERMINATE,
 DATE_INT, DATE_STRING);
 INTEGER CHARSET, STRING_TERMINATE;
 INTEGER DATE_INT;
 EBCDIC ARRAY DATE_STRING [0];

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–41

INTEGER PROCEDURE intToHttpDate
 (CHARSET, STRING_TERMINATE,
 DATE_INT, DATE_STRING);
 VALUE CHARSET, STRING_TERMINATE,
 DATE_INT;
 INTEGER CHARSET, STRING_TERMINATE;
 INTEGER DATE_INT;
 EBCDIC ARRAY DATE_STRING [*];

Parameters

CHARSET is the application character set: 0 = EBCDIC, 1 = ASCII.

STRING_TERMINATE indicates if the application terminates its strings with nulls:

0 = FALSE (blanks are used), 1 = TRUE.

DATE_INT is the corresponding integer value.

DATE_STRING is the date in rfc1123-date format. For example:

Sun, 06 Nov 2005 03:14:24 GMT

INT_TO_TIME57

Converts the number of seconds since year 0 time 0 to a time(57)-format word.

Syntax

INTEGER PROCEDURE INT_TO_TIME57
 (DATE_INT, DATE_REAL);
 INTEGER DATE_INT;
 REAL DATE_REAL;

INTEGER PROCEDURE intToTime57
 (DATE_INT, DATE_REAL);
 VALUE DATE_INT;
 INTEGER DATE_INT;
 REAL DATE_REAL;

Parameters

DATE_INT is the corresponding integer value.

DATE_REAL is the TIME(57) date real value.

INTERFACE_VERSION

Accepts the interface version at which the application program is running as a

parameter. The minimum of the interface version at which the application program is

running and the interface version supported by the WEBAPPSUPPORT library is

returned as the value. The lowest value returned is 1.

Application programs that do not call this procedure are assumed to be running at

interface version one (1).

WEBAPPSUPPORT Library Interface

3–42 3826 5286–007

The application program must assume functionality corresponding to the returned

interface version of WEBAPPSUPPORT. Each version is inclusive of a lower version.

The supported versions are as follows:

• 4: The application can receive a –33 (Invalid Character) error result instead of –3
(Software Error) when setting a response header that contains an invalid character

in the header value.

• 3: The HTML_ESCAPE and htmlEscape procedures also escape the three

characters #,), and (.

• 2: The application might receive the new error results –18 (Buffer Too Small), –19

(Merge Syntax Error), and –20 (Max len Too Small) instead of –3 (Fault).

• 1: The original and default level.

Syntax

INTEGER PROCEDURE INTERFACE_VERSION (APP_INTERFACE_VERSION);
 INTEGER APP_INTERFACE_VERSION;

INTEGER PROCEDURE interfaceVersion (APP_INTERFACE_VERSION);
 VALUE APP_INTERFACE_VERSION;

PROCEDURE INTERFACE-VERSION (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

APP_INTERFACE_VERSION is passed by the application as the highest interface

version at which the application is capable of running.

GLB_PARAM has the following format:

SG-GLB-PARAM GROUP
 SG-PARAM GROUP
 SD RESULT S5
 SD APP-VERSION N5

Possible Result Values

INTERFACE_VERSION returns a value corresponding to the minimum of

APP_INTERFACE_VERSION and the highest version at which WEBAPPSUPPORT is

capable of running. INTERFACE_VERSION never returns a value of less than 1. In

addition to returning the value to the requesting application, WEBAPPSUPPORT retains

a copy of the value and uses it as the requesting application's effective interface

version.

Sample ALGOL Application Source

 DEFINE
 MyInterfaceVersion = 4 #;
 INTEGER
 EFFInterfaceVersion;
 IF ISVALID(interfaceVersion) THEN
 EFFInterfaceVersion := interfaceVersion(MyInterfaceVersion)
 ELSE
 EFFInterfaceVersion := 1;

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–43

Sample COBOL Application Source

 77 MY-INTERFACE-VERSION PIC 9(11) BINARY VALUE IS 4.
 77 EF-INTERFACE-VERSION PIC 9(11) BINARY VALUE IS 1.
 PERFORM INTERFACE-VERSION.
 INTERFACE-VERSION.
 CALL "INTERFACE_VERSION OF WEBAPPSUPPORT"
 USING MY-INTERFACE-VERSION
 GIVING EF-INTERFACE-VERSION.
 INTERFACE-VERSION-EXIT.
 EXIT.

MERGE_DATA

Uses the passed-in text buffer instead of an external file. The procedure is similar to

the MERGE_FILE_AND_DATA procedure.

Syntax

INTEGER PROCEDURE MERGE_DATA
 (CHARSET, STRING_TERMINATE, INPUT_CHARSET,
 INPUT_BUFF, INPUT_LENGTH, DATA_BUFF,
 ITEM_COUNT, ITEM_NAME_LEN, ITEM_VALUE_LEN,
 TRIM_BLANKS, RESULT_BUFF, RESULT_LENGTH);
 INTEGER CHARSET, STRING_TERMINATE, INPUT_CHARSET,
 INPUT_LENGTH;
 EBCDIC ARRAY INPUT_BUFF, DATA_BUFF [0];
 INTEGER ITEM_COUNT, ITEM_NAME_LEN, ITEM_VALUE_LEN;
 INTEGER TRIM_BLANKS;
 EBCDIC ARRAY RESULT_BUFF [0];
 INTEGER RESULT_LENGTH;

INTEGER PROCEDURE mergeData
 (CHARSET, STRING_TERMINATE, INPUT_CHARSET,
 INPUT_BUFF, INPUT_LENGTH, DATA_BUFF,
 ITEM_COUNT, ITEM_NAME_LEN, ITEM_VALUE_LEN,
 TRIM_BLANKS, RESULT_BUFF, RESULT_LENGTH);
 VALUE CHARSET, STRING_TERMINATE, INPUT_CHARSET,
 INPUT_LENGTH,
 ITEM_COUNT, ITEM_NAME_LEN, ITEM_VALUE_LEN,
 TRIM_BLANKS;
 INTEGER CHARSET, STRING_TERMINATE, INPUT_CHARSET,
 INPUT_LENGTH;
 EBCDIC ARRAY INPUT_BUFF, DATA_BUFF [*];
 INTEGER ITEM_COUNT, ITEM_NAME_LEN, ITEM_VALUE_LEN;
 BOOLEAN TRIM_BLANKS;
 EBCDIC ARRAY RESULT_BUFF [*];
 INTEGER RESULT_LENGTH;

PROCEDURE MERGE-DATA (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

CHARSET is the application character set: 0 = EBCDIC (LATIN1EBCDIC), 1 = ASCII

(LATIN1ISO), or values defined in the MLS guide as Ccsnumbers, for example, 102

(CODEPAGE932). Extended characters (for example, accented characters) can appear

in the text or the data, and are appropriately translated.

WEBAPPSUPPORT Library Interface

3–44 3826 5286–007

STRING_TERMINATE indicates if the application terminates its strings in DATA_BUFF

with nulls: 0 = FALSE (blanks are used), 1 = TRUE.

INPUT_CHARSET is the character set for INPUT_BUFF: 0 = EBCDIC (LATIN1EBCDIC), 1 =

ASCII (LATIN1ISO), or values defined in the MLS guide as Ccsnumbers, for example,

102 (CODEPAGE932).

INPUT_BUFF is the buffer containing the raw text. The maximum size supported is

268,435,455 bytes.

INPUT_LENGTH is the length in bytes of the data in INPUT_BUFF.

DATA_BUFF is the buffer containing the fixed field size data entries (strings) to be put

into the text. The maximum size supported is 268,435,455bytes.

ITEM_COUNT is the number of items in DATA_BUFF.

ITEM_NAME_LEN is the width in bytes of each name item in DATA_BUFF, including any

terminating character.

ITEM_VALUE_LEN is the width in bytes of each value item in DATA_BUFF, including

any terminating character.

TRIM_BLANKS indicates whether or not to trim trailing blanks on the value items from

DATA_BUFF before inserting into the text: 0 = FALSE, 1 = TRUE. This parameter is

ignored if the STRING_TERMINATE parameter is TRUE.

RESULT_BUFF is the buffer into which the updated text is returned. It is returned in

the application CHARSET. The maximum size supported is 268,435,455bytes. No

terminating character is added.

RESULT_LENGTH is the length of data returned in RESULT_BUFF.

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–45

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD CHARSET N5

 SD STRING-TERMINATE N5

 SD INPUT-CHARSET N5

 SD INPUT-BUFF-SIZE N5

 SD INPUT-BUFF An

 SD INPUT-LENGTH N5

 SD DATA-BUFF-SIZE N5

 SD DATA-BUFF An

 SD ITEM-COUNT N5

 SD ITEM-NAME-LEN N5

 SD ITEM-VALUE-LEN N5

 SD TRIM-BLANKS N5

 SD RESULT-BUFF-SIZE N5

 SD RESULT-BUFF An

 SD RESULT-LENGTH N5

INPUT-BUFF size, for example, 2048

[longa]

DATA-BUFF size, for example, 8000

[longa]

RESULT-BUFF size, for example, 10000

[longa]

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

–12 INPUT_LENGTH too long to be processed.

–15 Character set not available. The CENTRALSUPPORT and CCSFILE installed

on the system do not support the character set.

–17 Translation not available. The mapping between the input and output

character sets is not supported by the CENTRALSUPPORT and CCSFILE

installed on the system.

Notes:

• Item-Name fields can contain only LATIN1ISO or LATIN1EBCDIC characters.

• The output character set must be defined to the WEBAPPSUPPORT library with

a call to SET_OUTPUT_CHARSET if the output character set is other than

LATIN1ISO.

MERGE_FILE_AND_DATA

Takes the items in DATA_BUFF and inserts them into specially marked locations into

the text read from a file, usually an HTML file, returning the updated text to the caller.

It is similar to the MERGE_DATA procedure.

WEBAPPSUPPORT Library Interface

3–46 3826 5286–007

The input file can be in a different character set from the data being merged into it. For

example, the input file can be in ASCII; the data merged in by the application can be

EBCDIC; and the data is translated before insertion.

The input file kinds supported are as follows:

• STREAM files, such as those created on PCs using Client Access Services shares,

• MCP text files of type SEQDATA, TEXTDATA, and JOBSYMBOL. The sequence

numbers are stripped out,

• CDATA text files.

The maximum input file length supported is 268,435,455 bytes.

The intent is to make it easy for COBOL applications to supply the name and value pair

data. For example, in COBOL you might declare the following:

 01 DATA-BUFFER.
 03 DATA-PAIR OCCURS 4 TIMES.
 05 DATA-NAME PIC X(20).
 05 DATA-VALUE PIC X(30).

The call to MERGE_FILE_AND_DATA passes DATA-BUFFER, with ITEM_COUNT set to

4 (or less), ITEM_NAME_LEN set to 20, and ITEM_VALUE_LEN set to 30. The first

DATA-NAME might contain Customer, the first DATA-VALUE the first customer’s

name, and so forth, and the file HTML might then contain $REPLACE=CUSTOMER.

An example of using this procedure is shown in “Using an External HTML File” under

“Sample COBOL Applications.”

Syntax

INTEGER PROCEDURE MERGE_FILE_AND_DATA
 (CHARSET, STRING_TERMINATE, FILE_NAME,
 DATA_BUFF, ITEM_COUNT,
 ITEM_NAME_LEN, ITEM_VALUE_LEN, TRIM_BLANKS,
 RESULT_BUFF, RESULT_LENGTH);
 INTEGER CHARSET, STRING_TERMINATE;
 INTEGER ITEM_COUNT;
 EBCDIC ARRAY DATA_BUFF, FILE_NAME [0];
 INTEGER ITEM_NAME_LEN, ITEM_VALUE_LEN, TRIM_BLANKS;
 EBCDIC ARRAY RESULT_BUFF [0];
 INTEGER RESULT_LENGTH;

INTEGER PROCEDURE mergeFileAndData
 (CHARSET, STRING_TERMINATE, FILE_NAME,
 DATA_BUFF, ITEM_COUNT,
 ITEM_NAME_LEN, ITEM_VALUE_LEN, TRIM_BLANKS,
 RESULT_BUFF, RESULT_LENGTH);
 VALUE CHARSET, STRING_TERMINATE,
 ITEM_COUNT,
 ITEM_NAME_LEN, ITEM_VALUE_LEN, TRIM_BLANKS,
 INTEGER CHARSET, STRING_TERMINATE;
 INTEGER ITEM_COUNT;
 EBCDIC ARRAY DATA_BUFF, FILE_NAME [*];
 INTEGER ITEM_NAME_LEN, ITEM_VALUE_LEN;

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–47

 BOOLEAN TRIM_BLANKS;
 EBCDIC ARRAY RESULT_BUFF [*]
 INTEGER RESULT_LENGTH;

PROCEDURE MERGE-FILE-AND-DATA (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

CHARSET is the application character set: 0 = EBCDIC (LATIN1EBCDIC), 1 = ASCII

(LATIN1ISO), or values defined in the MultiLingual System Guide as Ccsnumbers, for

example, 102 (CODEPAGE932). Extended characters (for example, accented

characters) can appear in the HTML or the data, and are appropriately translated.

STRING_TERMINATE indicates if the application terminates its strings with nulls:

0 = FALSE (blanks are used), 1 = TRUE.

FILE_NAME is the name of the input file to read in, expressed in the application

CHARSET. If the first character is a forward slash (/), the file is interpreted as

PATHNAME format; otherwise, it is interpreted as DISPLAY (TITLE) format. Examples

are

/-/DISK/USERCODE/AR/CUSTOMERINFO.HTM
(AR)"CUSTOMERINFO.HTM" ON DISK

See also the SET_OPTION, FILENAME_FORMAT option later in this section.

DATA_BUFF is the buffer containing the fixed field size data entries (strings) to be put

into the text, expressed in the application CHARSET. The maximum size supported is

268,435,455 bytes.

ITEM_COUNT is the number of items (name and value pairs) in DATA_BUFF.

ITEM_NAME_LEN is the width in bytes of each name item in DATA_BUFF, including any

terminating character.

ITEM_VALUE_LEN is the width in bytes of each value item in DATA_BUFF, including

any terminating character.

TRIM_BLANKS indicates whether or not to trim trailing blanks on the value items

copied from DATA_BUFF before inserting into the text: 0 = FALSE, 1 = TRUE. This

parameter is ignored if the STRING_TERMINATE parameter is TRUE.

RESULT_BUFF is the buffer into which the updated text is returned. It is returned in

the application CHARSET. The maximum size supported is 268,435,455 bytes. No

terminating character is added.

RESULT_LENGTH is the length of data returned in RESULT_BUFF.

WEBAPPSUPPORT Library Interface

3–48 3826 5286–007

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD CHARSET N5

 SD STRING-TERMINATE N5

 SD FILE-NAME-SIZE N5

 SD FILE-NAME An

 SD DATA-BUFF-SIZE N5

 SD DATA-BUFF An

 SD ITEM-COUNT N5

 SD ITEM-NAME-LEN N5

 SD ITEM-VALUE-LEN N5

 SD TRIM-BLANKS N5

 SD RESULT-BUFF-SIZE N5

 SD RESULT-BUFF An

 SD RESULT-LENGTH N5

FILE-NAME size, for example, 256

[longa]

DATA-BUFF size, for example, 8000

[longa]

RESULT-BUFF size, for example, 10000

[longa]

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

–11 Input File not found or not available to caller.

–12 Input File too long to be processed.

–13 Attribute error setting input file name.

–14 I/O error reading input file.

–15 Character set not available. The CENTRALSUPPORT and CCSFILE installed

on the system do not support the character set.

–16 File character set not available. The EXTMODE of the file used is not

supported by the CENTRALSUPPORT and CCSFILE installed on the system.

–17 Translation not available. The mapping between the input and output

character sets is not supported by the CENTRALSUPPORT and CCSFILE

installed on the system.

Options Available to Mark Insertion Points in the HTML

$REPLACE = <item name>

The occurrences of the string $REPLACE=<item name> in the source text are replaced

with the data items provided. The option <item name>

• Is the name of the value field. This option allows fields to be placed in the form in

an order different from that defined in the application.

• Can be enclosed in quotes.

• Can contain alphabetics, numerics, or the underscore and hyphen separators

(_ and -). It is case insensitive.

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–49

Example HTML Segments

<P>Today's date is $REPLACE=date.</P>
<P>The temperature is $REPLACE="temp"°F</P>

$REPLACE-VALUE=<item name>

Similar to $REPLACE = <item name>, this option precedes the inserted text with

VALUE =" and follows it with a ". This string can be used for the value field in a form

<INPUT> tag so that if the HTML is viewed in a browser, the $REPLACE does not

appear.

Example

<INPUT TYPE=TEXT SIZE=20 $REPLACE-VALUE=text1>might result in the following:

<INPUT TYPE=TEXT SIZE=20 VALUE="John Doe">

 Notes:

• Data values can be null strings.

• If any item names in the input file are not replaced by matching data items, the

$REPLACE tag is left in the resulting text.

$REPLACE-BEGIN and $REPLACE-END
$REPLACE-BEGIN = <loop label> and $REPLACE-END = <loop label>

The input file can contain variable amounts (lists) of data. A repeating string can be

defined in the text bounded with $REPLACE-BEGIN = <loop label> (begin) and

$REPLACE-END = <loop label> (end) tags, and that text string is repeated with each

occurrence of data items that reference the $REPLACE = <item name> tags that

appear between the begin and end tags.

The begin and end tags can be enclosed in HTML comments, which might be needed

to work properly with some HTML editors.

Example

<TABLE>
 <TR><TH>Month</TH><TH>Avg Temp</TH></TR>
 <!-- $REPLACE-BEGIN -->
 <TR><TD>$REPLACE=month</TD><TD>$REPLACE=temp</TD></TR>
 <!-- $REPLACE-END -->
</TABLE>

The preceding HTML might result in the following:

<TABLE>
 <TR><TH>Month</TH><TH>Avg Temp</TH></TR>
 <TR><TD>Jan 99</TD><TD>79</TD></TR>
 <TR><TD>Feb 99</TD><TD>80</TD></TR>
 <TR><TD>Mar 99</TD><TD>81</TD></TR>a
</TABLE>

WEBAPPSUPPORT Library Interface

3–50 3826 5286–007

Lists can be nested. If you nest lists, a loop label is required for all but the outermost

occurrences of $REPLACE-BEGIN and $REPLACE-END pair. (For the outermost

occurrences, a loop label is recommended but not required.)

The loop label associates a particular instance of $REPLACE-BEGIN with a particular

instance of $REPLACE-END. It helps you keep track of matching pairs, and also allows

you to dynamically cut off lower levels of nesting for which no data items exist. Every

$REPLACE-BEGIN = <loop label> must be matched with a $REPLACE-END = <loop

label>; if not, a syntax error is reported and the merging function is terminated.

Nested List Example

$REPLACE-BEGIN=releases

 The following IC tapes are available for $REPLACE=softlevel

 $REPLACE-BEGIN=labels

 <H3 ALIGN=LEFT>$REPLACE=tapelabel </H3>
 <TABLE CELLSPACING=1 CELLPADDING=5 BORDER=0>
 <TR>
 $REPLACE-BEGIN=iclevels
 <TD VALIGN=top ALIGN=center>
 $REPLACE=iclevel</TD>
 $REPLACE-END=iclevels
 </TR>
 </TABLE>
 Back to top

 $REPLACE-END=labels
 $REPLACE-END=releases

Character Sets

• Item name fields can contain only LATIN1ISO or LATIN1EBCDIC characters.

• The output character set must be defined to the WEBAPPSUPPORT library with a

call to SET_OUTPUT_CHARSET if the output character set is other than LATIN1ISO.

MERGE_I18NFILE_AND_DATA

MERGE_I18NFILE_AND_DATA is the same as the MERGE_FILE_AND_DATA procedure

except that it allows the character set of the file contents to be specified. The file

attribute EXTMODE is ignored. This is useful when the file contents are something

other than ASCII (LATIN1ISO) or EBCDIC (LATIN1EBCDIC), such as CODEPAGE932.

Syntax

INTEGER PROCEDURE MERGE_I18NFILE_AND_DATA
 (CHARSET, STRING_TERMINATE, FILE_NAME,
 FILE_CHARSET, DATA_BUFF, ITEM_COUNT,
 ITEM_NAME_LEN, ITEM_VALUE_LEN, TRIM_BLANKS,
 RESULT_BUFF, RESULT_LENGTH);
 INTEGER CHARSET, STRING_TERMINATE;
 INTEGER FILE_CHARSET ITEM_COUNT;
 EBCDIC ARRAY DATA_BUFF, FILE_NAME [0];
 INTEGER ITEM_NAME_LEN, ITEM_VALUE_LEN, TRIM_BLANKS;
 EBCDIC ARRAY RESULT_BUFF [0];
 INTEGER RESULT_LENGTH;

http://bxah06/filea>$REPLACE=iclevel</TD

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–51

INTEGER PROCEDURE mergeI18NfileAndData
 (CHARSET, STRING_TERMINATE, FILE_NAME,
 FILE_CHARSET, DATA_BUFF, ITEM_COUNT,
 ITEM_NAME_LEN, ITEM_VALUE_LEN, TRIM_BLANKS,
 RESULT_BUFF, RESULT_LENGTH);
 VALUE CHARSET, STRING_TERMINATE,
 FILE_CHARSET ITEM_COUNT,
 ITEM_NAME_LEN, ITEM_VALUE_LEN, TRIM_BLANKS,
 INTEGER CHARSET, STRING_TERMINATE;
 INTEGER FILE_CHARSET ITEM_COUNT;
 EBCDIC ARRAY DATA_BUFF, FILE_NAME [0];
 INTEGER ITEM_NAME_LEN, ITEM_VALUE_LEN; TRIM_BLANKS;
 EBCDIC ARRAY RESULT_BUFF [0];
 INTEGER RESULT_LENGTH;

PROCEDURE MERGE-I18N-FILE-AND-DATA (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

FILE_CHARSET is the character set that determines how the file contents are treated.

The values supported are 0 = EBCDIC (LATIN1EBCDIC), 1 = ASCII (LATIN1ISO), or values

defined in the MultiLingual System Guide as Ccsnumbers, for example, 102

(CODEPAGE932).

STRING_TERMINATE indicates if the application terminates its strings with nulls:

0 = FALSE (blanks are used), 1 = TRUE.

FILE_NAME is the name of the input file to read in, expressed in the application

CHARSET. If the first character is a forward slash (/), the file is interpreted as

PATHNAME format; otherwise, it is interpreted as DISPLAY (TITLE) format. Examples

are

/-/DISK/USERCODE/AR/CUSTOMERINFO.HTM

(AR)"CUSTOMERINFO.HTM" ON DISK

See also the SET_OPTION, FILENAME_FORMAT option later in this section.

DATA_BUFF is the buffer containing the fixed field size data entries (strings) to be put

into the text, expressed in the application CHARSET. The maximum size supported is

268,435,455 bytes.

ITEM_COUNT is the number of items (name and value pairs) in DATA_BUFF.

ITEM_NAME_LEN is the width in bytes of each name item in DATA_BUFF, including any

terminating character.

ITEM_VALUE_LEN is the width in bytes of each value item in DATA_BUFF, including

any terminating character.

TRIM_BLANKS indicates whether or not to trim trailing blanks on the value items

copied from DATA_BUFF before inserting into the text: 0 = FALSE, 1 = TRUE. This

parameter is ignored if the STRING_TERMINATE parameter is TRUE.

WEBAPPSUPPORT Library Interface

3–52 3826 5286–007

RESULT_BUFF is the buffer into which the updated text is returned. It is returned in

the application CHARSET. The maximum size supported is 268,435,455 bytes. No

terminating character is added.

RESULT_LENGTH is the length of data returned in RESULT_BUFF.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD CHARSET N5

 SD STRING-TERMINATE N5

 SD FILE-NAME-SIZE N5

 SD FILE-NAME An

 SD FILE-CHARSET N5

 SD DATA-BUFF-SIZE N5

 SD DATA-BUFF An

 SD ITEM-COUNT N5

 SD ITEM-NAME-LEN N5

 SD ITEM-VALUE-LEN N5

 SD TRIM-BLANKS N5

 SD RESULT-BUFF-SIZE N5

 SD RESULT-BUFF An

 SD RESULT-LENGTH N5

FILE-NAME size, for example, 256

[longa]

DATA-BUFF size, for example, 8000

[longa]

RESULT-BUFF size, for example, 10000

[longa]

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

–15 Character set not available. The CENTRALSUPPORT and CCSFILE installed on

the system do not support the character set.

–17 Translation not available. The mapping between the input and output

character sets is not supported by the CENTRALSUPPORT and CCSFILE

installed on the system.

RELEASE_KEY

Releases a key object in WEBAPPSUPPORT, freeing resources in WEBAPPSUPPORT

and MCP Cryptography.

Syntax

INTEGER PROCEDURE RELEASE_KEY (KEY_TAG);
 INTEGER KEY_TAG;

INTEGER PROCEDURE releaseKey (KEY_TAG);
 VALUE KEY_TAG;
 INTEGER KEY_TAG;

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–53

PROCEDURE RELEASE_KEY (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameter

KEY_TAG is the tag that references the key object in WEBAPPSUPPORT.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD KEY-TAG A6

[bin]

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

–123 The key is invalid.

SET_OPTION

Sets options for general use of the WEBAPPSUPPORT library.

Syntax

INTEGER PROCEDURE SET_OPTION
 (OPTION, OPTION_VALUE, OPTION_STRING);
 INTEGER OPTION;
 REAL OPTION_VALUE;
 EBCDIC ARRAY OPTION_STRING [0];

INTEGER PROCEDURE setOption
 (OPTION, OPTION_VALUE, OPTION_STRING);
 VALUE OPTION, OPTION_VALUE;
 INTEGER OPTION;
 REAL OPTION_VALUE;
 EBCDIC ARRAY OPTION_STRING [*];

PROCEDURE SET-OPTION (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

WEBAPPSUPPORT Library Interface

3–54 3826 5286–007

Parameters

OPTION is the option being set. The following options are supported.

1 (FILENAME_FORMAT)

OPTION_VALUE the format used for file names that applications pass to

WEBAPPSUPPORT. The SET_XML_OPTION procedure, FILENAME_FORMAT (10) option

has the same value as this option. See the SET_XML_OPTION procedure,

FILENAME_FORMAT (10) option in Section 6.

The default for the MERGE_FILE_AND_DATA and MERGE_I18NFILE_AND_DATA

procedures is to not apply SEARCHRULE.

An OPTION_VALUE of 0 represents LTITLE. SEARCHRULE = NATIVE is used for

opening files, unless the first character of the file name is a forward slash (/). This

value is the default.

An OPTION_VALUE of 1 represents PATHNAME. SEARCHRULE = POSIX is used for

opening files.

2 (MAX_CACHE_FILES)

OPTION_VALUE specifies the maximum number of files that can be kept in the

WEBAPPSUPPORT’s cache. Default = 2. Maximum value = 10. If a value larger than 10

is specified, 10 is used. If zero or less is specified caching for the application is

disabled.

3 (MAX_CACHE_FILESIZE)

OPTION_VALUE specifies the maximum size of a file in bytes that can be kept in the

WEBAPPSUPPORT cache. Default and maximum is the system maximum array size. If

zero or less is specified caching for the application is disabled.

4 (CACHE_TIMEOUT)

OPTION_VALUE specifies the number of seconds to wait before checking the disk for

an updated version of the file. The default is 0 (disk is checked on each read).

5 RESERVED

6 (DEFLATE_LEVEL)

OPTION_VALUE specifies the level of compression used by the DEFLATE_DATA

procedure. OPTION_VALUE is a range from -1 (default) to 9 (best compression). 0

represents no compression, and 1 represents best speed.

7 (DEFLATE_STRATEGY)

OPTION_VALUE specifies the compression strategy used by the DEFLATE_DATA

procedure. OPTION_VALUE is a range from 0 (default strategy, which is the default);

1 = filtered strategy; or 2 = Huffman only strategy.

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–55

8 (FILE_ATTRIBUTES)

This option specifies file attributes for files created by the WEBAPPSUPPORT library

and is equivalent to using the 11 (FILE_ATTRIBUTES) option in the SET_XML_OPTION

procedure. The OPTION_STRING parameter contains a comma-separated list of file

attribute settings in the application character set. The default for OPTION_STRING is a

null string.

For example, the OPTION_STRING parameter can be

 SECURITYTYPE=PUBLIC, SECURITYUSE=IN

The procedure does not use the OPTION_VALUE parameter for this option. Options

cannot be specified that create MCP record files; only stream files are supported.

OPTION_STRING usage is described in the previous option descriptions. If the value of

OPTION does not require a value for OPTION_STRING, the application should set

OPTION_STRING to a null string.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD OPTION N5

 SD OPTION-VALUE N12

 SD OPTION-STRING-SIZE N5

 SD OPTION-STRING An

OPTION-STRING size, for example, 256

[longa]

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

0 The application specified an option or value that the procedure does not

support.

1 The procedure accepted all settings.

9 (CRUNCH_FILE)

OPTION_VALUE specifies whether or not to crunch created files. If OPTION_VALUE is

0, files are not crunched. If OPTION_VALUE is 1, files are crunched. The default

OPTION_VALUE is 1.

WEBAPPSUPPORT Library Interface

3–56 3826 5286–007

SET_STRING_TERMINATE

Sets the default string termination option for the application and overrides the

STRINGTERMINATE setting in the WEBPCM service.

Syntax

INTEGER PROCEDURE SET_STRING_TERMINATE
 (STRING_TERMINATE);
 INTEGER STRING_TERMINATE;

INTEGER PROCEDURE setStringTerminate
 (STRING_TERMINATE);
 VALUE STRING_TERMINATE;
 BOOLEAN STRING_TERMINATE;

PROCEDURE SET-STRING-TERMINATE (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

STRING_TERMINATE indicates whether the application uses the null value to terminate

a string.

If the value of this parameter is 0 (false), the application uses space characters to

terminate a string. The value 0 is the default.

If the value of this parameter is 1 (true), the application does not use space characters

to terminate a string.

GLB_PARAM has the following format:

SG-GLB-PARAM GROUP
 SG-PARAM GROUP
 SD RESULT S5
 SD STRING-TERMINATE N5

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

 1 The procedure accepted the setting.

SET_TRACING

Sets the WEBAPPSUPPORT tracing state for the application. If an operator has turned

all (global) tracing on, an application turning its tracing off has its setting ignored; that

is, those application calls are still traced. If an application turns its tracing on, and an

operator turns global tracing off, the application tracing is still performed. See “Using

the WEBAPPSUPPORT Trace File.”

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–57

Syntax

INTEGER PROCEDURE SET_TRACING (TRACE_TYPE);
 INTEGER TRACE_TYPE;

INTEGER PROCEDURE setTracing (TRACE_TYPE);
 VALUE TRACE_TYPE;
 BOOLEAN TRACE_TYPE;

PROCEDURE SET-TRACING (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

TRACE_TYPE causes tracing to start:

• 0 = do not trace any procedure calls. This is the default value.

• 1 = trace all library calls.

• 2 = trace only calls that return errors (negative results).

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD TRACE-ON N5

0=FALSE, 1=TRUE

SET_TRANSLATION

Sets the application character set, which is the character set in which the application

supplies and receives data. Calling this procedure overrides the APPLICATIONCCS and

CLIENTCCS settings in the WEBPCM service.

The XML Parser parses a document into the application character set, not the

document character set.

Syntax

INTEGER PROCEDURE SET_TRANSLATION
 (MLS_APPLICATION_SET, MLS_CLIENT_SET);
 INTEGER MLS_APPLICATION_SET, MLS_CLIENT_SET;

INTEGER PROCEDURE setTranslation
 (MLS_APPLICATION_SET, MLS_CLIENT_SET);
 VALUE MLS_APPLICATION_SET, MLS_CLIENT_SET;
 INTEGER MLS_APPLICATION_SET, MLS_CLIENT_SET;

PROCEDURE SET-TRANSLATION (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

WEBAPPSUPPORT Library Interface

3–58 3826 5286–007

Parameters

MLS_APPLICATION_SET is the character set in which the application sends and

receives data. The value of this parameter can be any of the following:

• 0 (ASERIESEBCDIC)

• 1 (ASCII)

• 2 (UTF-8)

• Any value defined in the MultiLingual System Administration, Operations, and

Programming Guide (8600 0288) as a ccsnumber

An example of a ccsnumber is 102 (CODEPAGE932).

The default value for applications that are not WEBPCM applications is the ccsnumber

4 (ASERIESEBCDIC).

MLS_CLIENT_SET is not used for XML parsing.

GLB_PARAM has the following format:

SG-GLB-PARAM GROUP
 SG-PARAM GROUP
 SD RESULT S5
 SD MLS-APPLICATION-SET N5
 SD MLS-CLIENT-SET N5

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

–17 The procedure did not set the application character. The CENTRALSUPPORT

library and the CCSFILE data file installed on the system do not support

mapping between the XML Parser input and output character sets.

TIME57_TO_HTTP_DATE

Converts the TIME(57) formatted word to the rfc1123-date format.

Syntax

INTEGER PROCEDURE TIME57_TO_HTTP_DATE
 (CHARSET, STRING_TERMINATE,
 DATE_REAL, DATE_STRING);
 INTEGER CHARSET, STRING_TERMINATE;
 REAL DATE_REAL;
 EBCDIC ARRAY DATE_STRING [0];

INTEGER PROCEDURE time57ToHttpDate
 (CHARSET, STRING_TERMINATE,
 DATE_REAL, DATE_STRING);
 VALUE CHARSET, STRING_TERMINATE,

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–59

 DATE_REAL;
 INTEGER CHARSET, STRING_TERMINATE;
 REAL DATE_REAL;
 EBCDIC ARRAY DATE_STRING [*];

Parameters

CHARSET is the application character set: 0 = EBCDIC, 1 = ASCII.

STRING_TERMINATE indicates whether or not the application terminates its strings

with nulls: 0 = FALSE (blanks are used), 1 = TRUE.

DATE_REAL is the corresponding TIME(57) format real value.

DATE_STRING is the date in rfc1123-date format.

TIME57_TO_INT

Converts a TIME(57)-format word to an integer, the value of which is the number of

seconds of the specified date and time since day 0 time 0.

Syntax

INTEGER PROCEDURE TIME57_TO_INT
 (DATE_REAL, DATE_INT);
 REAL DATE_REAL;
 INTEGER DATE_INT;

INTEGER PROCEDURE time57ToInt
 (DATE_REAL, DATE_INT);
 VALUE DATE_REAL;
 REAL DATE_REAL;
 INTEGER DATE_INT;

Parameters

DATE_REAL is the TIME(57) date real value.

DATE_INT is the corresponding integer value.

TRACE_WEB_MSG

Traces out a text message for the application into the WEBAPPSUPPORT trace file. It

is a way for the application programmer to add comments about where the application

is in its processing, any special conditions encountered, and so on. See “Using the

WEBAPPSUPPORT Trace File.”

Syntax

INTEGER PROCEDURE TRACE_WEB_MSG (CHARSET, TRACE_STRING, STRING_LEN);
 EBCDIC ARRAY TRACE_STRING [0];
 INTEGER CHARSET, STRING_LEN;

INTEGER PROCEDURE traceWebMsg (CHARSET, TRACE_STRING, STRING_LEN);
 VALUE CHARSET, STRING_LEN;

WEBAPPSUPPORT Library Interface

3–60 3826 5286–007

 EBCDIC ARRAY TRACE_STRING [*];
 INTEGER CHARSET, STRING_LEN;

PROCEDURE TRACE-WEB-MSG (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

CHARSET is the application character set: 0 = EBCDIC, 1 = ASCII.

TRACE_STRING is the message to be traced, up to a maximum of 65500 bytes. It is in

the application character set.

STRING_LEN is the length of the text in TRACE_STRING to be traced.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD CHARSET N5

 SD TRACE-STRING-SIZE N5

 SD TRACE-STRING An

 SD STRING-LEN N5

TRACE-STRING size, for example, 256

[longa]

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Result Description

0 No-op (0) is returned if global tracing is not on, and application-specific tracing

has not been requested by the application or an operator.

Using the WEBAPPSUPPORT Trace File

You can use either of the following two WEBAPPSUPPORT procedures from an

application to control tracing:

• SET_TRACING to turn tracing on or off. This call only affects tracing for the

application stack making the call.

• TRACE_WEB_MSG to trace a diagnostic string.

You can also control tracing for application stacks by the WEBAPPSUPPORT TRACE

command and the TRACEERRORS general parameter.

The WEBAPPSUPPORT trace file

(TRACE/CCF/WEBAPPSUPPORT/<date>/"<time>.TXT")

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–61

contains trace information about calls made to the WEBAPPSUPPORT library. It is

intended to aid programmers in developing applications for use with the WEBPCM and

to help Unisys with problem resolution.

Trace File Name

The WEBAPPSUPPORT trace file is named as follows and is located on the family

where WEBAPPSUPPORT is located:

*TRACE/CCF/WEBAPPSUPPORT/<date>/"<time>.TXT"

In this file name, <date>/<time> is the format yyyymmdd/"hhmmss.txt".

Here is an example:

*TRACE/CCF/WEBAPPSUPPORT/19990214/"092712.TXT"

Note: You can set the family where the WEBAPPSUPPORT trace file is located to

a family other than where the SL command placed the WEBAPPSUPPORT library. To

do this, use the TRACEFAMILY directive in the general parameters file for

WEBAPPSUPPORT: *SYSTEM/CCF/WEBAPPSUPPORT/PARAMS. See

“WEBAPPSUPPORT General Parameters File” in this section for more information

about the TRACEFAMILY directive.

Trace File Format

The WEBAPPSUPPORT trace file is created with PRIVATE security by default. If

PUBLIC files are preferred (so that nonprivileged application developers can view the

trace files), perform the following steps:

1. Modify the *SYSTEM/CCF/WEBAPPSUPPORT code file with this statement:

WFL MODIFY *SYSTEM/CCF/WEBAPPSUPPORT; FILE TRACEFILE
(SECURITYTYPE=PUBLIC)

2. Use the SL (Support Library) system command to reassign the code file to the

WEBAPPSUPPORT function.

The previous steps needs to be performed for each Interim Correction (IC) that is

installed.

The trace file is formatted with an identification line that includes the time the file was

created, followed by a header line for the columns, followed by the trace messages.

The columns are listed in the following table.

Column Name Description

Stack The mix number of the task making the procedure call.

Time The local system time the trace record was written.

Procedure The name of the procedure in WEBAPPSUPPORT that was called,

up to 15 characters.

WEBAPPSUPPORT Library Interface

3–62 3826 5286–007

Column Name Description

CS The Character Set used by the application, usually derived from

the MSG parameter: EB = EBCDIC, AS = ASCII.

T Whether or not the application has its text strings terminated:

Y = yes, N = no.

Res The result value for the procedure call.

Notes The parameters of the procedure call, or other text.

Notes:

• The first time an application has a call traced in a particular trace file, a TraceID

record is written to the trace file with the application name.

• Only one trailing blank is traced out for a string.

The trace file is created as a STREAM file and is easily viewable from Client Access

Services shares or through a browser, if an appropriate mapping is made in Web

Transaction Server. See the WEBPCM Demonstrations Web page, Configuration

section, for instruction.

Trace File Creation

A WEBAPPSUPPORT trace file can be started by one of the following methods:

• The operator command NA CCF WEBPCM WEBAPPSUPPORT TRACE +.

• One or more applications that request tracing for itself.

If the application requests the trace file, or if an operator requests tracing for a

specific application, only the calls of that application are traced; other applications do

not have their calls traced.

Trace File Closure

A WEBAPPSUPPORT trace file is closed when one of the following activities occurs:

• An operator closes the trace file.

• The WEBAPPSUPPORT library terminates when the last application delinks from it.

Turning tracing off for a specific application keeps the trace file open for more tracing.

Sample Trace File

WEBAPPSUPPORT Trace File *TRACE/CCF/WEBAPPSUPPORT/19990214/"092712.TXT"
Started 25 August 1998 14:27:12 GMT by Application 1079

Stack Time Procedure CS T Res Notes
----- ---- --------- -- - --- -----

 1079 09:27:12 [task id] (MIS)OBJECT/DBPROC ON PACK
 1079 09:27:12 SET_TRACING 1 TRACE_ON=1
 1079 09:27:13 TRACE_WEB_MSG EB N 1 "DBPROC received input request"

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–63

 1079 09:27:13 GET_2_HEADERS EB N 1 NAME01="$REMOTE-USER ",VALUE01=
"JONES ",NAME02="User-Agent ",VALUE02="Mozilla/4.05 [en] (Win95; I) "

WEBPCM Procedures

The WEBPCM WEBAPPSUPPORT procedures listed in this section each describe an

entry point compatible with COBOL with all uppercase and with underscores and an

entry point compatible with ALGOL with mixed upper- and lowercase containing no

underscores.

GET_COOKIE

Returns a specifically named cookie if present in the request.

Syntax

INTEGER PROCEDURE GET_COOKIE (MSG, COOKIE_NAME, COOKIE_VALUE,
 COOKIE_VALUE_LEN);
 EBCDIC ARRAY MSG, COOKIE_NAME, COOKIE_VALUE [0];
 INTEGER COOKIE_VALUE_LEN;

INTEGER PROCEDURE getCookie (MSG, COOKIE_NAME, COOKIE_VALUE,
 COOKIE_VALUE_LEN);
 EBCDIC ARRAY MSG, COOKIE_NAME, COOKIE_VALUE [*];
 INTEGER COOKIE_VALUE_LEN;

Parameters

MSG is the Message Object.

COOKIE_NAME is the name of the requested cookie. It is not case-sensitive. For

example: Detail-Preference.

COOKIE_VALUE is the returned cookie value of the first name-value pair that matches

COOKIE_NAME.

COOKIE_VALUE_LEN is the length of the data returned in COOKIE_VALUE in bytes.

Possible Result Values

Value Description

0 The specified cookie is not present in the request.

GET_DIALOG_ID

Returns the dialog ID associated with MSG. It is used by the application with the

hidden HTML method of maintaining sessions.

Syntax

INTEGER PROCEDURE GET_DIALOG_ID (MSG, STR);
 EBCDIC ARRAY MSG, STR [0];

WEBAPPSUPPORT Library Interface

3–64 3826 5286–007

INTEGER PROCEDURE getDialogID (MSG, STR);
 EBCDIC ARRAY MSG, STR [*];

Parameters

MSG is the Message Object.

STR is the dialog ID.

GET_HEADER, GET_n_HEADERS

Syntax

INTEGER PROCEDURE GET_HEADER (MSG, HEADER_NAME, HEADER_VALUE);
 EBCDIC ARRAY MSG [0];
 EBCDIC ARRAY HEADER_NAME [0];
 EBCDIC ARRAY HEADER_VALUE [0];

INTEGER PROCEDURE getHeader (MSG, HEADER_NAME, HEADER_VALUE);
 EBCDIC ARRAY MSG [*];
 EBCDIC ARRAY HEADER_NAME [*];
 EBCDIC ARRAY HEADER_VALUE [*]

Parameters

MSG is the Message Object.

HEADER_NAME is the name of the requested header. It is case-sensitive. For example:

User-Agent.

HEADER_VALUE is the returned header value, null in length if the value is not present

in the request. For example: Mozilla/4.05 [en] (Win95; I).

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

0 A null string and No-op (0) are returned if not present in the request.

–17 Translation not available, and the mapping between the input and output

character sets is not supported by the CENTRALSUPPORT and CCSFILE

installed on the system.

HEADER_NAME Values

The following HEADER_NAME values are also supported as extensions of the header

names defined for HTTP.

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–65

Value Description

$APPLICATION-

PATH

Returns the leading part of the request path name that refers to

the application (that is, the virtual directory in Web Transaction

Server, which equals the PATH attribute in the WEBPCM SERVICE

definition) plus the next node in the requested path name. The

returned path name is unescaped. For example: /apidemo/apienv.

$AUTH-TYPE Returns the authentication scheme of the request. Returns a null

string and a result of No-op if the authorization header is not

present in the request. For example: Basic.

$CONTENT-TYPE Returns the content type of the request. For example:

application/x-www-form-urlencoded.

$METHOD Returns the request method. For example: GET.

$PATH-INFO Returns the optional part of the requested path name that follows

the application path and immediately precedes the query string.

The returned string is unescaped. See also $PATH-TRANSLATED.

For example: /extra/path.

$PATH-

TRANSLATED

Returns the translated version of the optional part of the

requested path name that follows the application path and

immediately precedes the query string. The returned string is

unescaped. This header name should not be used if Transaction

Server Synchronized Recovery is required. See also $PATH-INFO.

For example: /-/DISK/PUBLIC/WWWROOT/EXTRA/PATH/.

$PROTOCOL Returns request protocol string as received from the client. The

string returned is in the form of <protocol>/<major

version>.<minor version>. For example: HTTP/1.1.

$QUERY-STRING Returns the query string of the request as that received from the

client. Might be escaped. For example:

name1=The+first+value&name2=value2.

$REMOTE-

ADDRESS

Returns the IP address of the agent that sent the request. For

example: 192.63.223.164.

$REMOTE-HOST Returns the fully qualified host name of the agent that sent the

request, if the host name is available. For example:

FISHERML.TR.UNISYS.COM.

$REMOTE-USER Returns the name of the user making the request from the

Authorization header of the request. If the Authorization header is

not in the request, the value is null (that is, the request is

anonymous). If the WEBPCM service attributes SHOWPW is TRUE

and CHECKUSERAUTH is FALSE and if the Authorization header is

present in the request, then the password from the Authorization

header is appended to the user name with a colon separating.

Examples: ADMIN and JDOE:ABC123. If NTLM is the authentication

method, only the usercode is present.

$REQUEST-LINE Returns the request line as received from the client. Data from the

beginning of the request up to but not including the first request

header is returned. It includes a Query String, if present. For

example: GET /comsapp/ HTTP/1.0.

WEBAPPSUPPORT Library Interface

3–66 3826 5286–007

Value Description

$REQUEST-PATH Returns the requested path name after being unescaped. This

might not be exactly the same as the path name received in the

request, which might be escaped. The query string, if present, is

not included (see $REQUEST-URI and $QUERY-STRING). For

example: /apidemo/apienv/extra/path 1.

$REQUEST-URI Returns the request universal request identifier (URI) as received

from the client. Query string, if present, is also included (see

$REQUEST-PATH and $QUERY-STRING). For example:

/apidemo/apienv/extra/path?name1=The+first+value&name2=

value2.

$SERVER-NAME Returns the TCP/IP host name of the Web server. For example:

trprogd.tr.unisys.com. Note that this might not be the same as the

Host: header, which is what the user put in the request URL.

Multiple Headers

To make coding easier when multiple headers are needed, the following procedures

are also exported, with the parameters matching those for GET_HEADER.

Each NAMEnn and VALUEnn parameter in the following is declared as EBCDIC ARRAY

[0]:

INTEGER PROCEDURE GET_2_HEADERS (MSG,
 NAME01, VALUE01, NAME02, VALUE02);
INTEGER PROCEDURE GET_3_HEADERS (MSG,
 NAME01, VALUE01, NAME02, VALUE02,
 NAME03, VALUE03);
INTEGER PROCEDURE GET_4_HEADERS (MSG,
 NAME01, VALUE01, NAME02, VALUE02,
 NAME03, VALUE03, NAME04, VALUE04);
INTEGER PROCEDURE GET_5_HEADERS (MSG,
 NAME01, VALUE01, NAME02, VALUE02,
 NAME03, VALUE03, NAME04, VALUE04,
 NAME05, VALUE05);
INTEGER PROCEDURE GET_6_HEADERS (MSG,
 NAME01, VALUE01, NAME02, VALUE02,
 NAME03, VALUE03, NAME04, VALUE04,
 NAME05, VALUE05, NAME06, VALUE06);
INTEGER PROCEDURE GET_7_HEADERS (MSG,
 NAME01, VALUE01, NAME02, VALUE02,
 NAME03, VALUE03, NAME04, VALUE04,
 NAME05, VALUE05, NAME06, VALUE06,
 NAME07, VALUE07);
INTEGER PROCEDURE GET_8_HEADERS (MSG,
 NAME01, VALUE01, NAME02, VALUE02,
 NAME03, VALUE03, NAME04, VALUE04,
 NAME05, VALUE05, NAME06, VALUE06,
 NAME07, VALUE07, NAME08, VALUE08);

Each NAMEnn and VALUEnn parameter in the following is declared as EBCDIC ARRAY

[*]:

INTEGER PROCEDURE get2Headers (MSG,
 NAME01, VALUE01, NAME02, VALUE02);

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–67

INTEGER PROCEDURE get3Headers (MSG,
 NAME01, VALUE01, NAME02, VALUE02,
 NAME03, VALUE03);
INTEGER PROCEDURE get4Headers (MSG,
 NAME01, VALUE01, NAME02, VALUE02,
 NAME03, VALUE03, NAME04, VALUE04);
INTEGER PROCEDURE get5Headers (MSG,
 NAME01, VALUE01, NAME02, VALUE02,
 NAME03, VALUE03, NAME04, VALUE04,
 NAME05, VALUE05);
INTEGER PROCEDURE get6Headers (MSG,
 NAME01, VALUE01, NAME02, VALUE02,
 NAME03, VALUE03, NAME04, VALUE04,
 NAME05, VALUE05, NAME06, VALUE06);
INTEGER PROCEDURE get7Headers (MSG,
 NAME01, VALUE01, NAME02, VALUE02,
 NAME03, VALUE03, NAME04, VALUE04,
 NAME05, VALUE05, NAME06, VALUE06,
 NAME07, VALUE07);
INTEGER PROCEDURE get8Headers (MSG,
 NAME01, VALUE01, NAME02, VALUE02,
 NAME03, VALUE03, NAME04, VALUE04,
 NAME05, VALUE05, NAME06, VALUE06,
 NAME07, VALUE07, NAME08, VALUE08);

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

0 No-op. None of the headers are available.

1 Successful. All headers are successfully returned or at least one of the

headers is successfully returned. If at least one of the headers is successfully

returned, some of the VALUE0n parameters can be null strings.

-1 Invalid Transaction ID. The Message Object is corrupted.

–18 Buffer Too Small. The buffer is too small to receive the header data and the

interface level is greater than 1.

–3 Software Error. A software error occurred.

GET_MESSAGE_LENGTH

Returns the actual length in bytes of the entire message, including the Trancode field.

This procedure is useful for determining how many bytes to SEND or WRITE when

returning a response.

Syntax

INTEGER PROCEDURE GET_MESSAGE_LENGTH (MSG, LEN);
 EBCDIC ARRAY MSG [0];
 INTEGER LEN;

INTEGER PROCEDURE getMessageLength (MSG, LEN);
 EBCDIC ARRAY MSG [*];
 INTEGER LEN;

WEBAPPSUPPORT Library Interface

3–68 3826 5286–007

Parameters

MSG is the Message Object.

LEN is the message length in bytes.

GET_MIME_TYPE

Returns the MIME type associated with the supplied path name. A MIME type is

configured to the server for each known file name extension (suffix). If the suffix is

unknown, a configured default MIME type is returned.

This procedure should not be used if Transaction Server Synchronized Recovery is

required.

Syntax

INTEGER PROCEDURE GET_MIME_TYPE (MSG, PATH, MIME_TYPE);
 EBCDIC ARRAY MSG [0];
 EBCDIC ARRAY PATH [0];
 EBCDIC ARRAY MIME_TYPE [0];

INTEGER PROCEDURE getMimeType (MSG, PATH, MIME_TYPE);
 EBCDIC ARRAY MSG [*];
 EBCDIC ARRAY PATH [*];
 EBCDIC ARRAY MIME_TYPE [*];

Parameters

MSG is the Message Object.

PATH is the supplied virtual path name.

MIME_TYPE is the returned real path name. For example, a PATH of /myfile.htm can

return a MIME_TYPE of text/html.

GET_POSTED_DATA

Returns the data in the request body (also known as Content Data). The application

specifies the maximum data length to be returned, and the server returns the actual

length read. One or more calls can be made until the whole request body is read.

Syntax

INTEGER PROCEDURE GET_POSTED_DATA
 (MSG, MAX_LEN, POST_DATA, POST_LEN);
 EBCDIC ARRAY MSG [0];
 INTEGER MAX_LEN;
 EBCDIC ARRAY POST_DATA [0];
 INTEGER POST_LEN;

INTEGER PROCEDURE getPostedData
 (MSG, MAX_LEN, POST_DATA, POST_LEN);
 VALUE MAX_LEN;
 EBCDIC ARRAY MSG [*];

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–69

 INTEGER MAX_LEN;
 EBCDIC ARRAY POST_DATA [*];
 INTEGER POST_LEN;

Parameters

MSG is the Message Object.

MAX_LEN is the maximum length in bytes to be returned, not including a terminator

character. It should at least be big enough to hold the longest name and value pair.

POST_DATA is the post data returned, with a terminator character. The value fields are

in URL-encoded format. For example: checkbox_1=checked&text1_A%26B. In this

example, the user put the value A&B into the text1 field. The HTTP_UNESCAPE

procedure can be used to unescape the value fields.

POST_LEN is the amount of data returned, not including the terminator character. If the

request is not a POST request, zero is returned.

Note: If the amount of data to be returned exceeds MAX-LEN, the last name and

value pair is not truncated. This means POST-LEN could be returned with a value

less than MAX-LEN, but there is still data to be read. The application should loop,

calling the GET_POSTED_ DATA procedure until POST_LEN is zero.

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

0 No-op. All data has been previously read or there is no data.

–17 Translation is not available, and the mapping between the input and output

character sets is not supported by the CENTRALSUPPORT and CCSFILE

installed on the system.

GET_REAL_PATH

Requests the server to apply the alias rules to the supplied virtual path and returns the

corresponding real path.

This procedure should not be used if Synchronized Recovery is required.

Syntax

INTEGER PROCEDURE GET_REAL_PATH (MSG, VIRTUAL_PATH, REAL_PATH);
 EBCDIC ARRAY MSG [0];
 EBCDIC ARRAY VIRTUAL_PATH [0];
 EBCDIC ARRAY REAL_PATH [0];

INTEGER PROCEDURE getRealPath (MSG, VIRTUAL_PATH, REAL_PATH);
 EBCDIC ARRAY MSG [*];
 EBCDIC ARRAY VIRTUAL_PATH [*];
 EBCDIC ARRAY REAL_PATH [*];

WEBAPPSUPPORT Library Interface

3–70 3826 5286–007

Parameters

MSG is the Message Object.

VIRTUAL_PATH is the supplied virtual path name. For example: /icons/.

REAL_PATH is the returned real path name.

For example: /-/DISK/P UBLIC/WWWROOT/ATLAS/ICONS/.

GET_REQUEST_INFO

Returns general information about the transaction request. It is called by the

application to predetermine lengths of request string attributes or data so it can

allocate sufficient buffer space to get the attributes values or data.

Syntax

INTEGER PROCEDURE GET_REQUEST_INFO
 (MSG, REQUEST_LINE_LENGTH, URI_LENGTH,
 PATH_LENGTH, QUERY_LENGTH, CONTENT_LENGTH,
 TOTAL_LENGTH);
 EBCDIC ARRAY MSG [0];
 INTEGER REQUEST_LINE_LENGTH, URI_LENGTH,
 PATH_LENGTH, QUERY_LENGTH, CONTENT_LENGTH,
 TOTAL_LENGTH;

INTEGER PROCEDURE getRequestInfo
 (MSG, REQUEST_LINE_LENGTH, URI_LENGTH,
 PATH_LENGTH, QUERY_LENGTH, CONTENT_LENGTH,
 TOTAL_LENGTH);
 EBCDIC ARRAY MSG [*];
 INTEGER REQUEST_LINE_LENGTH, URI_LENGTH,
 PATH_LENGTH, QUERY_LENGTH, CONTENT_LENGTH,
 TOTAL_LENGTH;

Parameters

MSG is the Message Object.

REQUEST_LINE_LENGTH is the length of the request line as received from the client.

This is the length of the string returned by GET_HEADER ($REQUEST-LINE).

HEADER_LENGTH is the total length of the all request headers (excluding the request

line). This is the length of the string returned by utParseHeaders.

URI_LENGTH is the length of request universal request identifier (URI) (including query

string) as received from the client. This is the length of the string returned by

GET_HEADER ($REQUEST-URI).

PATH_LENGTH is the length of the request path name (excluding query string) after

being unescaped. This length might not be the actual length of the requested path

name because path name in the request might be escaped. This length is the length of

the string returned by GET_HEADER ($REQUEST-PATH).

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–71

QUERY_LENGTH is the length of the request query string as received from the client

that might have escape characters. This is the length of the string returned by

GET_HEADER ($QUERY-STRING). Zero is returned if no query string is present.

CONTENT_LENGTH is the length of the request body. The value is zero if the

Content-Length header is not present in the request.

TOTAL_LENGTH is the total length in bytes of the HTTP request, which is everything

starting with the method, such as GET ..., to the end of the content data, if any.

GET_SERVER_PORT

Returns the port number on which the request was received.

Syntax

INTEGER PROCEDURE GET_SERVER_PORT (MSG, PORTNUM);
 EBCDIC ARRAY MSG [0];
 INTEGER PORTNUM;

INTEGER PROCEDURE getServerPort (MSG, PORTNUM);
 EBCDIC ARRAY MSG [*];
 INTEGER PORTNUM;

Parameters

MSG is the Message Object.

PORTNUM is the port number on which the request was received.

GET_USER_AUTHORIZED

Indicates whether or not the user is authorized.

Syntax

INTEGER PROCEDURE GET_USER_AUTHORIZED (MSG);
 EBCDIC ARRAY MSG [0];

INTEGER PROCEDURE getUserAuthorized (MSG);
 EBCDIC ARRAY MSG [*];

Parameters

MSG is the Message Object.

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

0 No-op. The user is not authorized (that is, the user is anonymous).

WEBAPPSUPPORT Library Interface

3–72 3826 5286–007

1 Successful. The user is authorized and has passed validity checking by

providing a valid MCP usercode and password with the request.

GET_USER_PRIVILEGE

Indicates whether or not the user has the specified privilege.

Syntax

INTEGER PROCEDURE GET_USER_PRIVILEGE (MSG, PRIVILEGE);
 EBCDIC ARRAY MSG [0];
 INTEGER PRIVILEGE;

INTEGER PROCEDURE getUserPrivilege (MSG, PRIVILEGE);
 VALUE PRIVILEGE;
 EBCDIC ARRAY MSG [*];
 INTEGER PRIVILEGE;

Parameters

MSG is the Message Object.

PRIVILEGE is the privilege requested and is one of the following values:

1: PU

2: SECADMIN

3: SYSADMIN

4: SYSTEMUSER

5: CHANGE

6: CHANGESEC

7: COMSCONTROL

8: CREATEFILE

9: EXECUTE

10: GETSTATUS

11: GSDIRECTORY

12: IDC

13: LOCALCOPY

14: LOGINSTALL

15: LOGOTHERS

16: RESERVED

17: RESERVED

18: READ

19: REMOVE

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–73

20: SETSTATUS

21: USERDATA

22: WRITE

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

0 No-op. The user does not have the privilege.

1 Successful. The user has the privilege.

–34 Unsupported Privilege. The privilege value is not supported.

GET_USER_PRIVILEGED

Indicates whether or not the user is privileged.

Syntax

INTEGER PROCEDURE GET_USER_PRIVILEGED (MSG);
 EBCDIC ARRAY MSG [0];

INTEGER PROCEDURE getUserPrivileged (MSG);
 EBCDIC ARRAY MSG [*];

Parameters

MSG is the Message Object.

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

0 No-op. The user is not privileged.

1 Successful. The user is privileged.

PARSE_COOKIES

Parses the cookie headers of the request. The application supplies a buffer into which

the server is to return the result of the parsing.

Syntax

INTEGER PROCEDURE PARSE_COOKIES
 (MSG, MAX_NAME_LEN, MAX_VALUE_LEN, MAX_PATH_LEN,
 MAX_DOMAIN_LEN, MAX_PORT_LEN, VERSION,
 BUFFER, NUM_COOKIES);
 EBCDIC ARRAY MSG [0];
 INTEGER MAX_NAME_LEN, MAX_VALUE_LEN, MAX_PATH_LEN,

WEBAPPSUPPORT Library Interface

3–74 3826 5286–007

 MAX_DOMAIN_LEN, MAX_PORT_LEN, VERSION;
 EBCDIC ARRAY BUFFER [0];
 INTEGER NUM_COOKIES;

INTEGER PROCEDURE parseCookies
 (MSG, MAX_NAME_LEN, MAX_VALUE_LEN, MAX_PATH_LEN,
 MAX_DOMAIN_LEN, MAX_PORT_LEN, VERSION,
 BUFFER, NUM_COOKIES);
 VALUE MAX_NAME_LEN, MAX_VALUE_LEN, MAX_PATH_LEN,
 MAX_DOMAIN_LEN, MAX_PORT_LEN;
 EBCDIC ARRAY MSG [*];
 INTEGER MAX_NAME_LEN, MAX_VALUE_LEN, MAX_PATH_LEN,
 MAX_DOMAIN_LEN, MAX_PORT_LEN, VERSION;
 EBCDIC ARRAY BUFFER [*];
 INTEGER NUM_COOKIES);

Parameters

MSG is the Message Object.

MAX_NAME_LEN is the size of the name column.

MAX_VALUE_LEN is the size of the value column.

MAX_PATH_LEN is the size of the path column and is used only if the user agent is

using version 1 cookies.

MAX_DOMAIN_LEN is the size of the domain column and is used only if the user agent

is using version 1 cookies.

MAX_PORT_LEN is the size of the port column and is used only if the user agent is

using version 1 cookies.

VERSION is the version of the cookie: 0 = Netscape format cookie.

BUFFER is the buffer into which the data is returned.

NUM_COOKIES is the number of cookies returned.

Only Version 0 cookies are supported.

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–75

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

–17 Translation is not available, and the mapping between the input and output

character sets is not supported by the CENTRALSUPPORT and CCSFILE

installed on the system.

–3 Software Error. If the length of a returned name, including any terminating

byte, exceeds the MAX_NAME_LEN procedure, or if the length of a returned

value, including any terminating byte, exceeds the MAX_VALUE_LEN

parameter, WEBAPPSUPPORT stops processing the request and returns this

value.

Example

In COBOL, you might declare

01 COOKIE-BUFFER.
 03 COOKIE-INFO OCCURS 10 TIMES.
 05 COOKIE-NAME PIC X(20).
 05 COOKIE-VALUE PIC X(100).
 05 COOKIE-PATH PIC X(100).
 05 COOKIE-DOMAIN PIC X(30).
 05 COOKIE-PORT PIC X(5).

The call to PARSE_COOKIES passes COOKIE-BUFFER, with MAX_NAME_LEN set to 20,

and MAX_VALUE_LEN set to 100, etc.

PARSE_HEADER

Parses the query string of the request and returns all of the HTTP headers of the

request. This procedure is similar to the PARSE_QUERY_STRING procedure.

Syntax

INTEGER PROCEDURE PARSE_HEADERS
 (MSG, MAX_NAME_LEN, MAX_VALUE_LEN, BUFFER,
 NUM_PAIRS);
 EBCDIC ARRAY MSG [0];
 INTEGER MAX_NAME_LEN, MAX_VALUE_LEN;
 EBCDIC ARRAY BUFFER [0];
 INTEGER NUM_PAIRS;

INTEGER PROCEDURE parseHeaders
 (MSG, MAX_NAME_LEN, MAX_VALUE_LEN, BUFFER,
 NUM_PAIRS);
 VALUE MAX_NAME_LEN, MAX_VALUE_LEN;
 EBCDIC ARRAY MSG [*];
 INTEGER MAX_NAME_LEN, MAX_VALUE_LEN;
 EBCDIC ARRAY BUFFER [*];
 INTEGER NUM_PAIRS;

WEBAPPSUPPORT Library Interface

3–76 3826 5286–007

Parameters

MSG is the Message Object.

MAX_NAME_LEN is the size of the name column.

MAX_VALUE_LEN is the size of the value column.

BUFFER is the buffer into which the data is returned, represented as pairs of strings.

NUM_PAIRS is the number of pairs returned.

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

–17 Translation is not available, and the mapping between the input and output

character sets is not supported by the CENTRALSUPPORT and CCSFILE

installed on the system.

PARSE_POST_DATA

See also GET_HEADER ($QUERY_STRING).

Similar to PARSE_QUERY_STRING except the procedure operates on the request body

of a POST request, not on the query string. The Content-type of the request body

must be of the form application/x-www-form-urlencoded. See also

GET_POSTED_DATA.

You cannot use this procedure for requests with content length greater than

16,777,215 bytes.

Syntax

INTEGER PROCEDURE PARSE_POST_DATA
 (MSG, MAX_NAME_LEN, MAX_VALUE_LEN, BUFFER,
 NUM_PAIRS);
 EBCDIC ARRAY MSG [0];
 INTEGER MAX_NAME_LEN, MAX_VALUE_LEN;
 EBCDIC ARRAY BUFFER [0];
 INTEGER NUM_PAIRS;

INTEGER PROCEDURE parsePostData
 (MSG, MAX_NAME_LEN, MAX_VALUE_LEN, BUFFER,
 NUM_PAIRS);
 VALUE MAX_NAME_LEN, MAX_VALUE_LEN;
 EBCDIC ARRAY MSG [*];
 INTEGER MAX_NAME_LEN, MAX_VALUE_LEN;
 EBCDIC ARRAY BUFFER [*];
 INTEGER NUM_PAIRS;

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–77

Parameters

MSG is the Message Object.

MAX_NAME_LEN is the size of the name column.

MAX_VALUE_LEN is the size of the value column.

BUFFER is the buffer into which the data is returned, represented as pairs of

unescaped strings.

NUM_PAIRS is the number of pairs returned.

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

–17 Translation is not available, and the mapping between the input and output

character sets is not supported by the CENTRALSUPPORT and CCSFILE

installed on the system.

PARSE_QUERY_STRING

Parses the query string of the request. The application supplies a buffer into which the

server is to return the result of unescaping the received query string [plus signs (+) are

also translated to spaces]. If the data does not contain name and value pairs (meaning

the value part is absent), information is returned for the names only.

If the length of a returned name, including any terminating byte, exceeds the

MAX_NAME_LEN procedure, or if the length of a returned value, including any

terminating byte, exceeds the MAX_VALUE_LEN parameter, WEBAPPSUPPORT stops

processing the request and returns a Software Error (–3) result.

The intent is to make it easy for COBOL applications to handle name and value pair

data.

Syntax

INTEGER PROCEDURE PARSE_QUERY_STRING
 (MSG, MAX_NAME_LEN, MAX_VALUE_LEN, BUFFER,
 NUM_PAIRS);
 EBCDIC ARRAY MSG [0];
 INTEGER MAX_NAME_LEN, MAX_VALUE_LEN;
 EBCDIC ARRAY BUFFER [0];
 INTEGER NUM_PAIRS;

INTEGER PROCEDURE parseQueryString
 (MSG, MAX_NAME_LEN, MAX_VALUE_LEN, UFFER,
 NUM_PAIRS);
 VALUE MAX_NAME_LEN, MAX_VALUE_LEN;
 EBCDIC ARRAY MSG [*];
 INTEGER MAX_NAME_LEN, MAX_VALUE_LEN;

WEBAPPSUPPORT Library Interface

3–78 3826 5286–007

 EBCDIC ARRAY BUFFER [*];
 INTEGER NUM_PAIRS;

Parameters

MSG is the Message Object.

MAX_NAME_LEN is the size of the name column.

MAX_VALUE_LEN is the size of the value column.

BUFFER is the buffer into which the data is returned, represented as pairs of strings.

NUM_PAIRS is the number of pairs returned.

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

–17 Translation is not available, and the mapping between the input and output

character sets is not supported by the CENTRALSUPPORT and CCSFILE

installed on the system.

Example

In COBOL, you might declare the following:

01 NAME-VALUE-BUFFER.
 03 NAME-VALUE-PAIR OCCURS 10 TIMES.
 05 QUERY-NAME PIC X(20).
 05 QUERY-VALUE PIC X(100).

The call to PARSE_QUERY_STRING passes NAME-VALUE-BUFFER, with

MAX_NAME_LEN set to 20, and MAX_VALUE_LEN set to 100.

SET_CONTENT

Sets the response body. One or more calls to this procedure can be made until the

whole content length is set.

Syntax

INTEGER PROCEDURE SET_CONTENT
 (MSG, RSP_DATA, DATA_START, DATA_LEN, COMPLETE);
 EBCDIC ARRAY MSG, RSP_DATA [0];
 INTEGER DATA_START, DATA_LEN, COMPLETE;

INTEGER PROCEDURE setContent
 (MSG, RSP_DATA, DATA_START, DATA_LEN, COMPLETE);
 VALUE DATA_START, DATA_LEN, COMPLETE;
 EBCDIC ARRAY MSG, RSP_DATA [*];
 INTEGER DATA_START, DATA_LEN;
 BOOLEAN COMPLETE;

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–79

Parameters

MSG is the Message Object.

RSP_DATA is the data to send, without terminating characters.

DATA_START is the index in RSP_DATA to start copying the data. For calls to

SET_CONTENT, this is one-based (a value of 1 indicates that data should be copied

from the first byte). For calls to setContent, this is zero-based.

DATA_LEN is the amount of data in RSP_DATA to send. If the value is zero or less, the

previously set content in the message object is cleared. The maximum amount of data

that can be set depends on the amount of free space in the MSG buffer declared in

the application.

COMPLETE indicates this is the last (or only) segment of data: 0 = FALSE, 1 = TRUE.

If multiple segments are to be sent to the user, the HTTP header Content-Length must

be set with a call to SET_HEADER prior to the first SEND or WRITE of the message

object. If only one segment is being sent, the Content-Length header does not need to

be set.

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

–17 Translation is not available, and the mapping between the input and output

character sets is not supported by the CENTRALSUPPORT and CCSFILE

installed on the system.

SET_CONTENT_TYPE

Sets the Content-type header of the response. By default (that is, this procedure is not

called), if the response does not have a body, then the Content-Type header is not

sent to the user; otherwise, it is text/html. See also SET_STATUS_CODE.

Syntax

INTEGER PROCEDURE SET_CONTENT_TYPE
 (MSG, CONTENT_TYPE);
 EBCDIC ARRAY MSG [0];
 EBCDIC ARRAY CONTENT_TYPE [0];

INTEGER PROCEDURE setContentType
 (MSG, CONTENT_TYPE);
 EBCDIC ARRAY MSG [*];
 EBCDIC ARRAY CONTENT_TYPE [*];

Parameters

MSG is the Message Object.

WEBAPPSUPPORT Library Interface

3–80 3826 5286–007

CONTENT_TYPE is the response content type.

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

–33 An invalid character for a response header is in the text supplied by the

application, and the application is Interface Version 4 or higher. If the

application is at Interface Version 3 or lower, a –3 (Software Error) is returned

instead for an invalid character in a response header.

SET_COOKIE

Sets a Netscape style cookie header. It can be called multiple times, with each call

concatenated to the previous.

Syntax

INTEGER PROCEDURE SET_COOKIE (MSG, COOKIE_NAME, COOKIE_VALUE,
 EXPIRES, DOMAIN, PATH, SECURE);
 EBCDIC ARRAY MSG, COOKIE_NAME, COOKIE_VALUE [0];
 EBCDIC ARRAY EXPIRES, DOMAIN, PATH [0];
 INTEGER SECURE;

INTEGER PROCEDURE setCookie (MSG, COOKIE_NAME, COOKIE_VALUE,
 EXPIRES, DOMAIN, PATH, SECURE);
 VALUE SECURE;
 EBCDIC ARRAY MSG, COOKIE_NAME, COOKIE_VALUE [*];
 EBCDIC ARRAY EXPIRES, DOMAIN, PATH [*];
 BOOLEAN SECURE;

Parameters

MSG is the Message Object.

COOKIE_NAME is the name of the cookie. This parameter is required to be a nonnull

string, for example: CUSTOMER.

COOKIE_VALUE is the value of the cookie. This parameter is required to be a nonnull

string. The length of this field should not exceed 4,000 bytes unless it is certain that

the client (browser) can handle a longer value. The actual absolute size of this field is

10,000 bytes, for example: WILE_E_COYOTE.

EXPIRES is the date that specifies the valid life of the cookie. Once the expiration date

has been reached, the cookie is no longer stored or given out. The parameter must be

in RFC1123 format, with the further restriction that the time zone must be GMT, and

only dashes can separate the date elements. If null, the expired attribute is absent

from the header, for example: Mon, 14-Sep-1998 14:30:00 GMT.

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–81

DOMAIN is the Internet domain to which the cookie can be returned. It must contain

at least two periods if the top level domain is com, edu, net, org, gov, mil, or int;

otherwise, it must contain at least three periods. If the value is null, the domain

attribute is absent from the header, and the cookie is sent only to the host that set the

cookie. For example: .acme.com sends the cookie to hosts anvil.acme.com and

shipping.crate.acme.com.

PATH is the subset of URLs in a domain for which the cookie is valid. If the value is

null, the path attribute is absent from the header, and the path is assumed to be the

same path as the document being described by the header that contains the cookie.

For example: ”foot” would match /football and /foot/ball.html.

SECURE indicates the cookie is secure, meaning the cookie is only returned if the

communications channel with the host is secure (that is, uses SSL). The values are 0

=FALSE or 1=TRUE.

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

–17 Translation is not available, and the mapping between the input and output

character sets is not supported by the CENTRALSUPPORT and CCSFILE

installed on the system.

–33 An invalid character for a response header is in the text supplied by the

application, and the application is Interface Version 4 or higher. If the

application is at Interface Version 3 or lower, a –3 (Software Error) is returned

instead for an invalid character in a response header.

SET_HEADER

Sets a string HTTP header of the response.

Syntax

INTEGER PROCEDURE SET_HEADER (MSG, HEADER_NAME, HEADER_VALUE);
 EBCDIC ARRAY MSG [0];
 EBCDIC ARRAY HEADER_NAME [0];
 EBCDIC ARRAY HEADER_VALUE [0];

INTEGER PROCEDURE setHeader (MSG, HEADER_NAME, HEADER_VALUE);
 EBCDIC ARRAY MSG [*];
 EBCDIC ARRAY HEADER_NAME [*];
 EBCDIC ARRAY HEADER_VALUE [*];

Parameters

MSG is the Message Object.

HEADER_NAME is the requested header. Client (browser) processing of HTTP headers

can be case sensitive. Specify the HEADER_HAME with the same case as that

specified by the HTTP specification -for example: Expires.

WEBAPPSUPPORT Library Interface

3–82 3826 5286–007

HEADER_VALUE is the supplied header value -for example: Tue, 14 Jul 1998 17:28:31

GMT.

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

–33 An invalid character for a response header is in the text supplied by the

application, and the application is Interface Version 4 or higher. If the

application is at Interface Version 3 or lower, a –3 (Software Error) is returned

instead for an invalid character in a response header.

SET_REDIRECT

Sets a redirect response with the specified location. Sets the status code to 303 (see

Other), and the Location header to the NEW_URL parameter. SET_CONTENT can be

called to send response content after SET_REDIRECT is called. Otherwise, the

Message Object should be sent to the user after calling this procedure.

Syntax

INTEGER PROCEDURE SET_REDIRECT (MSG, NEW_URL);
 EBCDIC ARRAY MSG [0];
 EBCDIC ARRAY NEW_URL [0];

INTEGER PROCEDURE setRedirect (MSG, NEW_URL);
 EBCDIC ARRAY MSG [*];
 EBCDIC ARRAY NEW_URL [*];

Parameters

MSG is the Message Object.

NEW_URL is the string value for the Location header.

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

–33 An invalid character for a response header is in the text supplied by the

application, and the application is Interface Version 4 or higher. If the

application is at Interface Version 3 or lower, a –3 (Software Error) is returned

instead for an invalid character in a response header.

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–83

SET_SSI

Controls Server Side Include (SSI) processing of content data in the response.

See the Web Transaction Server Administration and Programming Guide for a list of

supported SSI directives.

Syntax

INTEGER PROCEDURE SET_SSI (MSG, SSI);
 VALUE SSI;
 EBCDIC ARRAY MSG [*];
 BOOLEAN SSI;

INTEGER PROCEDURE setSSI (MSG, SSI);
 VALUE SSI;
 EBCDIC ARRAY MSG [*];
 BOOLEAN SSI;

Parameters

MSG is the Message Object.

SSI indicates whether or not to process the response content for SSI directives.

Values are 0 = FALSE or 1 = TRUE. The default is FALSE.

SET_STATUS_CODE

Sets the status code and optionally sets the reason string in the response. If the

reason string is null, the server uses the default reason message for the status code.

If this procedure is not called, the default status code is 200 (OK), with no reason text.

Syntax

INTEGER PROCEDURE SET_STATUS_CODE
 (MSG, STATUS_CODE, STATUS_SUBCODE, REASON,
 REASON_LEN);
 EBCDIC ARRAY MSG [0];
 INTEGER STATUS_CODE, STATUS_SUBCODE,
 REASON_LEN;
 EBCDIC ARRAY REASON [0];

INTEGER PROCEDURE setStatusCode
 (MSG, STATUS_CODE, STATUS_SUBCODE, REASON,
 REASON_LEN);
 VALUE STATUS_CODE, STATUS_SUBCODE,
 REASON_LEN;
 EBCDIC ARRAY MSG [*];
 INTEGER STATUS_CODE, STATUS_SUBCODE,
 REASON_LEN;
 EBCDIC ARRAY REASON [*];

WEBAPPSUPPORT Library Interface

3–84 3826 5286–007

Parameters

MSG is the Message Object.

STATUS_CODE is the HTTP status code for the response. Typical values are 400 (Bad

Request) and 500 (Internal Software Error).

STATUS_SUBCODE is a subcode for certain status codes, so that unique text

responses can be returned depending on the specific reason. This field is ignored if

REASON is non null. The list of valid subcodes is defined in the Web Transaction

Server Administration and Programming Guide.

REASON is the optional reason. The format should match the defined content type for

the response, which defaults to text/html.

REASON_LEN is the length of REASON in bytes, up to a maximum of 65000 bytes.

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

–17 Translation is not available, and the mapping between the input and output

character sets is not supported by the CENTRALSUPPORT and CCSFILE

installed on the system.

VALIDATE_REQUEST

Used to direct the authentication of the requestor. The Web Transaction Server

handles the authentication and validates the user to MCP USERDATA.

The application is responsible for returning the response to the user, even if the

validation is rejected. This includes returning a challenge response in a multi-step

validation, such as for NTLM or Kerberos. The Web Transaction Server sets the

WWW-Authenticate: response header.

Also, if present, the SECURITYSUPPORT library is called.

Syntax

INTEGER PROCEDURE VALIDATE_REQUEST
 (MSG, METHOD, ASSUMEUC, REALM,
 STATUS_CODE, STATUS_SUBCODE,
 DELAY_RSP_TIME, USER, SUPPLEMENTAL);
 EBCDIC ARRAY MSG, REALM,
 USER, SUPPLEMENTAL [0];
 INTEGER METHOD, ASSUMEUC,
 STATUS_CODE, STATUS_SUBCODE,
 DELAY_RSP_TIME;

 WEBAPPSUPPORT Library Interface

3826 5286–007 3–85

INTEGER PROCEDURE validateRequest
 (MSG, METHOD, ASSUMEUC, REALM,
 STATUS_CODE, STATUS_SUBCODE,
 DELAY_RSP_TIME, USER, SUPPLEMENTAL);
 VALUE METHOD, ASSUMEUC;
 EBCDIC ARRAY MSG, REALM,
 USER, SUPPLEMENTAL [*];
 INTEGER METHOD, ASSUMEUC,
 STATUS_CODE, STATUS_SUBCODE,
 DELAY_RSP_TIME;

Parameters

MSG is the Message Object.

METHOD is the authentication method to use.

• 1 = HTTP Basic

• 2 = NTLM Only

• 3 = Kerberos or NTLM

ASSUMEUC is currently not supported. It should be set to zero by the application.

REALM is the realm to be used when METHOD = 1. It is a string in the application’s

character set. If null or empty, the WEBPCM service path is used, for example:

/comsdemo1/. If METHOD is not 1, then the first byte should be set to either a null

byte or a space character.

STATUS_CODE is the HTTP status code that results from the validation process. This

value can be used with the SET_STATUS_CODE procedure to return the response.

Some examples of returned values are

• 200 = Successful

• 401 = Unauthorized

• 403 = Forbidden

STATUS_SUBCODE is a subcode for certain status codes that result from the

validation process. This value can be used with the SET_STATUS_CODE procedure to

return a final response. The list of valid subcodes is defined in the Web Transaction

Server Administration and Programming Guide under the “CustomErrors” directive.

DELAY_RSP_TIME is the time in seconds that the application should wait before

returning the response. This value is a non-zero when the Delay Authentication Retry

feature in the Web Transaction Server provider is enabled, and the HTTP client has had

one or more failed validation attempts.

WEBAPPSUPPORT Library Interface

3–86 3826 5286–007

USER is the authenticated usercode, accesscode, and chargecode in the application’s

character set. Each value is a string, terminated according to the applications string

termination setting. It maps to the COBOL structure:

01 USER-BUFFER.
 03 USER-USERCODE PIC X(18).
 03 USER-ACCESSCODE PIC X(18).
 03 USER-CHARGECODE PIC X(61).
 03 USER-EXTERNALID PIC X(256).

SUPPLEMENTAL is reserved for future use. The first byte should be set to either a null

byte or a space character.

Possible Result Values

In addition to the standard returned results, these possible values can be returned.

Value Description

0 Unsupported METHOD parameter, or application must return STATUS_CODE

and STATUS_SUBCODE to client.

XML Procedures

Refer to Section 6, “WEBAPPSUPPORT Library Interface for the XML Parser,” for

information on XML WEBAPPSUPPORT procedures.

HTTP Client Procedures

Refer to Section 9, “HTTP Client Applications,” for information on HTTP

WEBAPPSUPPORT procedures.

Regular Expressions Procedures

Refer to Section 10, “Using Regular Expressions,” for information about the Regular

Expressions WEBAPPSUPPORT procedures.

3826 5286–007 4–1

Section 4
XML Parser Administration

Installing the XML Parser

To install the XML Parser, do the following:

1. Ensure that the Custom Connect Facility (CCF) is installed on the MCP system.

2. Install the Java Parser Module (JPM) on any of the following:

• MCP Java Processor

• Microsoft Windows system with Sun Java 6.0 or 7.0 JDK

On MCP Java

The WFL named *SYSTEM/CCF/XMLPARSER/WFL/JAVA is supplied with the XML

Parser and installs the JPM. Also, if WEBAPPSUPPORT is configured to run the JPM,

WEBAPPSUPPORT installs the JPM to MCP Java.

On Microsoft Windows

To install the JPM on a Microsoft Windows system, do the following:

1. Map a drive to the MCP installs share, which is *SYSTEM/INSTALLS.

2. Copy the files from the installs share folder \XMLJavaParser on the MCP installs

share to a folder on your Windows system.

For example, you could copy the files to the folder c:\Program

Files\Unisys\XMLJAVAPARSER.

3. Set the system environment variable JAVA_HOME to point to the folder for Java

JRE.

This step is required.

For example, the variable JAVA_HOME could point to c:\Program

Files\Java\jre1.6.0_12.

4. Set the system environment variable JPM_HOME to point to the JPM directory.

This step is required.

For example, the variable JPM_HOME could point to c:\Program

Files\Unisys\XMLJAVAPARSER.

XML Parser Administration

4–2 3826 5286–007

5. Set the system environment variable JPM_OPTS to set the Java options needed to

run the JPM.

These options include memory sizes, garbage collection settings, and other

options.

For example, type

-server

6. In the folder c:\Program Files\Unisys\XMLJAVAPARSER\JPM1\config copy the file

JPMConfigSAMPLE.xml as JPMConfig.xml.

JPMConfig.xml is the file that contains specific configuration for the JPM.

Installed Files

The following XML Parser files are installed to the MCP with the CCF product:

• *SYSTEM/CCF/XMLPARSER/WFL/JAVA

This file contains a WFL for running the JPM on MCP Java.

• *SYSTEM/CCF/XMLPARSER/SAMPLE/PARSEXML/ALGOL

This file contains a sample ALGOL application that parses an XML document.

• *SYSTEM/CCF/XMLPARSER/SAMPLE/PARSEXML/COBOL

This file contains a sample COBOL85 application that parses an XML document.

• *SYSTEM/CCF/XMLPARSER/SAMPLE/CREATEXML/ALGOL

This file contains a sample ALGOL application that creates an XML document.

• *SYSTEM/CCF/XMLPARSER/SAMPLE/CREATEXML/COBOL

This file contains a sample COBOL85 application that creates an XML document.

• *SYSTEM/CCF/XMLPARSER/SAMPLE/TRANSFORMXML/ALGOL

This file contains a sample ALGOL application that transforms an XML document.

• *SYSTEM/CCF/XMLPARSER/SAMPLE/TRANSFORMXML/COBOL

This file contains a sample COBOL85 application that transforms an XML

document.

• *SYSTEM/INSTALLS/XMLJAVAPARSER/BIN/=

This directory contains binary files and Windows .bat files for the JPM.

• *SYSTEM/INSTALLS/XMLJAVAPARSER/JPM1/CONFIG/”JPMCONFIGSAMPLE.XML”

This file contains a sample JPM configuration.

• *SYSTEM/INSTALLS/XMLJAVAPARSER/JPM1/CONFIG/”JPMLOGPROPERTIES”

This file contains sample log4j properties. You probably do not need to modify this

file.

 XML Parser Administration

3826 5286–007 4–3

• *SYSTEM/INSTALLS/XMLJAVAPARSER/”README.TXT”

This text file contains instructions for using the JPM on systems other than MCP

systems.

• *SYSTEM/CCF/WEBAPPSUPPORT/PARAMS/XML/EXAMPLE

This file contains sample parameters for XML settings that the WEBAPPSUPPORT

library uses.

Installing Updates

After you install the XML Parser, you might need to install an update that Unisys

supplied. To install an update, do the following:

1. Update the CCF product.

Follow the instructions in the CCF Interim Correction (IC) cover letter.

The IC installation puts a new version of the WEBAPPSUPPORT library on the MCP

system. If applications are linked to the old WEBAPPSUPPORT library, the old

library does not terminate when you install the IC. The old library terminates only

when the applications delink from WEBAPPSUPPORT.

Two instances of the WEBAPPSUPPORT library can run at the same time, but

operator commands entered through WEBPCM only go to the old

WEBAPPSUPPORT library.

2. Update the (JPM).

See “Updating the XML Parser JPM.”

Configuring the XML Parser

To configure the XML Parser, do the following:

1. Configure the WEBAPPSUPPORT library for its use of the JPMs.

2. Configure each JPM.

WEBAPPSUPPORT XML Parser Configuration File

The WEBAPPSUPPORT XML Parser Configuration File

(*SYSTEM/CCF/WEBAPPSUPPORT/PARAMS/XML) is a text file containing the

configuration for the WEBAPPSUPPORT part of XML. This file is changed to support

the new PARSER directive. The PARSER directive replaces the use of the

PARSERHOST and PARSERPORT directives.

Syntax

PARSER <parser number> {
 HOST <domain name|IP address>;
 PORT <port number>;
 STANDBY <true|false>;
 INITIATEJVM <true|false>;
 TARGET <java server number>;
 JAVAFAMILY <quoted string>;

XML Parser Administration

4–4 3826 5286–007

 JAVAHOMEDIR <quoted string>;
 JVMATTRS <quoted string>;
 JPMFAMILY <quoted string>;
 JPMHOMEDIR <quoted string>;
 TASKATTRS <quoted string>;
}

 XML Parser Administration

3826 5286–007 4–5

The PARSER attributes shown in the following table are optional unless marked as

required.

Attribute Description

<parser

number>

The parser number, starting at 1. Parser numbers must be sequential, for

example, 1, 2, 3, and so forth. This attribute is required.

HOST The domain name or IP address of the JPM. If the JPM is running on MCP Java,

this name is recommended to be the EVLAN IP address of the Java Server of

the JPM. This attribute is required.

PORT The port number of the JPM. The default is 51117.

STANDBY If true, the JPM is used for backup only if an active JPM cannot be used. If

false, the JPM is an active JPM. The default is false.

INITIATEJVM If true, WEBAPPSUPPORT initiates the JPM(s) on MCP Java at the initialization

of WEBAPPSUPPORT. If false the JPM is not initiated by WEBAPPSUPPORT.

The default is false.

TARGET The MCP Java server number. The default is 1.

JAVAFAMILY A <quoted string> that specifies the family where MCP Java is installed. This

attribute defaults to the SL family of the JAVASUPPORT function name.

JAVAHOMEDIR A <quoted string> that specifies the top level directory of the MCP Java

installation, for example “JRE6”. This attribute is required if INITIATEJVM is

true.

JVMATTRS A <quoted string> of attributes to pass to the JVM. Do not specify a classpath

or jar. The default is

“-server -Xshare:off -XX:+UseParallelGC

-XX:ParallelGCThreads=4

-XX:-UseAdaptiveSizePolicy -Xmn458m -Xms1376M -Xmx1376M”

JPMFAMILY A <quoted string> that specifies the family where the JPM is installed. This

attribute defaults to the SL family of the JAVASUPPORT function name.

JPMHOMEDIR A <quoted string> that specifies the home directory for the JPM. This default is

“XMLJPM”.

TASKATTRS A <quoted string> of MCP task attributes to apply when running the JPM. The

CURRENTDIRECTORY, FILE JAVAHOMEPATH, and FILE STDIN attributes are set

by WEBAPPSUPPORT and should not be specified in this attribute. The default

is

“MPID=XMLJPM<parser number>; FILE STDOUT(<stdout

parameters>); FILE STDERR(<stderr parameters>);”

XML Parser Administration

4–6 3826 5286–007

The variables shown in the following table apply to the attributes described in the

previous table.

Variable Description

<quoted string> A string of characters enclosed by quote (“) or apostrophe (‘) characters.

The string can be continued across multiple lines by appending multiple

quoted strings.

<java home> /-/<java family>/DIR/<java home dir>

<jpm home> /-/<jpm family>/DIR/<jpm home dir>

<stdin parameters> DISK,TITLE=*DIR/<java home dir>/LICENSE ON <java family>

<stdout parameters> KIND=DISK, LFILENAME=*DIR/<jpm home dir>/JPM<jpm

number>/LOGS/”STDOUT-$DATE-$TIME.TXT”, FAMILYNAME=<jpm

family>, EXTMODE=ASCII, PROTECTION=PROTECTED,

UNIQUETOKEN=”$”

<stderr parameters> KIND=DISK, LFILENAME=*DIR/<jpm home dir>/JPM<jpm

number>/LOGS/”STDERR-$DATE-$TIME.TXT”, FAMILYNAME=<jpm

family>, EXTMODE=ASCII, PROTECTION=PROTECTED,

UNIQUETOKEN=”$”

A sample minimal configuration file that runs one JPM on Java Server 1 might look as

follows:

% Configuration To Java Parser Modules on MCP JProcessor
PARSER 1 {
 HOST 192.168.16.21;
 INITIATEJVM true;

 JAVAHOMEDIR ″JRE6″;
}

A sample configuration file with two JPMs each running on a separate JDP, a standby

JPM running on Windows, and all attributes specified might look like the following:

% Configuration To Java Parser Modules on MCP JProcessor
PARSER 1 {
 HOST 192.168.16.21;
 PORT 51117;
 STANDBY false;
 INITIATEJVM true;
 TARGET 1;

 JAVAFAMILY ″DISK″;

 JAVAHOMEDIR ″JRE6″;

 JVMATTRS ″-server -Xshare:off -XX:+UseParallelGC
 -XX:ParallelGCThreads=4 -XX:-UseAdaptiveSizePolicy
 -Xmn458m -Xms1376M -Xmx1376M";

 JPMFAMILY ″DISK″;

 JPMHOMEDIR ″XMLJPM″;

 TASKATTRS ″MPID=XMLJPM1; ″

 ″FILE STDOUT(KIND=DISK, ″

 XML Parser Administration

3826 5286–007 4–7

 ′LFILENAME=*DIR/XMLJPM/JPM1/LOGS/″STDOUT-$DATE-$TIME.TXT″, ′

 ″FAMILYNAME=DISK, ″

 ′EXTMODE=ASCII, PROTECTION=PROTECTED, UNIQUETOKEN=″$″); ′

 ″FILE STDERR(KIND=DISK, ″

 ′LFILENAME=*DIR/XMLJPM/JPM1/LOGS/″STDERR-$DATE-$TIME.TXT″, ′

 ″FAMILYNAME=DISK, ″

 ′EXTMODE=ASCII, PROTECTION=PROTECTED, UNIQUETOKEN=″$″);′;
}

PARSER 2 {
 HOST 192.168.16.31;
 PORT 51117;
 STANDBY false;
 INITIATEJVM true;
 TARGET 2;

 JAVAFAMILY ″DISK″;

 JAVAHOMEDIR ″JRE6″;

 JVMATTRS ″-server -Xshare:off -XX:+UseParallelGC
 -XX:ParallelGCThreads=4 -XX:-UseAdaptiveSizePolicy
 -Xmn458m -Xms1376M -Xmx1376M";

 JPMFAMILY ″DISK″;

 JPMHOMEDIR ″XMLJPM″;

 TASKATTRS ″MPID=XMLJPM2; ″

 ″FILE STDOUT(KIND=DISK, ″

 ′LFILENAME=*DIR/XMLJPM/JPM2/LOGS/″STDOUT-$DATE-$TIME.TXT″, ′

 ″FAMILYNAME=DISK, ″

 ′EXTMODE=ASCII, PROTECTION=PROTECTED, UNIQUETOKEN=″$″); ′

 ″FILE STDERR(KIND=DISK, ″

 ′LFILENAME=*DIR/XMLJPM/JPM2/LOGS/″STDERR-$DATE-$TIME.TXT″, ′

 ″FAMILYNAME=DISK, ″

 ′EXTMODE=ASCII, PROTECTION=PROTECTED, UNIQUETOKEN=″$″);′;
}

PARSER 3 {
 HOST winserver1.mycompany.com; % windows server
 PORT 51117;
 STANDBY true;
 INITIATEJVM false;
}

Note: The PARSERHOST and PARSERPORT directives that were used previously

are still supported for defining a single JPM.

XML Parser Administration

4–8 3826 5286–007

Java Parser Module (JPM

The XML file jpmconfig.xml in the directory

*DIR/XMLJPM/JPM<n>/CONFIG/= configures the JPM.

jpmconfig.xml File with Defaults

The following is the jpmconfig.xml file containing the default values for properties.

<?xml version="1.0"?>
<configuration>
 <port>
 <number>51117</number>
 <address>0.0.0.0</address>
 </port>
 <threads>
 <min>10</min>
 <max>100</max>
 </threads>
 <logging>
 <level>warn</level>
 <logfile>log.txt</logfile>
 </logging>
 <httpProxyHost></httpProxyHost>
 <httpProxyPort></httpProxyPort>
</configuration>

Properties in the jpmconfig.xml File

The properties in the jpmconfig.xml file are port number, port address, threads min,

threads max, logging level, logging logfile, http proxy host, and http proxy port.

port number

This property is the number of the port that the JPM uses to communicate with

WEBAPPSUPPORT. The default port number is 51117.

port address

This is the IP address on which the JPM listens to communicate with

WEBAPPSUPPORT. If the JPM is on the MCP Java 6.0 or 7.0 Java Processor, Unisys

recommends that this address be the EVLAN address of the Java server, using the

“evlanjdp” mnemonic. For example:

<address>evlanjdp</address>

If the JPM is on a server that is independent of the MCP, this address is 0.0.0.0 or one

of the local IP addresses on the server. The default port address is 0.0.0.0.

threads min

This property is the minimum number of JPM worker threads that can be active have

at one time. The default for this property is 10; the minimum value is 1, and the

maximum value is the value of the threads max property.

 XML Parser Administration

3826 5286–007 4–9

threads max

This property is the maximum number of JPM worker threads that can be active at

one time. The default for this property is 100, the minimum value is the value of the

threads min property, and the maximum value is the maximum number of the worker

threads that the JMP can handle.

logging level

This property is the JVM logging level for an application that the MCP is not tracing.

This level can be any of the following case-insensitive values:

• DEBUG

• INFO

• WARN

• ERROR

• FATAL

• OFF

logging logfile

This property is the name of the log file for logging JPM activity and errors. This

property is one node. The log file is stored in the directory LOGS in the JPM directory.

http proxy host

This property is the host name or IP address of the HTTP proxy. The default is no

value, which indicates that the JPM does not use an HTTP proxy.

http proxy port

This property is the port for the HTTP proxy. The default is no value, which indicates

that the JPM does not use an HTTP proxy.

Multiple JPMs

The current configuration of specifying a single PARSERHOST and PARSERPORT is

replaced by specifying one or more numbered “parsers”, each with their own set of

attributes that define location, whether they are standby or active, and optional

configuration for having WEBAPPSUPPORT initiate the JPMs.

JPM Initiation

The WEBAPPSUPPORT library allows configuration of multiple JPMs. The

WEBAPPSUPPORT library initiates these JPMs if they run on MCP Java. Each JPM has

its own directory for configuration and logging. Parsing, transformation and

compression requests can either be load-balanced between multiple active JPMs, or if

an attempt to reach a JPM fails the request is automatically attempted on one or more

standby JPMs.

On Microsoft Windows, you manually run JPMs with the supplied Windows bat file.

XML Parser Administration

4–10 3826 5286–007

The current recommended method of initiating JPMs on MCP Java with a Unisys

supplied WFL is now enhanced with the ability for the WEBAPPSUPPORT library to

initiate the JPMs. When WEBAPPSUPPORT initiates and processes its XML parser

configuration, any JPMs configured as initiated by WEBAPPSUPPORT are started.

JPM Termination

When no callers are linked to the library, WEBAPPSUPPORT and the JPMs that

WEBAPPSUPPORT initiated terminate. If WEBAPPSUPPORT terminates frequently it

might be better to initiate the JPMs independently with the WFLs supplied by Unisys.

If JPMs terminate because MCP Java or a Java server is unavailable, the JPMs are

restarted when MCP Java or a Java server is available. If JPMs terminate because

Networking is unavailable, the JPMs are restarted when Networking is available.

If a JPM initiated by WEBAPPSUPPORT terminates for some other reason,

WEBAPPSUPPORT starts a worker that creates a waiting entry, prompting the

operator to restart the JPM. The JPM is not restarted until either a RESTARTXML

command is entered or an operator directs the restart of the specific JPM.

On a RESTARTXML command, WEBAPPSUPPORT does the following:

• Terminates any JPMs initiated by WEBAPPSUPPORT. Completes requests that are

in process by the JPMs first

• Reads the XML configuration file

• Checks the CCF install directory for new JPM files if any JPMs are to be initiated.

Prompts the operator to upgrade if new JPM files are found

• Initiates JPMs

The WFL supplied by Unisys for initiating JPMs is still released and is changed to

accept a JPM number and JDP target as additional parameters.

JPM Directory Structure

For the new Multiple JPM capability, the released directory structure for JPMs

changes from:

 XMLJPM
 +-- BIN
 +-- CONFIG
 +-- LOGS

To the following:

 XMLJPM
 +-- BIN
 +-- JPM1
 +-- CONFIG
 +-- LOGS

To add a second JPM, make a copy of the JPM1 folder and name this copy JPM2.

 XML Parser Administration

3826 5286–007 4–11

 XMLJPM
 +-- BIN
 +-- JPM1
 | +-- CONFIG
 | +-- LOGS
 +-- JPM2

 +-- CONFIG

 +-- LOGS

Initiate JPMs with a parameter, which is their JPM number (or directory name), so that

they easily can find their directory.

Note: JPM numbers must be sequential and start at 1.

Request Handling

WEBAPPSUPPORT determines which JPMs handle requests. JPMs are either

configured as active or standby. If WEBAPPSUPPORT initiates the JPM, then both

active and standby JPMs are WEBAPPSUPPORT library initiations.

When WEBAPPSUPPORT receives a request, it round-robins the requests among the

list of active JPMs. If an active server fails to respond to a request (cannot open

socket to the JPM, error in sending the request, or error in reading the response), the

next active JPM in the list is tried. If no active JPMs can handle the response, the

standby JPMs are tried until none can handle the request; in that case, the request

fails

If a JPM becomes unavailable, a WEBAPPSUPPORT worker creates a waiting entry.

WEBAPPSUPPORT attempts to reach the JPM on the next request if the JPM has

been unavailable for at least 30 seconds.

Operator Interface

The WEBAPPSUPPORT STATUS response is modified to show the status of each

configured JPM. See “WEBAPPSUPPORT Commands” in Section 3.

Updating the XML Parser JPM

XML Parser software is updated from the installation of an Interim Correction of the

CCF (Custom Connect Facility) product.

To determine the method to use to update the XML Parser JPM, consider

• How continuously you want parsing service

• How complex a configuration you want

You can make the parsing service more continuous, that is, reduce the number of

interruptions, by

• Installing the JPM on multiple, redundant servers

• Configuring the JPM to be able to use any one of multiple ports at one time based

on whichever port is available

XML Parser Administration

4–12 3826 5286–007

However, making the parsing service more continuous requires a configuration that is

more complex to install and manage.

Examples of ways you can update the JPM are presented in the following topics.

Updating the JPM When the JPM Runs on One Server and

Always Uses the Same Port

To update the JPM, perform the following tasks:

1. If you are running the JPM on Microsoft Windows, copy the XMLJAVAPARSER

folder from the MCP installs share, which is the directory for JPM, to your

Windows system. Overwrite the current directory.

If you are running the JPM on MCP Java, either the WEBAPPSUPPORT library or

the JPM WFL installs the new JPM files to the running directory.

2. Read the file readme.txt for necessary changes to the JPM configuration.

3. If necessary, edit the file jpmconfig.xml to change to the JPM configuration.

4. Terminate the currently running JPM.

Terminate the JPM manually, for example by using the <mix>AX QUIT command

to terminate the codefile *DIR/JRE7/BIN/JAVA for JPMs running on MCP Java.

Application requests to parse XML documents can fail while the JPM is

terminated. See "Multiple JPMs" in this Section.

5. Initiate the JPM.

If you are using the MCP Java Processor, the WFL

*SYSTEM/CCF/XMLPARSER/WFL/JAVA prompts you to install the new JPM files.

Answer the WFL Accept with Y to perform the install.

You do not need to change the WEBAPPSUPPORT configuration, and the JPM can use

the same port and server.

 XML Parser Administration

3826 5286–007 4–13

Updating the JPM When the JPM Uses a Non-Default Port

The procedure that you perform depends on whether the JPM runs on the MCP Java

Processor, or on a Windows or Linux system.

When the JPM Runs on the MCP Java Processor

To update the JPM, perform the following tasks:

1. Start the JPM.

Start the WFL *SYSTEM/CCF/XMLPARSER/WFL/JAVA with the value of one of the

following parameters different from the value for the currently running JPM:

• JPMHOMEDIR WFL parameter, which specifies the directory for JPM

• JPMFAMILY WFL parameter, which specifies the pack family for JPM

2. If you are updating the JPM for the first time and are prompted to create JPM

subdirectories, type Y to confirm that you want to create the subdirectories.

3. After the JPM starts, stop the JPM by typing

<mix number of *DIR/JRE/BIN/JAVA>DS

4. Copy the file jpmconfig.xml from the currently active directory for JPM to the new

directory for JPM.

5. Edit the new file jpmconfig.xml:

a. Make the JPM use a different port.

For example, if the currently running JPM is using port 51117, you can make the

new JPM use port 51118.

b. Read the readme.txt file for any other necessary changes to the JPM

configuration.

c. If necessary, edit the file jpmconfig.xml.

6. Start the new JPM by using the WFL that you used in step 1.

Two JPMs are now running on the server.

7. On the MCP, edit the file *SYSTEM/CCF/WEBAPPSUPPORT/PARAMS/XML to make

the JPM use a different port.

For example, the edited file with the old 51117 port commented out might look like

the following:

NEXT+*....1....*....2....*....3....*....4....*....5....*....6
00000100% Configuration To Java Parser Module on Windows
00000200 PARSER 1 {
00000250 HOST winserver1;
00000300 % PORT 51117;
00000400 PORT 51118;

8. Type the command NA CCF WEBPCM WEBAPPSUPPORT RESTARTXML

from MARC or the system ODT.

This command makes subsequent parsing requests go to the new JPM.

XML Parser Administration

4–14 3826 5286–007

9. Type the command NA CCF WEBPCM WEBAPPSUPPORT STATUS to check

the status of the new JPM.

10. Type the command NW TCPIP CONN YOURNAME = <old port number> to

determine when no connections are open to the old JPM.

11. When no connections are open to the old JPM, terminate the old JPM.

Terminate the JPM manually, for example by using the DS command to terminate

the codefile DIR/JRE/BINJAVA.

When you use this procedure, a JPM is always available. Parsing requests from

applications do not fail because the JPM is unavailable.

When the JPM Runs on a Windows or Linux System

To update the JPM, perform the following tasks:

1. Copy the contents of the directory *SYSTEM/INSTALLS/XMLJAVAPARSER/=,

which is the directory for the JPM, to a new directory on your Windows or Linux

system.

2. Copy the file jpmconfig.xml from the currently active directory for JPM to the new

directory for JPM.

3. Edit the new file jpmconfig.xml:

a. Make the JPM use a different port.

For example, if the currently running JPM is using port 51117, you can make the

new JPM use port 51118.

b. Read the readme.txt file for any other necessary changes to the JPM

configuration.

c. If necessary, edit the file jpmconfig.xml.

4. Start the new JPM.

Two JPMs are now running on the server.

5. On the MCP, edit the file *SYSTEM/CCF/WEBAPPSUPPORT/PARAMS/XML to make

the JPM use a different port.

For example, the edited file with the old 51117 port commented out might look like

the following:

NEXT+*....1....*....2....*....3....*....4....*....5....*....6
00000100% Configuration To Java Parser Module on Windows
00000200 PARSER 1 {
00000250 HOST winserver1;
00000300 % PORT 51117;
00000400 PORT 51118;

6. Type the command NA CCF WEBPCM WEBAPPSUPPORT RESTARTXML

from MARC or the system ODT.

This command makes subsequent parsing requests go to the new JPM.

7. Type the command NA CCF WEBPCM WEBAPPSUPPORT STATUS to check

the status of the new JPM.

 XML Parser Administration

3826 5286–007 4–15

8. Type the command NW TCPIP CONN YOURNAME = <old port number> to

determine when no connections are open to the old JPM.

9. When no connections are open to the old JPM, terminate the old JPM.

When you use this procedure, a JPM is always available. Parsing requests from

applications do not fail because the JPM is unavailable.

Updating the JPM When the JPM Runs on Two Servers

To update the JPM, perform the procedure under “Updating the JPM When the JPM

Runs on One Server and Can Use Any One of Multiple Ports” for each server.

Both servers have the same port number for the PARSERPORT property but different

domain names or IP addresses in the PARSERHOST property.

When you use this procedure, a JPM is always available. Parsing requests from

applications do not fail because the JPM is unavailable.

Preparing to Use the XML Parser

Securing the XML Parser

You need to secure the following for the XML Parser:

• XML Parser configuration file

• XML Parser trace files

• Communication Between the WEBAPPSUPPORT Library and the JPM

• JPM port

• JPM log files

• JPM configuration file

• XML documents on HTTP servers

XML Parser Configuration File

The WEBAPPSUPPORT XML Parser configuration file is

*SYSTEM/CCF/WEBAPPSUPPORT/PARAMS/XML and is located on the same family

where WEBAPPSUPPORT is located. This file is not usercoded. Set the SECURITYTYPE

attribute of this file to PRIVATE to prevent nonprivileged users from viewing or

changing the file. You can use a guard file to further protect this file.

XML Parser Trace Files

The trace files that the WEBAPPSUPPORT library creates are not usercoded.

WEBAPPSUPPORT sets the SECURITYTYPE attribute of this file to PRIVATE to prevent

non-privileged users from viewing or changing these files.

XML Parser Administration

4–16 3826 5286–007

Communication between the WEBAPPSUPPORT Library and the JPM

The WEBAPPSUPPORT library and the JPM communicate with each other over EVLAN

if

• The JPM runs on an MCP Java level 5.0 or higher Java Processor.

• The WEBAPPSUPPORT XML Parser configuration file uses the EVLAN IP address.

EVLAN traffic cannot be traced. Unisys recommends that the JPM use EVLAN for

better security and performance.

If the JPM runs on an MCP system that does not support EVLAN, the TCPIP Rules file

can limit access to the JPM port. Also, if the JPM listens on the local host IP address

(127.0.0.1) then the port of the JPM will not be accessible outside of the MCP.

If the JPM runs on a system other than the MCP, protect the TCP connection between

the MCP and the JPM as much as possible. The XML information sent over this

connection is not encrypted.

JPM Port

If the JPM is running on a server with multiple network interfaces, configure the JPM

port address to a specific address, not to the default IPv4 address 0.0.0.0. Configuring

this address can limit unauthorized TCP access to the JPM.

JPM Log Files

When the JPM runs on an MCP Java Processor, the JPM creates log files and stores

the log files in the directory *DIR/XMLJPM/JPM<n> LOGS/= on the MCP. After the

JPM is installed, change the security attributes of the LOGS directory to limit access to

these logs. For example, in CANDE type the following:

WFL ALTER *DIR/XMLJPM/JPM<n>LOGS (GROUP=ADMIN)

Note: Restricting access to MCP directories that the JPM accesses might require

running the JPM under a usercode that can access the directories. Running the JPM

under such a usercode might require updating the WFL supplied by Unisys that runs

the JPM.

JPM Configuration File

The Java Parser Module configuration file is

*DIR/ XMLJPM/JPM<n>/CONFIG/”JPMCONFIG.XML”. If the JPM runs on an MCP Java

Processor, protect the CONFIG directory the same way that you protect the JPM log

files. See the preceding topic “JPM Log Files.”

 XML Parser Administration

3826 5286–007 4–17

Securing XML documents on HTTP servers

If an XML document to be processed is on an HTTP server, the JPM must be able to

access the documents anonymously. You need to secure the documents because

anonymous access can make the documents available to unauthorized users. For

example, you can configure the MCP Web Transaction Server to allow HTTP access to

the XML documents only from the JPM server IP address.

Improving XML Parser Performance

To improve XML Parser performance, perform the following tasks:

• Allocate enough memory to the JPM Java Virtual Machine (JVM)

• Set the maximum number of JPM threads high enough

• Ensure that the MCP system uses EVLAN to communicate with the JProcessor

running the JPM

• Ensure that external files are in locations that the JPM can access quickly

• If HTTP servers serve XML documents or external files, ensure that JPM

communication with the HTTP servers is efficient

• Disable processing of external general entity references when an application does

not use external entities

Allocating Enough Memory to the JVM

Insufficient memory for the JVM can reduce JPM performance by causing frequent

garbage collection and delays in JPM processing.

When the JPM is active and reachable, use the WEBAPPSUPPORT STATUS command

to check JVM memory usage statistics. The following is an example of a response to

the STATUS command:

XML Parser:
 Host 192.168.16.2, Port 51117
 1 Sockets Open
 Version: 12.0.0.12
 Threads: Current = 10, Min = 10, Max = 20
 Logging: Level = Debug, File = logs/log.out
 Documents Parsed = 0
 JVM:
 Version: 1.5.0_12
 Free = 11 MB, Total = 15 MB, Max = 63 MB

If the amount of JVM free memory is consistently low, the JVM might need more

memory.

XML Parser Administration

4–18 3826 5286–007

Setting the Maximum Number of JPM Threads

Set the maximum number of JPM threads to the maximum expected number of

application stacks that parse requests. If the number of application stacks parsing

requests is greater than the maximum number of JPM threads, connections to the

JPM close and re-open more frequently. This closing and re-opening of connections

increases MCP processing and lengthens response times.

Configuring EVLAN Communication between the MCP and the

JProcessor

Maximize XML Parser performance by ensuring that the MCP system uses the EVLAN

path to communicate with the JProcessor running the JPM.

To configure EVLAN communication between the MCP and the JProcessor, do the

following:

1. Use the NA JAVA SERVER <n> command to obtain the IP address of the

JProcessor.

For example, on the MCP Operator Display Terminal type

NA JAVA SERVER 1

The MCP could return

Java server: 1

IP address: 192.168.16.2

2. Configure the WEBAPPSUPPORT library to use the IP address of the JProcessor.

In the file *SYSTEM/CCF/WEBAPPSUPPORT/PARAMS/XML, set the HOST property

to the IP address of the JProcessor. If the HOST property is localhost, the MCP

does not use the EVLAN path.

3. Set the JPM address parameter to configure the JPM to listen on the IP address of

the JProcessor.

4. The TARGET property should be set to a nonzero value if WEBAPPSUPPORT is to

initiate the JPM, so that the JPM runs on the JDP that matches the IP address.

Locating External DTD and Schema Files for Fast Access

Some files, such as DTD or schema files, are necessary for parsing but are outside

XML documents. The JPM might need to open and read external files for any parsing

request. Ensure that these files are in locations that the JPM can access quickly.

If the JPM runs on a Windows or Linux server, the JPM might be able to read files

from the local server file system or a local HTTP server. Reading files from a local

server reduces the number of requests over the network. See “Identifying Files on an

HTTP Server” and “Identifying Files on a JPM Server File System” in Section 5 for

more information about accessing local files.

 XML Parser Administration

3826 5286–007 4–19

Ensuring Efficient Communication between the JPM and HTTP

Servers

If HTTP servers serve XML documents or external DTD or schema files, ensure that

communication between the JPM and the HTTP servers is efficient.

JPM communication with a MCP Web Transaction Server (WebTS) HTTP server is very

efficient. A WebTS can efficiently cache files in memory and does not re-open the

cached files.

Communication between an HTTP server and a JPM on a MCP Java Processor that is

on a system with EVLAN is very efficient. The JPM can use a URL that uses the EVLAN

path. For example, the JPM could use http://evlanmcp/xmlfiles/xmlinvoice.xml.

Disabling Processing of External General Entity References

If an application that is parsing an XML document does not need any external general

entities in the document, set the EXTERNAL_GENERAL_ENTITIES option of the

SET_XML_OPTION procedure to 0 (zero). Disabling processing of external general

entities can improve performance.

http://evlanmcp/xmlfiles/xmlinvoice.xml

XML Parser Administration

4–20 3826 5286–007

3826 5286–007 5–1

Section 5
Developing an XML Parser
Application

Using the XML Parser API

An application calls WEBAPPSUPPORT library procedures to use the XML Parser. For

descriptions of the API of these procedures, see Section 6.

Examples of Using the API

An application can use the XML Parser to perform any of the following tasks:

• Read specific data in an XML document

• Read data sequentially in an XML document

• Create an XML document

• Modify an XML document

• Release an XML document

• Encrypt an element

• Encrypt data into an XML document

• Encrypt data into a file and generate a cipher reference

• Decrypt an XML element

• Decrypt an XML document containing a cipher reference

• Generate a simple data set as JSON text from an MCP application

• Generate a structured data set as JSON text from an XML source

The following topics are examples of the steps that an application can take to perform

the preceding tasks.

Reading Specific Data in an XML Document

To read specific data in an XML document, the application can perform the following

steps:

1. Call the SET_XML_OPTION procedure to set options to control the processing of

the document

Developing an XML Parser Application

5–2 3826 5286–007

2. Call the PARSE_XML_DOCUMENT procedure to parse the document

The application receives a document tag that references the parsed document,

which is stored in the WEBAPPSUPPORT memory, and contains a reference to the

document node.

3. Call the GET_ELEMENTS_BY_TAGNAME procedure, repeatedly if necessary, to

request a list of elements under a specific node

4. Call the GET_NODE_NAME procedure to request a specific element name

5. Use one of the following procedures to get the data:

• Call the GET_NODE_VALUE procedure to get the value of a node

• Call the GET_ATTRIBUTES procedure to get the list of attribute values for an

element

• Call the GET_ATTRIBUTE_BY_NAME procedure to get the value of a specific

attribute for an element

Reading Data in an XML Document Sequentially

To read data in an XML document sequentially, the application can perform the

following steps:

1. Call the SET_XML_OPTION procedure to set options to control the processing of

the document

2. Call the PARSE_XML_DOCUMENT procedure to parse the document

The application receives a document tag that references the parsed document,

which is stored in the WEBAPPSUPPORT memory, and contains a reference to the

document node.

3. Call the GET_NEXT_ITEM procedure to request the first item in the document

4. Complete any or all of the following, if the application needs to read the item:

• Call the GET_NODE_VALUE procedure to get the value of the node

• Call the GET_ATTRIBUTES procedure to get the list of attribute values for an

element

• Call the GET_ATTRIBUTE_BY_NAME procedure to get the value of a specific

attribute for an element

5. Call the GET_NEXT_ITEM procedure and the procedures in step 4 repeatedly to

read the other items in the document

The application receives the result 0 (zero) for the last GET_NEXT_ITEM procedure.

That result indicates that all items are read.

Creating an XML Document

To create an XML document, the application can perform the following steps:

1. Call the CREATE_XML_DOCUMENT procedure, specifying the XML document and

character set to use for the document

 Developing an XML Parser Application

3826 5286–007 5–3

2. Optionally, call the CREATE_DOCTYPE_NODE procedure to create a DTD and calls

the APPEND_CHILD procedure to attach the DTD to the document node

3. Call the CREATE_ELEMENT_NODE procedure to create the high-level element,

which is called the document element

4. Call the SET_ATTRIBUTE procedure to add an attribute to the document element, if

necessary

5. Call the APPEND_CHILD procedure to attach the element to the document

6. Call procedures to create more nodes and attach these nodes to elements

For example, the application can call any or all of the following to create a node:

• CREATE_ELEMENT_NODE for an element

• CREATE_ATTRIBUTE_NODE for an attribute

• CREATE_TEXT_NODE for a text node

• CREATE_COMMENT_NODE for a comment

7. Call the INSERT_CHILD_BEFORE procedure to insert a node or the APPEND_CHILD

procedure to append a node

8. Call the GET_XML_DOCUMENT procedure to request the current XML document

The application receives the XML document in the application array or an MCP file.

Modifying a Node Value

The application can do the following steps to modify a node value in an XML

document:

1. Call the PARSE_XML_DOCUMENT procedure to parse the document, if the

application did not just create the document

2. Call a procedure such as GET_ELEMENTS_BY_TAGNAME or GET_NEXT_ITEM to

get the node to be modified

3. Call the SET_NODE_VALUE procedure to change the node value

4. Call the GET_XML_DOCUMENT procedure to request the updated XML document

The application receives the XML document in the application array or an MCP file.

Setting or Deleting an Attribute Value

The application can do the following steps to set or delete an attribute value in an XML

document:

1. Call the PARSE_XML_DOCUMENT procedure to parse the document, if the

application did not just create the document

2. Set or delete the attribute value

For the steps in setting the value, see “Setting an Attribute Value” following this

procedure.

Developing an XML Parser Application

5–4 3826 5286–007

The application can do either of the following to delete the value:

• If an attribute is in an element node, the application can call the

SET_ATTRIBUTE procedure and set the value of the attribute to empty.

• If the attribute is in an attribute node, the application can call the

REMOVE_NODE procedure to remove the node.

3. Call the GET_XML_DOCUMENT procedure to request the updated XML document

The application receives the XML document in the application array or an MCP file.

Setting an Attribute Value

The application can do either of the following to set an attribute value:

• If the attribute will contain one text node, the application can call the

SET_ATTRIBUTE procedure.

• If the attribute will contain multiple text and reference nodes, the application can

do the following.

1. Create text nodes, entity reference nodes, or both, to contain the value

The application can use the CREATE_TEXT_NODE procedure, the

CREATE_ENTITYREF_NODE procedure, or both.

2. Attach the text and entity reference nodes to the attribute

The application can use the APPEND_CHILD procedure or the

INSERT_CHILD_BEFORE procedure.

Deleting a Node and the Children of the Node

The application can do the following to delete a node and the children of the node in

an XML document:

1. Call a procedure such as GET_ELEMENTS_BY_TAGNAME or GET_NEXT_ITEM to

get the element to be deleted

2. Call the REMOVE_NODE procedure to delete the node and its children.

Releasing an XML Document

After the application finishes working with an XML document, the application needs to

release the document to free WEBAPPSUPPORT resources.

The application can do any of the following to release a document:

• Call the RELEASE_XML_DOCUMENT procedure, specifying the document tag

• Call the PARSE_XML_DOCUMENT procedure to parse another document or the

CREATE_XML_DOCUMENT procedure to create another document, specifying the

tag for the current document

• Delink from WEBAPPSUPPORT or call the CLEANUP procedure in

WEBAPPSUPPORT

Delinking releases all XML documents created or parsed by the application.

 Developing an XML Parser Application

3826 5286–007 5–5

Encrypting an Element

To encrypt an element in a parsed XML document and then get the XML document to

send, an application can perform the following steps.

1. Create a key object with the CREATE_KEY procedure, if one is not already created.

2. Locate the element node to be encrypted in a parsed XML document—perhaps

using an XPath expression such as GET_NODE_BY_XPATH.

3. Encrypt the element and its child nodes using the ENCRYPT_XML_DOCUMENT

procedure, passing the element node to be encrypted.

4. Call GET_XML_DOCUMENT with the new XML document tag; receive back the

XML document in external form.

Note: After completing the above steps, two XML documents are stored in

WEBAPPSUPPORT. The application could make other modifications to the new XML

document, such as adding attributes to encrypted elements. The original XML

document element could be modified and encrypted again.

Encrypting Data into an XML Document

To take data that is stored in the application array or in an MCP file and then encrypt

that data into an XML document, an application can perform the following steps.

1. Create a key object with the CREATE_KEY procedure, if one is not already created.

2. Locate the element node in a parsed XML document that is to be the parent of the

encrypted data—perhaps using an XPath expression such as

GET_NODE_BY_XPATH.

3. Call the ENCRYPT_DATA_TO_XML procedure to encrypt the data and insert it into

the XML document.

Encrypting Data into a File and Generating a Cipher Reference

To encrypt data that is stored in an application array or in an MCP file into a new MCP

file that can be served by MCP Web Transaction Server and then create a cipher

reference into an XML document that references the encrypted data, an application

can perform the following steps.

1. Create a key object with the CREATE_KEY procedure, if one is not already created.

2. Call the ENCRYPT_DATA procedure to created the encrypted data file.

3. Call the CREATE_CIPHER_REFERENCE procedure to insert a cipher reference into

the XML document.

Developing an XML Parser Application

5–6 3826 5286–007

Decrypting an XML Element

To decrypt an encrypted element in a parsed XML document and access the data, an

application can perform the following steps. The encrypted data is XML.

1. Create a key object with the CREATE_KEY procedure, if one is not already created.

2. Find the EncryptedData element with the GET_NODE_BY_XPATH procedure using

an XPath expression.

3. Call the DECRYPT_XML_DOCUMENT procedure to get a new XML document

containing the decrypted element.

Decrypting an XML Document Containing a Cipher Reference

To decrypt data that is not stored in an XML document but is instead referenced with

a URL in a CipherReference element contained within the EncryptedData element in

the XML document, an application can perform the following steps.

1. Find the CipherReference element in the XML document—perhaps using an XPath

expression such as GET_NODE_BY_XPATH.

2. Use the WEBAPPSUPPORT HTTP Client feature to access the data at the URL

identified by the URl attribute in the CipherReference element.

3. Check the CipherReference element for any contained Transform elements that

describe transformations required on the data—such as, base64 decoding or an

XPath expression to be applied to the retrieved data. Xpath can be used to look for

the presence of these elements.

4. Call the DECRYPT_DATA procedure to decrypt the data.

Generating a Simple Data Set as JSON Text from an MCP
Application

To generate JSON text from data generated by an application where the data is simple

name-value pairs, the application can perform these steps:

1. Perform one of the following actions:

• Build the data into an array; for example, where <LF> represents the line feed

character:

“a, b, c <LF> 1, 2, 3”

• Write each row to an MCP record file:

1 a, b, c

2 1, 2, 3

2. Call the CONVERT_COMMA_TEXT_TO_JSON procedure to generate the JSON text,

which can be returned in an application array or written to a new MCP file.

 Developing an XML Parser Application

3826 5286–007 5–7

Generating a Structured Data Set as JSON Text from an XML
Source

To generate JSON text from data generated by an application where the data is a

structured data set, the application can perform these steps:

1. Store the data in XML format either in an XML file or by creating or parsing an XML

document in WEBAPPSUPPORT using either the CREATE_XML_DOCUMENT or

PARSE_XML_DOCUMENT procedure.

2. Perform one of the following actions:

• If the XML is stored in a file or an array of the application, call the

CONVERT_XML_DOCUMENT_TO_JSON procedure

• If the XML document is stored in WEBAPPSUPPORT memory, call the

CONVERT_XML_TO_JSON procedure.

These procedures generate JSON text stored either in an application array or a

new MCP file.

Using HTTP Servers

You can use HTTP servers to store the following:

• XML documents

• External DTDs

• XML schema documents

• XSL stylesheets

Note: The XML Parser must be able to access anonymously a resource that the

application specifies as an HTTP URL. An application cannot supply credentials via

the XML Parser to access restricted resources on an HTTP server. XML documents

on HTTP servers that require credentials can be read by the application using the

HTTP Client feature and then passing the XML document to the XML Parser to be

parsed or transformed.

For information on how an application identifies files on an HTTP server, see

“Identifying Files on an HTTP Server.”

Developing an XML Parser Application

5–8 3826 5286–007

Required File Mappings for the MCP Web Transaction Server

You can use the MCP Web Transaction Server to serve XML documents, stylesheets,

XML schema, or DTD files. If you do this, ensure that the following file type mappings

are in the file config.cfg for the server, which is usually ATLASSUPPORT.

File Extension Multipurpose Internet Mail Extensions (Mime) Type

dtd application/xml-dtd

xml application/xml

xsl application/xml

Validating an XML Document by Using a Schema or

DTD

The XML Parser can validate an XML document against an XML schema or DTD if the

XML Parser can identify the schema or DTD file. See “Identifying Files.”

Specifying a Schema

The XML Parser can use an XML schema to validate an XML document and to define

entities. The XML document can use only one schema file.

You can specify an XML schema location in either of the following ways:

• In a schema location statement in an XML document

The statement can be xsi:schemaLocation or xsi:noNamespaceSchemaLocation.

• Using the SCHEMA_LOCATION option in the SET_XML_OPTION procedure that an

application calls

How the schema location is specified depends on how the XML document is

accessible to the PARSE_XML_DOCUMENT procedure

• If the XML document and schema file are in the same directory, a relative URL or

an absolute URL can specify the schema location.

For example, if the XML document is http://webserver/xml/statusrequest.xml and

contains the schema location statusrequest.xsd in the directory /xml, a relative

URL or an absolute URL can specify the schema location.

• If the XML document is in the application array or an MCP file, an absolute HTTP

URL must specify the schema location.

http://webserver/xml/statusrequest.xml

 Developing an XML Parser Application

3826 5286–007 5–9

Specifying Character Sets

The XML document specifies the character set of the document in an encoding

statement, which is also the character set in which the XML Parser generates a

new document. An XML document that does not specify an encoding uses the UTF-8

encoding. For example, an XML document encoded in Latin 1 characters might start

with:

<?xml version= "1.0" encoding="iso-8859-1"?>

The application specifies the character set of the application, which is the character

set in which the application supplies and receives text.

WEBAPPSUPPORT translates the following:

• Application text into the document character set when WEBAPPSUPPORT

generates a document

• A document from the document character set into the application character set to

enable an application to read a document

Specifying the Application Character Set

The application calls the SET_TRANSLATION procedure to specify the character set in which the
application supplies and receives text.

Application Character Sets that the XML Parser Supports

The XML Parser supports the application character sets in the following table. The

right column has the coded character set (CCS) number for each character set.

Character Set CCS Number

ARABIC20EBCDIC 34

ASCII 5

ASERIESEBCDIC/EBCDIC 4

ASKSC 902

ASUTL 82

CANSUPPLEBCDIC 16

EBCDICGB2312 111

EBCDICKSC5601 105

EBCDICUTL 108

EBCDICKSC5601 105

EBCDICUTL 108

GB2312 935

IBMSWEDENEBCDIC 51

Developing an XML Parser Application

5–10 3826 5286–007

JAPANEBCDICJBIS8 100

Character Set CCS Number

JBIS8 80

LATIN1EBCDIC 12

LATIN5EBCDIC 14

LATIN9EBCDIC 47

LATINCYRILLICEBC 29

LATINGREEKEBCDIC 19

LETSJ 104

LETSJISX16 930

LOCALEBCDIC 50

UTF-8 2

All the application character sets except UTF-8 are identified in the MCP Multi-Lingual

System (MLS).

UTF-8 is an encoding of the Unicode (UCS2) character set and is the default character

set encoding for XML documents that the XML Parser generates.

Specifying the Document Character Set

If the application calls the CREATE_XML_DOCUMENT procedure, the

XML_DECLARATION parameter in the procedure might contain an encoding string. The

XML Parser uses the encoding string to generate the new XML document.

Encoding Strings that Specify the Character Set

The XML Parser supports the following encoding strings. Each encoding string is

associated with a CSS number. The XML Parser must be able to translate from the

character set of the application to the CCS number character set to generate a new

document.

Encoding String CCS Number

ascii 5- ASCII

big5 115 – WINBIG5

cp297 39 – IBM297

cp437 36 – CODEPAGE437

cp850 18 – CODEPAGE850

cp851 21 – CODEPAGE851

cp852 28 – CODEPAGE852

 Developing an XML Parser Application

3826 5286–007 5–11

cp857 44 – CODEPAGE857

Encoding String CCS Number

cp866 31 – CODEPAGE866

euc-jp 103 – EUCJp

iso-8859-1 13 – Latin1ISO

iso-8859-2 27 – Latin2ISO

iso-8859-5 30 – LatinCyrllicISO

iso-8859-7 20 – LatinGreekISO

iso-8859-9 15 – Latin5ISO

iso-8859-15 48 – Latin9ISO

shift_jis 102 – CODEPAGE932

us-ascii 5 – ASCII

utf-8 (2 – UTF-8)

windows-1250 33 – CODEPAGE1250

windows-1251 32 – CODEPAGE1251

windows-1252 37 – CODEPAGE1252

windows-1253 45 – CODEPAGE1253

windows-1254 43 – CODEPAGE1254

These encoding strings are case-insensitive. The Internet Assigned Numbers Authority

(IANA) documents these encoding strings at

http://www.iana.org/assignments/character-sets.

UTF-8 is an encoding of the Unicode (UCS2) character set and is the default character

set for XML documents that the XML Parser generates.

The XML Parser generates an error if WEBAPPSUPPORT cannot translate directly from

the application character set into either of the following:

• The character set for generated XML documents

• A character set that is necessary to generate text into the character set for

generated XML documents

For example, WEBAPPSUPPORT cannot translate from the JBIS8 application

character set directly into the UCS2 character set, which is needed to generate

text in the UTF-8 document character set.

http://www.iana.org/assignments/character-sets

Developing an XML Parser Application

5–12 3826 5286–007

Examples

Each row of the following table shows an example of the following:

• The application character set

• The document encoding string that the application specifies

• The character set for generated XML documents

Application

Character Set

Document

Encoding String

Character Set for

Generated Documents

ASERIESEBCDIC utf-8 UTF-8

LATIN1EBCDIC iso-8859-1 LATIN1ISO

Using Entity References

An XML document that the XML Parser creates or parses can have entity references.

An entity reference is a place-holder for text, a document fragment, or other data. The

XML Parser can replace an entity reference with data before giving the document to

the application.

Using General Entity References

If an entity is parsed, the Document Object Model (DOM) tree contains an entity

reference node with the parsed entity as a child of the entity reference node. The

nodes in the entity sub-tree cannot be modified or deleted.

Entity References for Simple Strings

If a parsed entity points to a simple string, a text node is the only child of the entity

reference node. The following is an example of the entity definition for a simple string:

<!ENTITY magazinetitle "Life">

In the following XML document code, the entity reference &magazinetitle refers to the

preceding entity definition:

<TITLE>&magazinetitle; Magazine</TITLE>

The preceding code would create the following subtree under the entity reference

node:

[element: TITLE]

 +---> [entity reference: magazinetitle]

 | +---> [text: Life]

 +---> [text: Magazine]

 Developing an XML Parser Application

3826 5286–007 5–13

Entity References for Document Fragments

If the parsed entity points to a document fragment, a multinode subtree under the

entity reference node represents the document fragment. For example, the entity

definition for the document fragment could be the following:

<!ENTITY disclaimer SYSTEM "disclaimer.xml">

For this example, the following contents of the document fragment are in the file

disclaimer.xml:

<DISCLAIMER>

 No warranty implied.

</DISCLAIMER>

The preceding code would create the following subtree under the entity reference

node:

[entity reference: disclaimer]

 +---> [element: DISCLAIMER]

 +---> [element: STRONG]

 +---> [text: No warranty implied.]

Unparsed Entities

The XML Parser does not support unparsed entities.

Controlling General Entity Processing

The application can control whether the XML Parser replaces general node references

with entity values for documents that the GET_XML_DOCUMENT procedure

generates. The application calls the SET_XML_OPTION procedure and sets the

EXPAND_ENTITY_REFERENCE option.

Using Attribute Node Entity References

The XML Parser always replaces attribute node entity references with data. If the

document was parsed, the application always receives the attribute nodes with

values, not entity references.

Using Predefined and Character Entity References

The XML Parser always gives the application data that replaces pre-defined entity

references and character entity references. For example, the XML Parser always

replaces the predefined entity reference < with <, and replaces the character entity

reference with %.

Developing an XML Parser Application

5–14 3826 5286–007

When an application creates or modifies text in an XML document, the application

must supply the text in the encoded form that is required in the document. For

example, the application must supply the character < in the encoded form <.

Before the application calls the procedure to create or modify the text, the application

can call the XML_ESCAPE procedure to convert most predefined entity references to

the required encoded form.

Using Namespaces

The XML Parser can create and parse XML documents that use namespaces. The XML

Parser supports the Namespaces in XML 1.0 standard.

An element or an attribute can be associated with a namespace.

• The CREATE_ATTRIBUTE_NODE, CREATE_ELEMENT_NODE and SET_ATTRIBUTE

procedures support specifying a namespace.

• The GET_ELEMENTS_BY_TAGNAME procedure can be limited to returning only

elements that are in the specified namespace.

• The HAS_ATTRIBUTE procedure can be limited to returning only true (successful)

if the attribute name including a namespace is present.

• The GET_NEXT_ITEM and GET_NODE_NAME procedures return names in the

format that the NAMESPACE_PROCESSING option in the SET_XML_OPTION

procedure specifies.

The NAMESPACE_PROCESSING option indicates whether the XML Parser returns

element and attribute names with namespace prefixes.

A namespace URL can be any non-null text, but is usually an HTTP URL. The XML

Parser does not validate a namespace URL or access a namespace URL.

Identifying Files

An application must identify the following types of files to the XML Parser:

• XML files to be parsed

• External schema files that are not in an XML document

• XML files to be created on the MCP

• XSL stylesheets that are not specified in the XML document

These files can be located on

• The MCP file system

• An HTTP server, such as an MCP Web Transaction Server or a Microsoft Windows

Internet Information Server (IIS)

• The file system of the server on which the XML Parser JPM runs.

 Developing an XML Parser Application

3826 5286–007 5–15

XML files do not have to be, but often are, in the same place as the DTD or schema

files used to validate the XML files.

Identifying Files on an MCP File System

An application identifies an XML file on the MCP file system by specifying the file

name in display format or pathname (POSIX) format. The FILENAME_FORMAT option

value in the SET_XML_OPTION procedure implies a SEARCHRULE file attribute value

that the XML Parser uses to find the file.

In each of the following MCP file names, the FILENAME_FORMAT value for the name

is in parentheses at the end:

(MYUSERCODE)"MYXMLFILE.XML" ON MYPACK (LTITLE)

/-/MYPACK/USERCODE/MYUSERCODE/MYXMLFILE.XML (PATHNAME)

MYXMLFILE.XML (LTITLE or PATHNAME)

The last file name, MYXMLFILE.XML, does not specify a usercode or family. The

following points apply for this file name:

If the FILENAME_FORMAT option is LTITLE, the file is under the application usercode.

If the FILENAME_FORMAT option is PATHNAME, the file is in the current directory of

the application.

This file is on the primary or secondary family for the application.

The application stack must be running under a usercode that can access the file that

the XML Parser parses or creates.

External DTD and Schema Files

An external DTD file must be identified in absolute pathname format in the XML

document.

For example, the XML file could contain

xsi:noNamespaceSchemaLocation="/-

/mypack/usercode/myusercode/myxmlfile.xsd">

An external schema file must be identified in absolute pathname format in either of

the following:

• The XML document

• The SCHEMA_LOCATION option of the SET_XML_OPTION procedure

For example, the SCHEMA_LOCATION option could be set to

/-/MYPACK/USERCODE/MYUSERCODE/MYXMLFILE.XSD

The JPM must be running under a usercode that can access the DTD or schema file.

Developing an XML Parser Application

5–16 3826 5286–007

Identifying Files on an HTTP Server

An application specifies an HTTP URL to identify a file on an HTTP server, whether the

file is an XML file, an external DTD file, or an external schema file. For example, an

application could specify the following URL to identify a file:

http://myserver/xmlfiles/myxmlfile.xml

An application must specify an absolute URL, such as the preceding example, to

identify an XML file to be parsed. To identify an external DTD or schema file, the

application can specify

• An absolute URL

• A relative URL, if the external file and the XML file are in the same directory on the

HTTP server

 For example, an application could specify the following relative URL:

<!DOCTYPE Transaction SYSTEM "myxmlfile.dtd">

Identifying Files on a JPM Server File System

An application might need to identify an XML file, external DTD file, or external schema

file on the same server that the JPM runs on. To do this, the application must specify

the file name in the format that the local file system requires.

For example, if the JPM is running on Microsoft Windows, an application could specify

the following file name:

c:\xmlfiles\myxmlfile.xml

Locking an XML Document

An application can use the LOCK_DOCUMENT option in the SET_XML_OPTION

procedure to lock each access to an XML document that the application creates or

parses.

The application needs to lock a document only if another application might access the

document while the first application changes the document. The document stays

locked when another application calls a procedure to access the document. When the

application that locked the document exits the procedure call that accessed the

document, the XML Parser releases the document lock.

If the application requires a more global lock, for example to lock out a sequence of

procedure calls to WEBAPPSUPPORT, the application must implement the lock.

http://myserver/xmlfiles/myxmlfile.xml

 Developing an XML Parser Application

3826 5286–007 5–17

Using Sample Source Code

Unisys provides sample COBOL85 code and sample ALGOL code for using an XML

document. You can use these samples to write applications. See Section 7 for this

source code.

The sample fragments of code in Section 7 show basic calls to the XML Parser API

procedures. For more complete working examples released with the XML Parser, see

the files in the directory *SYSTEM/CCF/XMLPARSER/SAMPLES/=.

Using WEBAPPSUPPORT Library Trace Files

You can use WEBAPPSUPPORT library trace files when you develop an application.

These trace files can record the result of every procedure call that a specific

application makes. For details about using these trace files, see the Custom Connect

Facility Administration and Programming Guide and “Using the WEBAPPSUPPORT

Trace File” in Section 3.

Developing an XML Parser Application

5–18 3826 5286–007

3826 5286–007 6–1

Section 6
WEBAPPSUPPORT Library Interface for
the XML Parser

XML Mapping Structure

An XML Mapping Structure is a set of data passed in a single parameter that an

application uses to direct WEBAPPSUPPORT procedures on how to map application

data to or from an XML document. The application data is stored in a format such as a

COBOL 01 record structure, with adjacent, fixed-sized fields and some repeated sub-

structures.

All mapping structures have the following format:

<level><mapping>

where <level> is a binary value specifying the mapping format level. The EAE type is

an N5. For this release, the value is 1.

Level 1 Formatting

The <mapping> value for level 1 is formatted as:

<num items><items>

where:

• <num items> is a binary value specifying the number of items that follow. The EAE

type is an N5.

• <items> is a list of items of length <num items>. Each item is defined as:

<mapping type><field info>

where:

− <mapping type> is a binary value specifying the mapping type. The EAE type is

an N5.

− <field info> is specific to each mapping type.

WEBAPPSUPPORT Library Interface for the XML Parser

6–2 3826 5286–007

The following table describes the supported values for <mapping type> and
<field info>.

<mapping type>

Value Description of Value <field info> Structure

1 Alphanumeric Text

Alphanumeric Text

maps to a COBOL PIC

X() field. Text is

encoded the

application’s character

set.

<element name><text size>

where:

<element name> is the name of the

element that encloses the text. It is 252

bytes in length. The element must exist

within the NODE parameter, and if

<element name> is null then the NODE

parameter is used to enclose the text.

<text size> is a binary value specifying the

maximum length of the text. The EAE type

is an N5.

2 Integer to BINARY

Integer values map to a

COBOL PIC S9(11)

BINARY field.

<element name>

where <element name> is the name of the

element that encloses the integer. It is 252

bytes in length. The element must exist

within the NODE parameter, and if

<element name> is null then the NODE

parameter is used to enclose the text.

3 Integer to EAE S12

Integer values map to

an EAE S12 field.

<element name>

where <element name> is the name of the

element that encloses the integer. It is 252

bytes in length. The element must exist

within the NODE parameter, and if

<element name> is null then the NODE

parameter is used to enclose the text.

4 Integer to

COMPUTATIONAL

Integer values map to a

COBOL PIC S9(11)

COMP field, which is

stored as packed

decimal.

<element name>

where <element name> is the name of the

element that encloses the integer. It is 252

bytes in length. The element must exist

within the NODE parameter, and if

<element name> is null then the NODE

parameter is used to enclose the text.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–3

<mapping type>

Value Description of Value <field info> Structure

5 Floating Point to REAL

Floating Point values

map to a COBOL REAL

field.

<element name><decimal character>

where:

<element name> is the name of the

element that encloses the floating point. It

is 252 bytes in length. The element must

exist within the NODE parameter, and if

<element name> is null then the NODE

parameter is used to enclose the text.

<decimal character> is a single character in

the application’s character set that is the

decimal character.

6 Floating Point to

DISPLAY

Floating Point values

map to a COBOL PIC 9

field.

<element name><integer

width><decimal width><decimal

character>

where:

<element name> is the name of the

element that encloses the floating point. It

is 252 bytes in length. The element must

exist within the NODE parameter, and if

<element name> is null then the NODE

parameter is used to enclose the text.

<integer width> is a binary value specifying

the number of digits to the left of the

decimal point. The EAE type is an N5.

<decimal width> is a binary value specifying

the number of digits to the right of the

decimal point. The EAE type is an N5.

<decimal character> is a single character in

the application’s character set that is the

decimal character.

7 Floating Point to

COMPUTATIONAL

Floating Point values

map to a COBOL PIC

S9(11) COMP field,

which is stored as

packed decimal.

<element name><decimal

width><decimal character>

where:

<element name> is the name of the

element that encloses the floating point. It

is 252 bytes in length. The element must

exist within the NODE parameter, and if

<element name> is null then the NODE

parameter is used to enclose the text.

<decimal width> is a binary value specifying

the number of digits to the right of the

decimal point. The EAE type is an N5.

<decimal character> is a single character in

the application’s character set that is the

decimal character.

WEBAPPSUPPORT Library Interface for the XML Parser

6–4 3826 5286–007

<mapping type>

Value Description of Value <field info> Structure

8 Floating Point to

DOUBLE

Floating Point values

map to a COBOL

DOUBLE field.

<element name>

where:

<element name> is the name of the

element that encloses the floating point. It

is 252 bytes in length. The element must

exist within the NODE parameter and if

<element name> is null then the NODE

parameter is used to enclose the text.

9 Group

Group maps repeated

structures containing

multiple elements to a

COBOL record with an

OCCURS phrase.

<group name><group max><num

items><items>

where:

<group name> is the enclosing element for

the group. It is 252 bytes in length. The

element must exist within the NODE

parameter, and if <group name> is null then

the NODE parameter is used to enclose the

text.

<group max> is a binary value specifying

the maximum number of items in the

group. It is equivalent to the COBOL

OCCURS value.

<num items> is the number of <item>s that

follow in the group.

<items> cannot include a <mapping type>

value of 9 (Group) or 10 (Array).

10 Array

Array treats all text

values within the

specified element as

the same type, and

returns them as an

array of values.

<array max><mapping type><field

info>

where:

<array max> is a binary value specifying the

maximum number of items in the array. It is

equivalent to the COBOL OCCURS value.

<mapping type> can be any of the above

<mapping type> values except for 9

(Group) or 10 (Array).

<field info> is as described above for

<mapping type> values. The <element

name> in <field info> should be the

enclosing element for the array of values.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–5

Examples

Example 1: Simple XML Document with No Repeated Structures

The following is sample code text for an XML document with no repeated structures:

<PRODUCT>
 <NAME>Widget</NAME>
 <QUANTITY>100</QUANTITY>
 <PRICE CURRENCY="USD">7.99</PRICE>
</PRODUCT>

The following is a matching 01 record to receive the data:

01 PRODUCT.
 03 NAME PIC X(20).
 03 QUANTITY PIC S9(11) COMP.
 03 PRICE.
 05 PRICE-VALUE REAL.

The application would specify the mapping with the record as follows:

01 PRODUCT-XML-MAPPING.
 03 PRODUCT-XML-MAPPING-LEVEL PIC 9(11) BINARY VALUE IS 1.
 03 NUM-PRODUCT-XML-MAPPINGS PIC 9(11) BINARY VALUE IS 3.
 03 PROD-XMLMAP-NAME-TYPE PIC 9(11) BINARY VALUE IS 1.
 03 PROD-XMLMAP-NAME-NAME PIC X(252) VALUE IS "NAME".
 03 PROD-XMLMAP-NAME-LEN PIC 9(11) BINARY VALUE IS 20.
 03 PROD-XMLMAP-QUANTITY-TYPE PIC 9(11) BINARY VALUE IS 4.
 03 PROD-XMLMAP-QUANTITY-NAME PIC X(252) VALUE IS "QUANTITY".
 03 PROD-XMLMAP-PRICE-TYPE PIC 9(11) BINARY VALUE IS 5.
 03 PROD-XMLMAP-PRICE-NAME PIC X(252) VALUE IS "PRICE".
 03 PROD-XMLMAP-PRICE-DECCHAR PIC X(1) VALUE IS ".".

Example 2: XML Document with Repeated Substructures

The following is sample code text for an XML document with repeated substructures,

showing the use of groups:

<PRODUCTS>
 <PRODUCT>
 <NAME>Widget1</NAME>
 <QUANTITY>100</QUANTITY>
 <PRICE CURRENCY="USD">7.99</PRICE>
 </PRODUCT>
 <PRODUCT>
 <NAME>Widget2</NAME>
 <QUANTITY>200</QUANTITY>
 <PRICE CURRENCY="USD">14.99</PRICE>
 </PRODUCT>
</PRODUCTS>

The following is a matching 01 record to receive the data:

01 PRODUCTS.
 03 PRODUCT OCCURS 100 TIMES.
 05 NAME PIC X(20).
 05 QUANTITY PIC S9(11) BINARY.

WEBAPPSUPPORT Library Interface for the XML Parser

6–6 3826 5286–007

 05 PRICE.
 07 PRICE-VALUE PIC S9(11) COMP.

The application would specify the mapping with the record as follows:

01 PRODUCTS-XML-MAPPING.
 03 PRODUCT-XML-MAPPING-LEVEL PIC 9(11) BINARY VALUE IS 1.
 03 NUM-PRODUCT-XML-MAPPINGS PIC 9(11) BINARY VALUE IS 1.
 03 PRODUCT-XML-GROUP-TYPE PIC 9(11) BINARY VALUE IS 9.
 03 PRODUCT-XML-GROUP-NAME PIC X(252) VALUE IS "PRODUCTS".
 03 PRODUCT-XML-GROUP-MAX PIC 9(11) BINARY VALUE IS 100.
 03 PRODUCT-XML-GROUP-ITEMS PIC 9(11) BINARY VALUE IS 3.
 03 PROD-XMLMAP-NAME-TYPE PIC 9(11) BINARY VALUE IS 1.
 03 PROD-XMLMAP-NAME-NAME PIC X(252) VALUE IS "NAME".
 03 PROD-XMLMAP-NAME-LEN PIC 9(11) BINARY VALUE IS 20.
 03 PROD-XMLMAP-QUANTITY-TYPE PIC 9(11) BINARY VALUE IS 4.
 03 PROD-XMLMAP-QUANTITY-NAME PIC X(252) VALUE IS "QUANTITY".
 03 PROD-XMLMAP-PRICE-TYPE PIC 9(11) BINARY VALUE IS 7.
 03 PROD-XMLMAP-PRICE-NAME PIC X(252) VALUE IS "PRICE".
 03 PROD-XMLMAP-PRICE-DECWIDTH PIC 9(11) BINARY VALUE IS 2.
 03 PROD-XMLMAP-PRICE-DECCHAR PIC X(1) VALUE IS ".".

Example 3: XML Document with an Array of Values

The following is sample code text for an XML document with an array of values:

<PRODUCTS>
 <PRODUCT>
 <NAME>Widget1</NAME>
 </PRODUCT>
 <PRODUCT>
 <NAME>Widget2</NAME>
 </PRODUCT>
 <PRODUCT>
 <NAME>Widget3</NAME>
 </PRODUCT>
</PRODUCTS>

The following is a matching 01 record to receive the data:

01 PRODUCTS.
 03 PRODUCT OCCURS 50 TIMES.
 05 NAME PIC X(20).

The application would specify the mapping with the record as follows:

01 PRODUCTS-XML-MAPPING.
 03 PRODUCT-XML-MAPPING-LEVEL PIC 9(11) BINARY VALUE IS 1.
 03 NUM-PRODUCT-XML-MAPPINGS PIC 9(11) BINARY VALUE IS 1.
 03 PRODUCT-XML-ARRAY-TYPE PIC 9(11) BINARY VALUE IS 10.
 03 PRODUCT-XML-ARRAY-MAX PIC 9(11) BINARY VALUE IS 50.
 03 PRODUCT-XML-ARRAY-TYPE PIC 9(11) BINARY VALUE IS 1.
 03 PROD-XMLMAP-NAME-NAME PIC X(252) VALUE IS "PRODUCTS".
 03 PROD-XMLMAP-NAME-LEN PIC 9(11) BINARY VALUE IS 20.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–7

WEBAPPSUPPORT Library Procedures for the XML

Parser

You can use the WEBAPPSUPPORT library procedures described in this subsection in

your applications to use the XML Parser.

The procedure subsections describe the syntax, parameters, and possible return

values. Each subsection presents the syntax for

• A COBOL85 entry point, which has uppercase characters and underscores

An example is APPEND_CHILD.

• An ALGOL entry point, which has lower-case and upper-case characters and no

underscores

An example is appendChild.

• An EAE entry point, which has upper-case characters and dashes

An example is APPEND-CHILD.

Note: For more information on EAE and the notes used in the procedure

description text of this guide, refer to Section 3, “WEBAPPSUPPORT EAE

Interface.”

APPEND_CHILD

Inserts a child node and the tree of which the child is the root into the XML document.

This procedure inserts the tree at the end of the list of subtrees of a specific parent

node.

If the new child is already attached to another node, this procedure detaches the child

from the current parent and then attaches the child to the new parent.

See also the procedure INSERT_CHILD_BEFORE.

Syntax

INTEGER PROCEDURE APPEND_CHILD
 (DOC_TAG, PARENT, NEW_CHILD);
 INTEGER DOC_TAG, PARENT, NEW_CHILD;

INTEGER PROCEDURE appendChild
 (DOC_TAG, PARENT, NEW_CHILD);

 VALUE DOC_TAG, PARENT, NEW_CHILD;
 INTEGER DOC_TAG, PARENT, NEW_CHILD;

PROCEDURE APPEND-CHILD (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

WEBAPPSUPPORT Library Interface for the XML Parser

6–8 3826 5286–007

Parameters

DOC_TAG identifies the XML document.

PARENT identifies the parent node.

NEW_CHILD identifies the child node to append to the parent.

The following table shows the types of child nodes that this procedure can attach to

each type of parent node.

Parent Possible Children

document node one document type node, one element node, comment

nodes, processing instruction nodes

element node element nodes, text nodes, attribute nodes, entity

reference nodes, comment nodes, CDATA nodes,

processing instruction nodes

attribute node text nodes, entity reference nodes

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD PARENT A6

 SD NEW-CHILD A6

[bin]

[bin]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

−40 The procedure did not find the XML document.

−41 The parent or child is not a valid node.

−42 The parent node cannot be a parent.

−43 The procedure cannot attach this node to the parent.

−44 The document already has an element.

−45 The document already has a DTD.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–9

CONVERT_COMMA_TEXT_TO_JSON

Converts comma-delimited text to JSON format in UTF-8 encoding. The text can come

from either an MCP file or application array. The MCP file can be a stream file

containing ASCII text or an MCP record file containing EBCDIC text. For MCP record

files, each record boundary causes a line feed character to be inserted.

See the SET_XML_OPTION procedure, INDENT option, for control over JSON

formatting.

The first row is used as the names. The following text shows an example:

 Comma text: a, b, c, <LF> 1, 2, 3

The previous example text becomes the following JSON text:

 [{ "b": "2", "c": "3", "a": "1" }]

Syntax

INTEGER PROCEDURE CONVERT_COMMA_TEXT_TO_JSON

 (SOURCE_TYPE, SOURCE, SOURCE_START, SOURCE_LEN,
 CHARSET, DEST_TYPE, DEST, DEST_START, DEST_LEN);
 INTEGER SOURCE_TYPE, SOURCE_START, SOURCE_LEN,

 CHARSET, DEST_TYPE, DEST_START, DEST_LEN;
 EBCDIC ARRAY SOURCE, DEST [0];

INTEGER PROCEDURE convertCommaTextToJSON

 (SOURCE_TYPE, SOURCE, SOURCE_START, SOURCE_LEN,
 CHARSET, DEST_TYPE, DEST, DEST_START, DEST_LEN);
 VALUE SOURCE_TYPE, SOURCE_START, SOURCE_LEN,

 CHARSET, DEST_TYPE, DEST_START;
 INTEGER SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 CHARSET, DEST_TYPE, DEST_START, DEST_LEN;

 EBCDIC ARRAY SOURCE, DEST [*];

PROCEDURE CONVERT-COMMA-TEXT-TO-JSON (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

SOURCE_TYPE identifies the type of source for the comma-delimited text.

• 1 = the SOURCE parameter contains comma-delimited text.

• 2 = the SOURCE parameter contains the MCP file name that contains the comma-

delimited text. See the FILENAME_FORMAT option in the SET_OPTION procedure.

SOURCE is the array containing source information. If SOURCE_TYPE is 2, the file name

in SOURCE is coded in the character set of the application.

SOURCE_START is a zero-based offset into the SOURCE array and indicates where the

supplied information starts.

WEBAPPSUPPORT Library Interface for the XML Parser

6–10 3826 5286–007

SOURCE _LEN is the length in bytes of the data in the SOURCE parameter. If

SOURCE _TYPE is 2, then SOURCE _LEN can be zero.

CHARSET is the MLS character set in which the data in the SOURCE parameter is

encoded when SOURCE_TYPE = 1. A value of 2 represents UTF-8 encoding.

DEST_TYPE identifies the type of destination for the JSON text.

• 1 = the DEST parameter contains JSON text on procedure return.

• 2 = the DEST parameter contains the MCP file name to store the JSON text. See

the FILENAME_FORMAT option in the SET_OPTION procedure.

DEST is the array containing destination information. If DEST_TYPE is 2, the file name in

DEST is coded in the character set of the application.

DEST_START is a zero-based offset into the DEST array and indicates where the

supplied information starts.

DEST_LEN is the length in bytes of the data in the DEST parameter. If DEST_TYPE is 2,

then DEST_LEN can be zero. On return, DEST_LEN is set to the length in bytes of the

JSON text or can be zero if an error occurred.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD SOURCE-TYPE N5

 SD SOURCE-SIZE N5

 SD SOURCE An

 SD SOURCE-START N5

 SD SOURCE-LEN N5

 SD CHARSET N5

 SD DEST-TYPE N5

 SD DEST-SIZE N5

 SD DEST An

 SD DEST-START N5

 SD DEST-LEN N12

SOURCE size, for example, 2048

[longa]

DEST size, for example, 2048

[longa]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 The SOURCE_TYPE or DEST_TYPE is not supported; or DEST_LEN is less

than zero when DEST_TYPE = 2.

−11 The input file was not found or is not available.

−13 An attribute error occurred while setting the file name.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–11

−14 An I/O error occurred while reading the input file.

−15 The character set is not supported.

−47 The SOURCE_START or SOURCE_LEN was invalid.

−48 The procedure cannot open a socket to the JPM.

−49 The procedure cannot write to the JPM.

−50 The procedure cannot read from the JPM

−55 The DEST_START offset was invalid.

−57 The JPM does not support the procedure.

−111 The comma text format is invalid.

CONVERT_JSON_TO_XML_DOCUMENT

Converts JSON text to an XML document.

See the SET_XML_OPTION procedure, INDENT option, for control over XML

formatting.

See the SET_XML_OPTION procedure, CANONICAL_METHOD option, for control over

XML serialization.

See also the PARSE_JSON _TO_XML procedure.

Syntax

INTEGER PROCEDURE CONVERT_JSON_TO_XML_DOCUMENT

(SOURCE_TYPE, SOURCE, SOURCE_START, SOURCE_LEN,
DEST_TYPE, OUT_FORMAT, DEST, DEST_START,
DEST_LEN); INTEGER SOURCE_TYPE,

SOURCE_START, SOURCE_LEN, DEST_TYPE,
OUT_FORMAT, DEST_START,
DEST_LEN; EBCDIC ARRAY SOURCE, DEST [0];

INTEGER PROCEDURE convertJSONtoXMLDocument (SOURCE_TYPE,
SOURCE, SOURCE_START, SOURCE_LEN, DEST_TYPE,
OUT_FORMAT, DEST, DEST_START, DEST_LEN); VALUE

SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
DEST_TYPE, OUT_FORMAT, DEST_START; INTEGER
SOURCE_TYPE, SOURCE_START, SOURCE_LEN,

DEST_TYPE, OUT_FORMAT, DEST_START,
DEST_LEN; EBCDIC ARRAY SOURCE, DEST [*];

PROCEDURE CONVERT-JSON-TO-XML-DOCUMENT (GLB_PARAM);

 EBCDIC ARRAY GLB_PARAM [0];

Parameters

SOURCE_TYPE identifies the type of source for the XML document.

• 1 = the SOURCE parameter contains the XML document.

WEBAPPSUPPORT Library Interface for the XML Parser

6–12 3826 5286–007

• 2 = the SOURCE parameter contains the MCP file name that contains the XML

document. See the FILENAME_FORMAT option in the SET_OPTION procedure.

SOURCE is the array containing source information. If SOURCE_TYPE is 2, the file name

in SOURCE is coded in the character set of the application.

SOURCE_START is a zero-based offset into the SOURCE array and indicates where the

supplied information starts.

SOURCE _LEN is the length in bytes of the data in the SOURCE parameter. If

SOURCE_TYPE is 2, then SOURCE _LEN can be zero.

DEST_TYPE identifies the type of destination for the JSON text.

• 1 = the DEST parameter contains JSON text on procedure return.

• 2 = the DEST parameter contains the MCP file name to store the JSON text. See

the FILENAME_FORMAT option in the SET_OPTION procedure.

OUT_FORMAT identifies the output format of the XML document and can be either of

the following values:

• 1 = A carriage return and a line feed are at the end of each non-text node. Each line

is indented the number of spaces that the INDENT option in the SET_XML_OPTION

procedure specifies.

• 2 = No carriage return, line feed, or white space is between nodes.

• DEST is the array containing destination information. If DEST_TYPE is 2, the file

name in DEST is coded in the character set of the application.

• DEST_START is a zero-based offset into the DEST array and indicates where the

supplied information starts.

• DEST_LEN is the length in bytes of the data in the DEST parameter. If DEST-TYPE is

2, then DEST_LEN can be zero. On return, DEST_LEN is set to the length in bytes of

the XML text or might be zero if an error occurred.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD SOURCE-TYPE N5

 SD SOURCE-SIZE N5

 SD SOURCE An

 SD SOURCE-START N5

 SD SOURCE-LEN N5

 SD DEST-TYPE N5

 SD OUT-FORMAT N5

 SD DEST-SIZE N5

 SD DEST An

 SD DEST-START N5

 SD DEST-LEN N12

SOURCE size, for example, 2048

[longa]

DEST size, for example, 2048

[longa]

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–13

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 The SOURCE_TYPE or DEST_TYPE is not supported, or DEST_LEN is less

than zero when DEST_TYPE = 2.

−11 The input file was not found or is not available.

−13 An attribute error occurred while setting the file name.

−14 An I/O error occurred while reading the input file.

−47 The SOURCE_START or SOURCE_LEN was invalid.

−48 The procedure cannot open a socket to the JPM.

−49 The procedure cannot write to the JPM.

−50 The procedure cannot read from the JPM

−51 One or more parsing errors occurred.

−55 The DEST_START offset was invalid.

−57 The JPM does not support the procedure.

CONVERT_XML_DOCUMENT_TO_JSON

Converts an XML document to JSON format in UTF-8 encoding. The XML document

can come from either an MCP file or an application array.

Some information might be lost in this transformation because JSON is a data format

and XML is a document format. XML uses elements, attributes, and content text;

JSON uses unordered collections of name/value pairs and arrays of values. JSON

does not distinguish between elements and attributes, and does not recognize

namespaces. Sequences of similar elements are represented as JSON arrays.

Content text might be placed in a "content" member. Comments, prologs, DTDs, and

<[[]]> are ignored.

XML documents using namespaces should not be converted to JSON. If

GET_XML_DOCUMENT procedure is used to create the XML document, set the

NAMESPACE_PROCESSING option in the SET_XML_OPTION procedure to 3 before

calling the procedure.

See the SET_XML_OPTION procedure, INDENT option, for control over JSON

formatting.

See also the CONVERT_XML _TO_JSON procedure.

WEBAPPSUPPORT Library Interface for the XML Parser

6–14 3826 5286–007

Syntax

INTEGER PROCEDURE CONVERT_XML_DOCUMENT_TO_JSON
 (SOURCE_TYPE, SOURCE, SOURCE_START, SOURCE_LEN,

 DEST_TYPE, DEST, DEST_START, DEST_LEN);
 INTEGER SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST_START, DEST_LEN;

 EBCDIC ARRAY SOURCE, DEST [0];

INTEGER PROCEDURE convertXMLDocumentToJSON
 (SOURCE_TYPE, SOURCE, SOURCE_START, SOURCE_LEN,

 DEST_TYPE, DEST, DEST_START, DEST_LEN);
 VALUE SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST_START;

 INTEGER SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 DEST_TYPE, DEST_START, DEST_LEN;
 EBCDIC ARRAY SOURCE, DEST [*];

PROCEDURE CONVERT-XML-DOCUMENT-TO-JSON (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

SOURCE_TYPE identifies the type of source for the XML document.

• 1 = the SOURCE parameter contains the XML document.

• 2 = the SOURCE parameter contains the MCP file name that contains the XML

document. See the FILENAME_FORMAT option in the SET_OPTION procedure.

SOURCE is the array containing source information. If SOURCE_TYPE is 2, the file name

in SOURCE is coded in the character set of the application.

SOURCE_START is a zero-based offset into the SOURCE array and indicates where the

supplied information starts.

SOURCE _LEN is the length in bytes of the data in the SOURCE parameter. If

SOURCE _TYPE is 2, then SOURCE _LEN can be zero.

DEST_TYPE identifies the type of destination for the JSON text.

• 1 = the DEST parameter contains JSON text on procedure return.

• 2 = the DEST parameter contains the MCP file name to store the JSON text. See

the FILENAME_FORMAT option in the SET_OPTION procedure.

DEST is the array containing destination information. If DEST_TYPE is 2, the file name in

DEST is coded in the character set of the application.

DEST_START is a zero-based offset into the DEST array and indicates where the

supplied information starts.

DEST_LEN is the length in bytes of the data in the DEST parameter. If DEST-TYPE is 2,

then DEST_LEN can be zero. On return, DEST_LEN is set to the length in bytes of the

JSON text or might be zero if an error occurred.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–15

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD SOURCE-TYPE N5

 SD SOURCE-SIZE N5

 SD SOURCE An

 SD SOURCE-START N5

 SD SOURCE-LEN N5

 SD DEST-TYPE N5

 SD DEST-SIZE N5

 SD DEST An

 SD DEST-START N5

 SD DEST-LEN N12

SOURCE size, for example, 2048

[longa]

DEST size, for example, 2048

[longa]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 The SOURCE_TYPE or DEST_TYPE is not supported, or DEST_LEN is less

than zero when DEST_TYPE = 2.

−11 The input file was not found or is not available.

−13 An attribute error occurred while setting the file name.

−14 An I/O error occurred while reading the input file.

−47 The SOURCE_START or SOURCE_LEN was invalid.

−48 The procedure cannot open a socket to the JPM.

−49 The procedure cannot write to the JPM.

−50 The procedure cannot read from the JPM

−51 One or more parsing errors occurred.

−55 The DEST_START offset was invalid.

−57 The JPM does not support the procedure.

CONVERT_XML_TO_JSON

Converts a parsed XML document stored in the WEBAPPSUPPORT library to JSON

text in UTF-8 encoding.

Some information might be lost in this transformation because JSON is a data format

and XML is a document format. XML uses elements, attributes, and content text;

JSON uses unordered collections of name/value pairs and arrays of values. JSON does

not distinguish between elements and attributes and does not recognize namespaces.

WEBAPPSUPPORT Library Interface for the XML Parser

6–16 3826 5286–007

Sequences of similar elements are represented as JSON arrays. Content text might

be placed in a "content" member. Comments, prologs, DTDs, and <[[]]> are ignored.

Namespace information in the XML document is removed before converting to JSON.

See the SET_XML_OPTION procedure, INDENT option, for control over JSON

formatting.

See also the CONVERT_XML _DOCUMENT_TO_JSON procedure.

Syntax

INTEGER PROCEDURE CONVERT_XML_TO_JSON
 (DOC_TAG, DEST_TYPE, DEST, DEST_START, DEST_LEN);

 INTEGER DOC_TAG, DEST_TYPE, DEST_START, DEST_LEN;
 EBCDIC ARRAY DEST [0];

INTEGER PROCEDURE convertXMLtoJSON

 (DOC_TAG, DEST_TYPE, DEST, DEST_START, DEST_LEN);
 VALUE DOC_TAG, DEST_TYPE, DEST_START;
 INTEGER DOC_TAG, DEST_TYPE, DEST_START, DEST_LEN;

 EBCDIC ARRAY DEST [*];

PROCEDURE CONVERT-XML-TO-JSON (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG is the XML document.

DEST_TYPE identifies the type of destination for the JSON text.

• 1 = the DEST parameter contains JSON text on procedure return.

• 2 = the DEST parameter contains the MCP file name to store the JSON text. See

the FILENAME_FORMAT option in the SET_OPTION procedure.

DEST is the array containing destination information. If DEST_TYPE is 2, the file name in

DEST is coded in the character set of the application.

DEST_START is a zero-based offset into the DEST array and indicates where the

supplied information starts.

DEST_LEN is the length in bytes of the data in the DEST parameter. If DEST-TYPE is 2,

then DEST_LEN can be zero. On return, DEST_LEN is set to the length in bytes of the

JSON text or might be zero if an error occurred.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–17

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD DEST-TYPE N5

 SD DEST-SIZE N5

 SD DEST An

 SD DEST-START N5

 SD DEST-LEN N12

[bin]

DEST size, for example, 2048

[longa]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 The DEST_TYPE is not supported, or DEST_LEN is less than zero when

DEST_TYPE = 2.

-13 An attribute error occurred while setting the file name.

-47 The DEST_LEN is less than zero.

-48 The procedure cannot open a socket to the JPM.

-49 The procedure cannot write to the JPM.

-50 The procedure cannot read from the JPM

-55 The DEST_START offset was invalid.

-57 The JPM does not support the procedure.

CREATE_ATTRIBUTE_NODE

Creates an attribute node in the XML document.

After an application creates the node, the application needs to attach the node to the

element node to which you want the attribute to apply. See the APPEND_CHILD

procedure.

For information about setting attribute values, see “Setting or Deleting an Attribute

Value” in Section 5.

Syntax

INTEGER PROCEDURE CREATE_ATTR_NODE
 (DOC_TAG, NAMESPACE, QUALIFIED_NAME, NODE);

 INTEGER DOC_TAG, -NODE;
 EBCDIC ARRAY NAMESPACE, QUALIFIED_NAME [0];

WEBAPPSUPPORT Library Interface for the XML Parser

6–18 3826 5286–007

INTEGER PROCEDURE createAttributeNode
 (DOC_TAG, NAMESPACE, QUALIFIED_NAME, NODE);

 VALUE DOC_TAG;
 INTEGER DOC_TAG, NODE;
 EBCDIC ARRAY NAMESPACE, QUALIFIED_NAME [*];

PROCEDURE CREATE-ATTRIBUTE-NODE (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

NAMESPACE is the attribute namespace as a Uniform Resource Identifier (URI) in the

application character set. If the NAMESPACE parameter is null, this attribute does not

have a namespace. An example of a NAMESPACE value is

http://somedomain/mynamespace

QUALIFIED_NAME is the attribute name in the application character set and cannot be

a null string. If this parameter is specified with prefix text before a colon (:), the prefix

is a namespace prefix. The procedure does not validate the prefix against an actual

namespace declaration in an element that encloses the node.

NODE is the returned attribute node.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD NAMESPACE-SIZE N5

 SD NAMESPACE An

 SD QUALIFIED-NAME-SIZE N5

 SD QUALIFIED-NAME An

 SD NODE A6

[bin]

NAMESPACE size, for example, 255

[longa]

QUALIFIED-NAME size, for example, 255

[longa]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 The procedure did not find the XML document.

-35 The procedure call did not specify a field.

-56 The procedure cannot create another node because the maximum number

of nodes already exists.

http://somedomain/mynamespace

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–19

CREATE_CDATA_NODE

Creates a CDATA node for the XML document.

The application needs to attach the CDATA node to the document node or to an

element node. See the APPEND_CHILD and INSERT_CHILD_BEFORE procedures.

Syntax

INTEGER PROCEDURE CREATE_CDATA_NODE

 (DOC_TAG, CDATA_TEXT, CDATA_NODE);
 INTEGER DOC_TAG, CDATA_NODE;
 EBCDIC ARRAY CDATA_TEXT [0];

INTEGER PROCEDURE createCDATANode
 (DOC_TAG, CDATA_TEXT, CDATA_NODE);
 VALUE DOC_TAG;

 INTEGER DOC_TAG, CDATA_NODE;
 EBCDIC ARRAY CDATA_TEXT [*];

PROCEDURE CREATE-CDATA-NODE (GLB_PARAM);

 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

CDATA_TEXT is the text for the CDATA node. The application must ensure that it

supplies only text data for this parameter. Nontextual data in this parameter can make

a document invalid.

The text in this parameter

• Must be in the application character set

• Cannot include the prefix characters <![CDATA[or the suffix characters]]>

• Cannot be a null string

For example, CDATA_TEXT could be the following:

This is unparsed text.

The procedure would add the following to the XML document:

<![CDATA[This is unparsed text.]]>

CDATA_NODE is the returned CDATA node.

WEBAPPSUPPORT Library Interface for the XML Parser

6–20 3826 5286–007

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD CDATA-TEXT-SIZE N5

 SD CDATA-TEXT An

 SD CDATA-NODE A6

[bin]

CDATA-TEXT size, for example, 255

[longa]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 The procedure did not find the XML document.

-35 The procedure call did not specify a field.

-56 The procedure cannot create another node because the maximum number

of nodes already exists.

CREATE_CIPHER_REFERENCE

Creates a cipher reference in an existing XML document. A cipher reference uses a

URI to reference encrypted keys or data. See also the ENCRYPT_DATA procedure.

The form of the cipher reference created is as follows:

 <parent>

 <CipherReference URI=”urivalue”>

 <Transforms/>

 </CipherReference>

An example of a cipher reference with a base64 transform created by this procedure

follows:

 <CipherData>

 <CipherReference URI=”http://dataserver/reports/sales/january”>

 <Transforms>

 <ds:Transform

 Algorithm="http://www.w3.org/2000/09/xmldsig#base64"/>

 </Transforms>

 </CipherReference>

 </CipherData>

http://dataserver/reports/sales/january%E2%80%9D
http://www.w3.org/2000/09/xmldsig#base64"/

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–21

Syntax

INTEGER PROCEDURE CREATE_CIPHER_REFERENCE
 (DOC_TAG, PARENT, URI, TRANSFORM_TYPE, TRANSFORMS_NODE);
 INTEGER DOC_TAG, PARENT, TRANSFORM_TYPE, TRANSFORMS_NODE;
 EBCDIC ARRAY URI [0];

INTEGER PROCEDURE createCipherReference
 (DOC_TAG, PARENT, URI, TRANSFORM_TYPE, TRANSFORMS_NODE);
 VALUE DOC_TAG, PARENT, TRANSFORM_TYPE;
 INTEGER DOC_TAG, PARENT, TRANSFORM_TYPE, TRANSFORMS_NODE;
 EBCDIC ARRAY URI [*];

PROCEDURE CREATE-CIPHER-REFERENCE (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

PARENT is the node that is to be the parent of the CipherReference element, which is

added as the last child of the parent node..

URI is a string in the character set of the application that is the value for the URI

attribute of the CipherReference element.

TRANSFORM_TYPE indicates a predefined Transform element that is to be

automatically added to the Transforms element.

If the value is 0, no Transform element is added to the Transforms element.

If the value is 1, a base64 transform is added to the Transforms element, indicating

that the encrypted data accessed by the URI value is encoded in base64. The

algorithm attribute for the Transform element is

“http://www.w3.org/2000/09/xmldsig#base64”.

TRANSFORMS_NODE is the generated node that is a child of the CipherReference

element. The application can add specific transforms to this node, such as XPath

expressions.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD PARENT A6

 SD URI-SIZE N5

 SD URI An

 SD TRANSFORM-TYPE N5

 SD TRANSFORMS-NODE A6

[bin]

[bin]

URI size, for example, 255

[longa]

[bin]

http://www.w3.org/2000/09/xmldsig#base64%E2%80%9D

WEBAPPSUPPORT Library Interface for the XML Parser

6–22 3826 5286–007

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

−35 The procedure call did not specify a field.

−40 The procedure did not find the XML document.

−41 The parent is not a valid node.

−42 The parent node cannot be a parent.

−44 The document already has an element.

CREATE_COMMENT_NODE

Creates a comment node for the XML document.

The application needs to attach the comment node to the document node or to an

element node. See the APPEND_CHILD and INSERT_CHILD_BEFORE procedures.

Syntax

INTEGER PROCEDURE CREATE_COMMENT_NODE
 (DOC_TAG, COMMENT_TEXT, COMMENT_NODE);

 INTEGER DOC_TAG, COMMENT_NODE;
 EBCDIC ARRAY COMMENT_TEXT [0];

INTEGER PROCEDURE createCommentNode

 (DOC_TAG, COMMENT_TEXT, COMMENT_NODE);
 VALUE DOC_TAG;
 INTEGER DOC_TAG, COMMENT_NODE;

 EBCDIC ARRAY COMMENT_TEXT [*];

PROCEDURE CREATE-COMMENT-NODE (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

COMMENT_TEXT is the text for the comment node. The text

• Must be in the application character set

• Cannot include the prefix characters <!-- or the suffix characters -->

For example, COMMENT_TEXT could be the following:

This is a comment.

The procedure would add the following to the XML document:

<!-- This is a comment. -->

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–23

COMMENT_NODE is the returned comment node.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD COMMENT-TEXT-SIZE N5

 SD COMMENT-TEXT An

 SD COMMENT-NODE A6

[bin]

COMMENT-TEXT size, for example, 255

[longa]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 The procedure did not find the XML document.

-35 The procedure call did not specify a field.

-56 The procedure cannot create another node because the maximum number

of nodes already exist.

CREATE_DOCTYPE_NODE

Creates a document type node for the XML document. This node contains a DTD.

The application needs to attach the document type node to the document node before

the document element node. See the APPEND_CHILD and INSERT_CHILD_BEFORE

procedures.

An XML document can have only one DTD. If an application attaches a second

document type node to the document node, the XML Parser detaches the first

document type node.

Syntax

INTEGER PROCEDURE CREATE_DOCTYPE_NODE
 (DOC_TAG, DOCTYPE_TEXT,
DOCTYPE_NODE);

 INTEGER DOC_TAG, DOCTYPE_NODE;
 EBCDIC ARRAY DOCTYPE_TEXT [0];

INTEGER PROCEDURE createDoctypeNode

 (DOC_TAG, DOCTYPE_TEXT, DOCTYPE_NODE);
 VALUE DOC_TAG;
 INTEGER DOC_TAG, DOCTYPE_NODE;

 EBCDIC ARRAY DOCTYPE_TEXT [*];

WEBAPPSUPPORT Library Interface for the XML Parser

6–24 3826 5286–007

PROCEDURE CREATE-DOCTYPE-NODE (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

DOCTYPE_TEXT is the text for the document type node. The text

• Must be in the application character set

• Cannot include the prefix characters <!DOCTYPE or end with the suffix

character >.

For example, DOCTYPE_TEXT could be the following:

LABEL SYSTEM "http://xxx/label.dtd"

The procedure would add the following to the XML document:

<!DOCTYPE LABEL SYSTEM ″http://xxx/label.dtd″>

DOCTYPE_NODE is the returned document type node.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD DOCTYPE-TEXT-SIZE N5

 SD DOCTYPE-TEXT An

 SD DOCTYPE-NODE A6

[bin]

DOCTYPE-TEXT size, for example, 255

[longa]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

−35 The procedure call did not specify a field.

−40 The procedure did not find the XML document.

−56 The procedure cannot create another node because the maximum number

of nodes already exists.

http://xxx/label.dtd
http://xxx/label.dtd
http://xxx/label.dtd

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–25

CREATE_ELEMENT_NODE

Creates an element node for the XML document.

The application needs to attach the element node to the document node or an

element node. See the APPEND_CHILD and INSERT_CHILD_BEFORE procedures.

Syntax

INTEGER PROCEDURE CREATE_ELEMENT_NODE
 (DOC_TAG, NAMESPACE, QUALIFIED_NAME, NODE);
 INTEGER DOC_TAG, NODE;
 EBCDIC ARRAY NAMESPACE, QUALIFIED_NAME [0];

INTEGER PROCEDURE createElementNode
 (DOC_TAG, NAMESPACE, QUALIFIED_NAME, NODE);
 VALUE DOC_TAG;
 INTEGER DOC_TAG, NODE;
 EBCDIC ARRAY NAMESPACE, QUALIFIED_NAME [*];

PROCEDURE CREATE-ELEMENT-NODE (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

NAMESPACE is the element namespace, as a URI, in the application character set. If

the NAMESPACE parameter is null, this element does not have a namespace. An

example of a NAMESPACE value is

http://somedomain/mynamespace

QUALIFIED_NAME is the element tag name in the application character set. If this

parameter is specified with prefix text before a colon (:), the prefix is a namespace

prefix. The procedure does not validate the prefix against an actual namespace

declaration in an element that encloses the node.

NAME is the element tag name in the application character set.

NODE is the returned element node.

http://somedomain/mynamespace

WEBAPPSUPPORT Library Interface for the XML Parser

6–26 3826 5286–007

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD NAMESPACE-SIZE N5

 SD NAMESPACE An

 SD QUALIFIED-NAME-SIZE N5

 SD QUALIFIED-NAME An

 SD NODE A6

[bin]

NAMESPACE size, for example, 255

[longa]

QUALIFIED-NAME size, for example, 255

[longa]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

−35 The procedure call did not specify a field.

−40 The procedure did not find the XML document.

−56 The procedure cannot create another node because the maximum number

of nodes already exists.

CREATE_ENTITYREF_NODE

Creates an entity reference node for the XML document.

The application needs to attach the entity reference node to an element or attribute

node. See the APPEND_CHILD and INSERT_CHILD_BEFORE procedures.

Syntax

INTEGER PROCEDURE CREATE_ENTITYREF_NODE
 (DOC_TAG, NAME, NODE);
 INTEGER DOC_TAG, NODE;

 EBCDIC ARRAY NAME [0];

INTEGER PROCEDURE createEntityRefNode
 (DOC_TAG, NAME, NODE);

 VALUE DOC_TAG;
 INTEGER DOC_TAG, NODE;
 EBCDIC ARRAY NAME [*];

PROCEDURE CREATE-ENTITYREF-NODE (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–27

Parameters

DOC_TAG identifies the XML document.

NAME is the entity reference name in the application character set. Do not put an

ampersand (&) or a semi-colon (;) in this name.

NODE is the returned entity reference node.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD NAME-SIZE N5

 SD NAME An

 SD NODE A6

[bin]

NAME size, for example, 255

[longa]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

−35 The procedure call did not specify a field.

−40 The procedure did not find the XML document.

−56 The procedure cannot create another node because the maximum number

of nodes already exists.

CREATE_PI_NODE

Creates a processing instruction node for the XML document.

The application needs to attach the processing instruction node to the document node

or an element node. See the APPEND_CHILD and INSERT_CHILD_BEFORE procedures.

Syntax

INTEGER PROCEDURE CREATE_PI_NODE
 (DOC_TAG, PI_TARGET, PI_TEXT, PI_NODE);
 INTEGER DOC_TAG, PI_NODE;

 EBCDIC ARRAY PI_TARGET, PI_TEXT [0];

INTEGER PROCEDURE createPINode
 (DOC_TAG, PI_TARGET, PI_TEXT, PI_NODE);

 VALUE DOC_TAG;
 INTEGER DOC_TAG, PI_NODE;
 EBCDIC ARRAY PI_TARGET, PI_TEXT [*];

PROCEDURE CREATE-PI-NODE (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

WEBAPPSUPPORT Library Interface for the XML Parser

6–28 3826 5286–007

Parameters

DOC_TAG identifies the XML document.

PI_TARGET is the text for the target of the processing instruction and must be in the

application character set.

PI_TEXT is the text for the processing instruction node. This text must be in the

application character set. Do not put the characters ?> in this parameter.

For example, the PI_TARGET could be the following:

xml-stylesheet

PI_TEXT could be the following:

type=″text/xml″ href=″5-2.xsl″

The procedure would add the following to the XML document:

<?xml-stylesheet type=″text/xml″ href=″5-2.xsl″?>

PI_NODE is the returned processing instruction node.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD PI-TARGET-SIZE N5

 SD PI-TARGET An

 SD PI-TEXT-SIZE N5

 SD PI-TEXT An

 SD NODE A6

[bin]

PI-TARGET size, for example, 256

[longa]

PI-TEXT size, for example, 2048

[longa]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

-35 The procedure call did not specify a field.

-40 The procedure did not find the XML document.

-56 The procedure cannot create another node because the maximum number

of nodes already exist.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–29

CREATE_TEXT_ELEMENT

Creates an element node with a text node attached for the XML document.

This procedure call combines these functions:

• Create an element.

• Attach the element to its parent node.

• Set zero or more simple text attributes on the element.

• Create a text node.

• Attach the text node to the element

This example shows how the XML might look after this procedure returns (changes in

italics)

 <PARENTNODE>
 <ELEMENTNAME ATTR1="Attr1 Text">Some Text</ELEMENTNAME>

Syntax

INTEGER PROCEDURE CREATE_TEXT_ELEMENT
 (DOC_TAG, PARENT, NAMESPACE, QUALIFIED_ELEMENT_NAME,
 NUM_ATTRS, MAX_ATTR_NAMESPACE_LEN, MAX_ATTR_NAME_LEN,

 MAX_ATTR_VALUE_LEN, ATTR_BUFFER, TEXT, TEXT_START,
 TEXT_LENGTH, ELEMENT_NODE);
 INTEGER DOC_TAG, PARENT,

 NUM_ATTRS, MAX_ATTR_NAMESPACE_LEN, MAX_ATTR_NAME_LEN,
 MAX_ATTR_VALUE_LEN, TEXT_START,
 TEXT_LENGTH, ELEMENT_NODE;

 EBCDIC ARRAY NAMESPACE, QUALIFIED_ELEMENT_NAME,
 ATTR_BUFFER, TEXT [0];

INTEGER PROCEDURE createTextElement

 (DOC_TAG, PARENT, NAMESPACE, QUALIFIED_ELEMENT_NAME,
 NUM_ATTRS, MAX_ATTR_NAMESPACE_LEN, MAX_ATTR_NAME_LEN,
 MAX_ATTR_VALUE_LEN, ATTR_BUFFER, TEXT, TEXT_START,

 TEXT_LENGTH, ELEMENT_NODE);
 VALUE DOC_TAG, PARENT,
 NUM_ATTRS, MAX_ATTR_NAMESPACE_LEN, MAX_ATTR_NAME_LEN,

 MAX_ATTR_VALUE_LEN, TEXT_START,
 TEXT_LENGTH;
 INTEGER DOC_TAG, PARENT,

 NUM_ATTRS, MAX_ATTR_NAMESPACE_LEN, MAX_ATTR_NAME_LEN,
 MAX_ATTR_VALUE_LEN, TEXT_START,
 TEXT_LENGTH, ELEMENT_NODE;

 EBCDIC ARRAY NAMESPACE, QUALIFIED_ELEMENT_NAME,
 ATTR_BUFFER, TEXT [*];

PROCEDURE CREATE-TEXT-ELEMENT (GLB_PARAM);

 EBCDIC ARRAY GLB_PARAM [0];

WEBAPPSUPPORT Library Interface for the XML Parser

6–30 3826 5286–007

Parameters

DOC_TAG identifies the XML document.

PARENT identifies the parent node for the new element.

NAMESPACE is the element namespace, as a URI, in the application character set. If

the NAMESPACE parameter is null, this element does not have a namespace. An

example of a NAMESPACE value is

http://somedomain/mynamespace

QUALIFIED_ELEMENT_NAME is the element tag name in the application character set.

If this parameter is specified with prefix text before a colon (:), the prefix is a

namespace prefix. The procedure does not validate the prefix against an actual

namespace declaration in an element that encloses the node.

NUM_ATTRS is the number of attributes to add to the element.

MAX_ATTR_NAMESPACE_LEN is the length of the namespace field for each attribute

in ATTR_BUFFER. The valid range is 0 to 2048.

MAX_ATTR_NAME_LEN is the length in bytes of the attribute name field for each

attribute in ATTR_BUFFER. The valid range is 1 to 2048.

MAX_ATTR_VALUE_LEN is the length in bytes of the attribute value field for each

attribute in ATTR_BUFFER. The valid range is 1 to 2048.

ATTR_BUFFER is the buffer containing the attributes to be added to the element. This

buffer contains three fields for each attribute:

• ATTRIBUTE_NAMESPACE is the attribute namespace, as a URI, in the application

character set of up to MAX_ATTR_NAMESPACE_LEN bytes. If the

ATTRIBUTE_NAMESPACE parameter is null, this attribute does not have a

namespace.

The following example shows an ATTRIBUTE_NAMESPACE value.

http://somedomain/mynamespace

• ATTRIBUTE_NAME is the attribute name in the application character set of up to

MAX_ATTR_NAME_LEN bytes. If this parameter is specified with prefix text

before a colon (:), the prefix is a namespace prefix. The procedure does not

validate the prefix against an actual namespace declaration in an element that

encloses the node.

• ATTRIBUTE_VALUE is the attribute value in the application character set of up to

MAX_ATTR_VALUE_LEN bytes.

TEXT is the text value for the text node in the application character set. The application

must ensure that it supplies only text data for this parameter. Nontextual data in this

parameter might invalidate an XML document. The text in this parameter cannot be a

null string.

http://somedomain/mynamespace
http://somedomain/mynamespace

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–31

TEXT_START is a zero-based offset into TEXT and indicates where the text value

starts. A COBOL85 application with arrays that start at 1 must pass 0 (zero).

TEXT_LENGTH is the length of data in TEXT.

ELEMENT_NODE is the created element node.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD PARENT A6

 SD NAMESPACE-SIZE N5

 SD NAMESPACE An

 SD ELEMENT-NAME-SIZE N5

 SD ELEMENT-NAME An

 SD NUM-ATTRS N5

 SD MAX-ATTR-NS-LEN N5

 SD MAX-ATTR-NAME-LEN N5

 SD MAX-ATTR-VALUE-LEN N5

 SD ATTR-BUFFER-SIZE N5

 SD ATTR-BUFFER An

 SD TEXT-SIZE N5

 SD TEXT An

 SD TEXT-START N5

 SD TEXT-LENGTH N5

 SD ELEMENT-NODE A6

[bin]

[bin]

NAMESPACE size, for example, 256

[longa]

ELEMENT-NAME size, for example, 256

[longa]

ATTR-BUFFER size, for example, 2048

[longa]

TEXT size, for example, 256

[longa]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

−35 The procedure call did not specify a required field.

−40 The procedure did not find the XML document.

−41 The parent is not a valid node.

−42 The parent node cannot be a parent

−56 The procedure cannot create another node because the maximum number

of nodes already exists.

WEBAPPSUPPORT Library Interface for the XML Parser

6–32 3826 5286–007

Example

The following code is an example of ATTR_BUFFER used for this procedure in COBOL

01 ATTR-BUFFER.
 03 ATTR-PAIR OCCURS 10 TIMES.
 05 ATTR-NAMESPACE PIC X(30).
 05 ATTR-NAME PIC X(10).
 05 ATTR-VALUE PIC X(20).

The call to CREATE_TEXT_ELEMENT passes ATTR-BUFFER, with

MAX_ATTR_NAMESPACE_LEN set to 30, MAX_ATTR_NAME_LEN set to 10, and

MAX_ATTR_VALUE_LEN set to 20.

CREATE_TEXT_NODE

Creates a text node for the XML document.

The application needs to attach the text node to an element or attribute node. See the

APPEND_CHILD and INSERT_CHILD_BEFORE procedures.

Syntax

INTEGER PROCEDURE CREATE_TEXT_NODE
 (DOC_TAG, TEXT, TEXT_START, TEXT_LENGTH,
NODE);

 INTEGER DOC_TAG, TEXT_START, TEXT_LENGTH, NODE;
 EBCDIC ARRAY TEXT [0];

INTEGER PROCEDURE createTextNode

 (DOC_TAG, TEXT, TEXT_START, TEXT_LENGTH,
NODE);
 VALUE DOC_TAG TEXT_START, TEXT_LENGTH;

 INTEGER DOC_TAG, TEXT_START, TEXT_LENGTH, NODE;
 EBCDIC ARRAY TEXT [*];

PROCEDURE CREATE-TEXT-NODE (GLB_PARAM);

 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

TEXT is the text value for the node and must be in the application character set. The

application must ensure that it supplies only text data for this parameter. Nontextual

data in this parameter can make a document invalid. The text in this parameter cannot

be a null string.

TEXT_START is the zero-based offset into TEXT and indicates where the text value

starts. A COBOL85 application with arrays that start at 1 must pass 0 (zero).

TEXT_LENGTH is the length of data in TEXT. If zero, TEXT contains a string that is

terminated by blanks or a null byte.

NODE is the returned text node.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–33

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD TEXT-SIZE N5

 SD TEXT An

 SD TEXT-START N5

 SD TEXT-LENGTH N5

 SD NODE A6

[bin]

TEXT size, for example, 256

[longa]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

−35 The procedure call did not specify a field.

−40 The procedure did not find the XML document.

−56 The procedure cannot create another node because the maximum number

of nodes already exist.

CREATE_XML_DOCUMENT

Creates an empty XML document in WEBAPPSUPPORT. The document node is

returned.

This procedure identifies the character set in which to create the document. When an

application accesses the document, the application must use the character set that

was the application character set when the document was created.

The SET_TRANSLATION procedure sets the application character set.

Syntax

INTEGER PROCEDURE CREATE_XML_DOCUMENT
 (DOC_TAG, XML_DECLARATION, NODE);

 INTEGER DOC_TAG, NODE;
 EBCDIC ARRAY XML_DECLARATION [0];

INTEGER PROCEDURE createXMLDocument

 (DOC_TAG, XML_DECLARATION, NODE);
 INTEGER DOC_TAG, NODE;
 EBCDIC ARRAY XML_DECLARATION [*];

PROCEDURE CREATE-XML-DOCUMENT (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

WEBAPPSUPPORT Library Interface for the XML Parser

6–34 3826 5286–007

Parameters

DOC_TAG identifies the XML document. If this procedure creates the document, this

procedure returns DOC_TAG with a non-zero value.

XML_DECLARATION is the XML document XML declaration in the application character

set.

If the application character set is UCS2 (85), then this parameter must be encoded in

ASCII.

If this parameter is null, no XML declaration is in the document. The XML Parser does

not check the validity of the information in the declaration.

If the XML declaration has an encoding string, the application can use that encoding to

determine the character set in the document that the GET_XML_DOCUMENT

procedure returns. If the XML declaration does not have an encoding string, the

GET_XML_DOCUMENT procedure returns the document encoded in UTF-8 by default.

The <? and ?> prefix and suffix characters must be in the XML_DECLARATION

parameter.

Following are two examples of the XML_DECLARATION parameter:

 <?xml version=”1.0”?>

 <?xml version=”1.0”” encoding=”ISO-8859-1”?>

NODE is the returned document node. If an error occurs, NODE is 0 (zero).

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD XML-DECLARATION-SIZE N5

 SD XML-DECLARATION An

 SD NODE A6

[bin]

XML-DECLARATION size, for example, 256

[longa]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

 0 No-op. The procedure did not create the document because

WEBAPPSUPPORT already has the maximum number of XML documents.

 1 The procedure created the document.

-15 The procedure did not create the document because the XML Parser does

not support the application character set.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–35

DECRYPT_XML_DOCUMENT

Decrypts an EncryptedData element into a new XML document. The data encrypted

must be an XML document or fragment. This procedure returns a tag to a new XML

document.

Only the CipherValue element is supported. The CipherReference element is not

supported—that is, automatic retrieval of the data from a URI does not occur.

Syntax

INTEGER PROCEDURE DECRYPT_XML_DOCUMENT

 (DOC_TAG, KEY_TAG, NODE, NEW_DOC_TAG;
 INTEGER DOC_TAG, KEY_TAG, NODE, NEW_DOC_TAG;

INTEGER PROCEDURE decryptXMLdocument

 (DOC_TAG, KEY_TAG, NODE, NEW_DOC_TAG;
 VALUE DOC_TAG, KEY_TAG, NODE;
 INTEGER DOC_TAG, KEY_TAG, NODE, NEW_DOC_TAG;

PROCEDURE DECRYPT-XML-DOCUMENT (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG is the source XML document.

KEY_TAG is the key object used to decrypt the data. This parameter must reference a

valid key object that can be used to decrypt the encrypted data.

NODE represents the EncryptedData element to be decrypted.

NEW_DOC_TAG is the new XML document containing the decrypted items.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD KEY-TAG A6

 SD NODE A6

 SD NEW-DOC-TAG A6

[bin]

[bin]

[bin]

[bin]

WEBAPPSUPPORT Library Interface for the XML Parser

6–36 3826 5286–007

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

−121 The XML Encryption Key is required.

0 No-op for one of the following reasons:

• NODE is not an EncryptedData element.

• WEBAPPSUPPORT already has the maximum number of documents.

−40 The procedure did not find the XML document.

−41 The node is not valid.

−48 The procedure cannot open a socket to the JPM.

−49 The procedure cannot writer to the JPM.

−50 The procedure cannot read from the JPM.

−51 One or more parsing errors occurrec.

−122 MCAPI is unavailable.

−123 The key is invalid

−140 The EncryptedData element is not properly formed.

DECRYPT_XML_TO_DATA

Decrypts data in an XML document into an application array or into an MCP file. For

example, the data could represent an XML fragment or binary data such as a jpeg file.

For example, the following XML fragment encrypted in an XML document:

<CreditCard><Number>1234567890</Number></CreditCard>

Could be decrypted from

 <?xml version='1.0' ?>

 <Payment>

 <EncryptedData Type='http://www.w3.org/2001/04/xmlenc#Element'

 xmlns='http://www.w3.org/2001/04/xmlenc#'>

 <CipherData>

 <CipherValue>MTIzNDU2Nzg5M==</CipherValue>

 </CipherData>

 </EncryptedData>

 </Payment>

See also the DECRYPT_XML_DOCUMENT procedure

http://www.w3.org/2001/04/xmlenc#Element
http://www.w3.org/2001/04/xmlenc#

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–37

Syntax

INTEGER PROCEDURE DECRYPT_XML_TO_DATA
 (DOC_TAG, KEY_TAG, NODE,

 DEST_TYPE, DEST, DEST_START, DEST_LEN);
 INTEGER DOC_TAG, KEY_TAG, NODE,
 DEST_TYPE, DEST_START, DEST_LEN;

 EBCDIC ARRAY DEST [0];

INTEGER PROCEDURE decryptXMLtoData
 (DOC_TAG, KEY_TAG, NODE,

 DEST_TYPE, DEST, DEST_START, DEST_LEN);
 VALUE DOC_TAG, KEY_TAG, NODE,
 DEST_TYPE, DEST_START;

 INTEGER DOC_TAG, KEY_TAG, NODE,
 DEST_TYPE, DEST_START, DEST_LEN;
 EBCDIC ARRAY DEST [*];

PROCEDURE DECRYPT-XML-DATA (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG is the XML document containing the encrypted item.

KEY_TAG is the key object used to decrypt the data.

NODE represents the EncryptedData element to be decrypted.

DEST_TYPE identifies the type of destination for data to be decrypted.

• 1 = the DEST parameter contains decrypted data on procedure return.

• 2 = the DEST parameter contains the MCP file name to store the decrypted data.

See the FILENAME_FORMAT option in the SET_OPTION procedure.

DEST is the array containing destination information. If DEST_TYPE is 2, the file name in

DEST is coded in the character set of the application.

DEST_START is a zero-based offset into the DEST array and indicates where the

supplied information starts.

DEST_LEN is the length in bytes of the data in the DEST parameter. If DEST-TYPE is 2,

then DEST_LEN can be zero.

WEBAPPSUPPORT Library Interface for the XML Parser

6–38 3826 5286–007

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD KEY-TAG A6

 SD NODE A6

 SD DEST-TYPE N5

 SD DEST-SIZE N5

 SD DEST An

 SD DEST-START N5

 SD DEST-LEN N12

[bin]

[bin]

[bin]

DEST size, for example, 2048

[longa]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

−121 The XML Encryption Key is required.

0 No-op for one of the following reasons:

• NODE is not an EncryptedData element.

• The DEST_TYPE value is not supported.

• WEBAPPSUPPORT already ahs the maximum number of documents.

−40 The procedure did not find the XML document.

−41 The NODE parameter is not a valid node.

−55 The DEST_START parameter is invalid.

−122 MCAPI is unavailable.

−123 The key is invalid.

ENCRYPT_DATA_TO_XML

Encrypts data in an application array or in an MCP file into an XML document. For

example, the data could represent an XML fragment or binary data such as a jpeg file.

This procedure creates an EncryptedData element either appended to the supplied

parent node or as the document element if a new XML document is created.

Within the EncryptedData element, a CipherData element holds the encrypted data.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–39

For example, the following XML fragment encrypted stored in an application array:

<CreditCard><Number>1234567890</Number></CreditCard>

Could be encrypted and appended to the Payment element as:

 <?xml version='1.0' ?>

 <Payment>

 <EncryptedData Type='http://www.w3.org/2001/04/xmlenc#Element'

 xmlns='http://www.w3.org/2001/04/xmlenc#'>

 <CipherData>

 <CipherValue>MTIzNDU2Nzg5M==</CipherValue>

 </CipherData>

 </EncryptedData>

 </Payment>

See the SET_XML_OPTION procedure, CANONICAL_METHOD option, for control over

XML serialization.

See also the ENCRYPT_XML_DOCUMENT procedure.

Syntax

INTEGER PROCEDURE ENCRYPT_DATA_TO_XML

 (SOURCE_TYPE, SOURCE, SOURCE_START, SOURCE_LEN, ID,
 DATA_TYPE, MIME_TYPE, ADD_METHOD,
 KEY_TAG, DOC_TAG, PARENT, ENCRYPTED_NODE);

 INTEGER SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 ADD_METHOD,
 KEY_TAG, DOC_TAG, PARENT, ENCRYPTED_NODE;

 EBCDIC ARRAY SOURCE, ID,
 DATA_TYPE, MIME_TYPE [0];

INTEGER PROCEDURE encryptDataToXML

 (SOURCE_TYPE, SOURCE, SOURCE_START, SOURCE_LEN, ID,
 DATA_TYPE, MIME_TYPE, ADD_METHOD,
 KEY_TAG, DOC_TAG, PARENT, ENCRYPTED_NODE);

 VALUE SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 ADD_METHOD,
 KEY_TAG, PARENT, ENCRYPTED_NODE;

 INTEGER SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 ADD_METHOD, ADD_KEYSIZE,
 KEY_TAG, DOC_TAG, PARENT, ENCRYPTED_NODE;

 EBCDIC ARRAY SOURCE, ID,
 DATA_TYPE, MIME_TYPE [*];

PROCEDURE ENCRYPT-DATA-TO-XML (GLB_PARAM);

 EBCDIC ARRAY GLB_PARAM [0];

Parameters

SOURCE_TYPE identifies the type of source of the data to be encrypted.

• 1 = the SOURCE parameter contains the data to be encrypted.

• 2 = the SOURCE parameter contains the MCP file name of the data to be

encrypted. See the FILENAME_FORMAT option in the SET_OPTION procedure.

http://www.w3.org/2001/04/xmlenc#Element
http://www.w3.org/2001/04/xmlenc#

WEBAPPSUPPORT Library Interface for the XML Parser

6–40 3826 5286–007

SOURCE is the array containing source information. If SOURCE_TYPE is 2, the file name

in SOURCE is coded in the character set of the application.

SOURCE_START is a zero-based offset into the SOURCE array and indicates where the

supplied information starts.

SOURCE_LEN is the length in bytes of the data in the SOURCE parameter.

ID is a string in the character set of the application that is the value for the Id attribute

of the EncryptedData element. If ID is null, the Id attribute is not created.

DATA_TYPE is a string in the character set of the application that is the URL that

identifies the type of data being encrypted and is used in the Type attribute of the

EncryptedData element. For example, “http://www.isi.edu/in-

notes/iana/assignments/media-types/text/xml” represents the encoding of an XML

document. If this string is null, the Type attribute is not created.

MIME_TYPE is a string in the character set of the application that identifies the media

type of the data that is encrypted and is used in the MimeType attribute of the

EncryptedData element. If this string is null, the MimeType attribute is not created.

ADD_METHOD controls whether or not to add the EncryptionMethod element.

• 0 = do not add the element.

• 1 = add the element. The Algorithm attribute of the EncryptionMethod element is

generated based on the encryption algorithm used.

KEY_TAG is the key object used to encrypt the data.

DOC_TAG is the XML document containing the encrypted item. If supplied as -1, an

XML document only containing the encrypted item is created and the resulting

document is returned in this parameter. Otherwise, the encrypted item is added to the

document referenced by DOC_TAG.

PARENT is the parent node for the encrypted data in the XML document. If DOC_TAG

is supplied as -1, this parameter is ignored. Otherwise, PARENT must represent a valid

element or document node, and the EncryptedData node is added as the last child of

PARENT.

ENCRYPTED_NODE is the EncryptedData element node created.

http://www.isi.edu/in-notes/iana/assignments/media-types/text/xml%E2%80%9D
http://www.isi.edu/in-notes/iana/assignments/media-types/text/xml%E2%80%9D
http://www.isi.edu/in-notes/iana/assignments/media-types/text/xml%E2%80%9D

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–41

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD SOURCE-TYPE N5

 SD SOURCE-SIZE N5

 SD SOURCE An

 SD SOURCE-START N5

 SD SOURCE-LEN N5

 SD ID-SIZE N5

 SD ID An

 SD DATA-TYPE-SIZE N5

 SD DATA-TYPE An

 SD MIME-TYPE-SIZE N5

 SD MIME-TYPE An

 SD ADD-METHOD N5

 SD KEY-TAG A6

 SD DOC-TAG A6

 SD PARENT A6

 SD ENCRYPTED-NODE A6

SOURCE size, for example, 2048

[longa]

ID size, for example, 256

[longa]

DATA-TYPE size, for example, 256

[longa]

MIME-TYPE size, for example, 256

[longa]

[bin]

[bin]

[bin]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

−121 The XML Encryption Key is required.

0 No-op for one of the following reasons:

• The SOURCE_TYPE value is not supported.

• WEBAPPSUPPORT already has the maximum number of documents.

−35 The procedure call did not specify a field.

−42 The PARENT parameter is not an element or the document node.

−47 The source length or start is invalid.

−122 MCAPI is unavailable.

−123 The key is invalid

WEBAPPSUPPORT Library Interface for the XML Parser

6–42 3826 5286–007

ENCRYPT_XML_DOCUMENT

Encrypts an element (or its contents), text node, or entire XML document, creating a

new XML document.

The Type attribute is automatically added to the EncryptedData element, based on the

item encrypted. The xmlns attribute is also added to the EncryptedData element.

Also, an EncryptionMethod element can optionally be added to the EncryptedData

element.

The formatting applied to the XML text before encryption is controlled by the INDENT

option of the SET_XML_OPTION procedure. If INDENT is set to zero, the text is

compressed with no whitespace prior to encryption; otherwise, if INDENT is nonzero,

whitespace is applied to the text prior to encryption.

For example, an XML document containing an element to be encrypted:

 <?xml version='1.0' ?>

 <Payment>

 <CreditCard>

 <Number>1234567890</Number>

 </CreditCard>

 </Payment>

Can have the CreditCard element and its child nodes encrypted as:

<?xml version='1.0' ?>

 <Payment>

 <EncryptedData Type='http://www.w3.org/2001/04/xmlenc#Element'

 xmlns='http://www.w3.org/2001/04/xmlenc#'>

 <EncryptedMethod

 Algorithm='http://www.w3.org/2001/04/xmlenc#tripledes-cbc'/>

 <CipherData>

 <CipherValue>MTIzNDU2Nzg5M==</CipherValue>

 </CipherData>

 </EncryptedData>

 </Payment>

See the SET_XML_OPTION procedure, CANONICAL_METHOD option, for control over

XML serialization.

See also ENCRYPT_DATA_TO_XML procedure.

http://www.w3.org/2001/04/xmlenc#Element
http://www.w3.org/2001/04/xmlenc#
http://www.w3.org/2001/04/xmlenc#tripledes-cbc'/

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–43

Syntax

INTEGER PROCEDURE ENCRYPT_XML_DOCUMENT
 (DOC_TAG, KEY_TAG, NODE, CONTENT_ONLY, ID,

 ADD_METHOD, NEW_DOC_TAG, ENCRYPTED_NODE,
 METHOD_NODE);
 INTEGER DOC_TAG, KEY_TAG, NODE, CONTENT_ONLY,

 ADD_METHOD, NEW_DOC_TAG, ENCRYPTED_NODE,
 METHOD_NODE;
 EBCDIC ARRAY ID [0];

INTEGER PROCEDURE encryptXMLdocument
 (DOC_TAG, KEY_TAG, NODE, CONTENT_ONLY, ID,
 ADD_METHOD, NEW_DOC_TAG, ENCRYPTED_NODE,

 METHOD_NODE);
 VALUE DOC_TAG, KEY_TAG, NODE, CONTENT_ONLY,
 ADD_METHOD;

 INTEGER DOC_TAG, KEY_TAG, NODE, CONTENT_ONLY,
 ADD_METHOD, NEW_DOC_TAG, ENCRYPTED_NODE,
 METHOD_NODE;

 EBCDIC ARRAY ID [*];

PROCEDURE ENCRYPT-XML-DOCUMENT (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG is the source XML document.

KEY_TAG is the key object used to encrypt the data.

NODE represents the item to be encrypted. It can be

• The document node, which causes the entire XML document to be encrypted

• An element node, which causes the element and all child nodes to be encrypted

• A text node, which causes the text node to be encrypted

CONTENT_ONLY controls if the element and its content are encrypted or if only the

content of the element is encrypted. This parameter is ignored if NODE is not an

element.

• 0 = encrypt the element and its content.

• 1 = encrypt the content of the element only.

ID is a string in the character set of the application that is the value for the Id attribute

of the EncryptedData element. If ID is null, the Id attribute is not created.

WEBAPPSUPPORT Library Interface for the XML Parser

6–44 3826 5286–007

ADD_METHOD controls whether or not to add the EncryptionMethod element to the

EncryptedData element.

• 0 = do not add the EncryptionMethod element.

• 1 = add the EncryptionMethod element. The Algorithm attribute of the

EncryptionMethod element is generated based on the encryption algorithm used.

If the encryption algorithm is not one defined by the XML Encryption standard, this

attribute is not added.

NEW_DOC_TAG is the new XML document containing the encrypted item.

ENCRYPTED_NODE is the EncryptedData element node that replaced NODE.

METHOD_NODE is the node created if ADD_METHOD is 1. Otherwise, METHOD_NODE

is set to -1.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD KEY-TAG A6

 SD NODE A6

 SD CONTENT-ONLY N5

 SD ID-SIZE N5

 SD ID An

 SD ADD-METHOD N5

 SD NEW-DOC-TAG A6

 SD ENCRYPTED-NODE A6

 SD METHOD-NODE A6

[bin]

[bin]

[bin]

ID size, for example, 256

[longa]

[bin]

[bin]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

−121 The XML Encryption Key is required.

0 No-op for one of the following reasons:

• No data exists to encrypt.

• The maximum number of XML documents was exceeded.

−35 The procedure did not specify a field, or the NODE parameter is not an

element, text, or document node.

−40 The procedure did not find the XML document.

−41 The NODE parameter is not a valid node.

−56 The maximum number of nodes was exceeded.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–45

−122 MCAPI is unavailable.

−123 The key is invalid.

GET_ATTRIBUTE_BY_NAME

Searches for an attribute by name in an element node.

If the procedure finds the attribute, the procedure returns a successful result and the

attribute node. The procedure returns only the first attribute node that has the

specified name.

If the procedure does not find the attribute or the node that the application supplies is

not an element node, the procedure returns a no-op result.

Syntax

INTEGER PROCEDURE GET_ATTRIBUTE_BY_NAME
 (DOC_TAG, NODE, ATTR_NAME, ATTR_NODE);

 INTEGER DOC_TAG, NODE ATTR_NODE;
 EBCDIC ARRAY ATTR_NAME [0];

INTEGER PROCEDURE getAttributeByName

 (DOC_TAG, NODE, ATTR_NAME, ATTR_NODE);
 VALUE DOC_TAG, NODE;
 INTEGER DOC_TAG, NODE ATTR_NODE;

 EBCDIC ARRAY ATTR_NAME [*];

PROCEDURE GET-ATTRIBUTE-BY-NAME (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

NODE identifies the element node.

ATTR_NAME is the attribute name in the application character set. If ATTR_NAME is a

local name without a namespace prefix, then the procedure returns the first attribute

with the name, which might be a qualified name with prefixes. If ATTR_NAME is a

qualified name with a namespace prefix, then the procedure returns the first attribute

with the qualified name that includes the namespace prefix. Attribute names are case-

sensitive.

ATTR_NODE is the attribute node.

WEBAPPSUPPORT Library Interface for the XML Parser

6–46 3826 5286–007

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD NODE A6

 SD ATTR-NAME-SIZE N5

 SD ATTR-NAME An

 SD ATTR-NODE A6

[bin]

[bin]

ATTR-NAME size, for example, 256

[longa]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

 0 No-op. The specified node is not an element node.

−35 The procedure call did not specify a field.

40 The procedure did not find the XML document.

41 The specified node is not a valid node.

GET_ATTRIBUTES

Returns a list of attribute nodes for the specified element node. If the element node

does not have attributes or is not an element node, the procedure returns a no-op

result.

Use the GET_NODE_NAME procedure to get the attribute name.

Use the GET_NODE_VALUE procedure to get the attribute value of an attribute that

has one text value.

Use the GET_FIRST_CHILD and GET_NEXT_SIBLING procedures to get the subnodes of

each attribute in the list.

Syntax

INTEGER PROCEDURE GET_ATTRIBUTES
 (DOC_TAG, NODE, ATTR_LIST, LIST_LEN);
 INTEGER DOC_TAG, NODE, LIST_LEN;

 INTEGER ARRAY ATTR_LIST [0];

INTEGER PROCEDURE getAttributes
 (DOC_TAG, NODE, ATTR_LIST, LIST_LEN);

 VALUE DOC_TAG, NODE;
 INTEGER DOC_TAG, NODE, LIST_LEN;
 INTEGER ARRAY ATTR_LIST [*];

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–47

PROCEDURE GET-ATTRIBUTES (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

NODE identifies the element node.

ATTR_LIST is the list of attribute nodes.

LIST_LEN is the number of attributes in ATTR_LIST.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD NODE A6

 SD ATTR-LIST-SIZE N5

 SD ATTR-LIST An

 SD LIST-LEN N5

[bin]

[bin]

ATTR-LIST size, for example, 300 = 50*6

[longa]

ATTR-LIST is an array of A6 [bin]. In the above example, an ATTR-LIST-SIZE of 300

allows up to 50 node IDs to be returned.

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

 0 No-op. The element does not have attributes, or the node is not an

element.

−40 The procedure did not find the XML document.

−41 The specified node is not a valid node.

WEBAPPSUPPORT Library Interface for the XML Parser

6–48 3826 5286–007

GET_CHILD_NODES

Returns a list of child nodes for the specified parent node. If the specified node does

not have children or is a type of node that cannot have children, the procedure returns

a no-op result.

Syntax

INTEGER PROCEDURE GET_CHILD_NODES
 (DOC_TAG, NODE, NODE_LIST, LIST_LEN);

 INTEGER DOC_TAG, NODE, LIST_LEN;
 INTEGER ARRAY NODE_LIST [0];

INTEGER PROCEDURE getChildNodes

 (DOC_TAG, NODE, NODE_LIST, LIST_LEN);
 VALUE DOC_TAG, NODE;
 INTEGER DOC_TAG, NODE, LIST_LEN;

 INTEGER ARRAY NODE_LIST [*];

PROCEDURE GET-CHILD-NODES (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

NODE identifies the parent node.

NODE_LIST is the list of nodes.

LIST_LEN is the number of nodes in the NODE_LIST parameter.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD NODE A6

 SD NODE-LIST-SIZE N5

 SD NODE-LIST An

 SD LIST-LEN N5

[bin]

[bin]

NODE-LIST size, for example, 300 = 50*6

[longa]

NODE-LIST is an array of A6 [bin]. In the above example, a NODE-LIST-SIZE of 300

allows up to 50 node IDs to be returned.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–49

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

 0 No-op. The specified node cannot be a parent node or does not have any

children.

−40 The procedure did not find the XML document.

−41 The specified node is not a valid node.

GET_DOCUMENT_ELEMENT

Returns the document element of the XML document. The document element is the

top-level element of the document.

Syntax

INTEGER PROCEDURE GET_DOCUMENT_ELEMENT
 (DOC_TAG, ELEMENT_NODE);
 INTEGER DOC_TAG, ELEMENT_NODE;

INTEGER PROCEDURE getDocumentElement
 (DOC_TAG, ELEMENT_NODE);
 VALUE DOC_TAG;

 INTEGER DOC_TAG, ELEMENT_NODE;

PROCEDURE GET-DOCUMENT-ELEMENT (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

ELEMENT_NODE is the document top-level element. If an error occurs, null (-1) is

returned for ELEMENT_NODE.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD ELEMENT-NODE A6

[bin]

[bin]

WEBAPPSUPPORT Library Interface for the XML Parser

6–50 3826 5286–007

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

 0 No-op. The document does not have an element.

-40 The procedure did not find the XML document.

GET_DOCUMENT_ENCODING

Returns encoding information for the XML document. The encoding information is in

text format.

The topic “Specifying the Document Character Set“ in Section 5 lists the encoding

strings that specify character sets in XML documents.

Syntax

INTEGER PROCEDURE GET_DOCUMENT_ENCODING

 (DOC_TAG, ENCODING_TEXT);
 INTEGER DOC_TAG;
 EBCDIC ARRAY ENCODING_TEXT [0];

INTEGER PROCEDURE getDocumentEncoding
 (DOC_TAG, ENCODING_TEXT);
 VALUE DOC_TAG;

 INTEGER DOC_TAG;
 EBCDIC ARRAY ENCODING_TEXT [*];

PROCEDURE GET-DOCUMENT-ENCODING (GLB_PARAM);

 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

ENCODING_TEXT is the document encoding that the procedure returns. The text is in

the application character set and is the text value for the XML document header.

For example, the XML document header could contain the following:

 <?xml version="1.0" encoding="KOI8-R"?>

The ENCODING_TEXT parameter would contain KOI8-R.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–51

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD ENCODING-TEXT-SIZE N5

 SD ENCODING-TEXT An

[bin]

ENCODING-TEXT size, for example, 256

[longa]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 No-op. The document does not specify an encoding.

−40 The procedure did not find the XML document.

GET_DOCUMENT_NODE

Returns the document node of this XML document.

The document node is the root of the tree. The document element, which is the

top-level element of the document, is a child of the document node.

Syntax

INTEGER PROCEDURE GET_DOCUMENT_NODE

 (DOC_TAG, NODE);
 INTEGER DOC_TAG, NODE;

INTEGER PROCEDURE getDocumentNode

 (DOC_TAG, NODE);
 VALUE DOC_TAG;
 INTEGER DOC_TAG, NODE;

PROCEDURE GET-DOCUMENT-NODE (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

NODE is the returned document node. If an error occurs, the value 0 (zero) is returned.

WEBAPPSUPPORT Library Interface for the XML Parser

6–52 3826 5286–007

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD DOCUMENT-NODE A6

[bin]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

−40 The procedure did not find the XML document.

GET_DOCUMENT_VERSION

Returns the XML document version as a string. If the XML document does not declare

a version, the procedure returns 1.0.

Syntax

INTEGER PROCEDURE GET_DOCUMENT_VERSION

 (DOC_TAG, VERSION);
 INTEGER DOC_TAG;
 EBCDIC ARRAY VERSION [0];

INTEGER PROCEDURE getDocumentVersion
 (DOC_TAG, VERSION);
 VALUE DOC_TAG;

 INTEGER DOC_TAG;
 EBCDIC ARRAY VERSION [*];

PROCEDURE GET-DOCUMENT-VERSION (GLB_PARAM);

 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

VERSION is the document version in the application character set. For example,

VERSION can be 1.0.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–53

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD VERSION-SIZE N5

 SD VERSION An

[bin]

VERSION size, for example, 256

[longa]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 No-op. The document does not have a version specified.

-40 The procedure did not find the XML document.

GET_ELEMENTS_BY_TAGNAME

Returns a list of element nodes that are under the specified node. The element nodes

can be only those that match the name specified or can be all nodes. The specified

node can be the document node or an element node.

Searching is case-sensitive.

Syntax

INTEGER PROCEDURE GET_ELEMENTS_BY_TAGNAME

 (DOC_TAG, NODE, NAME, NODE_LIST, LIST_LEN);
 INTEGER DOC_TAG, NODE, LIST_LEN;
 EBCDIC ARRAY NAME [0];

 INTEGER ARRAY NODE_LIST [0];

INTEGER PROCEDURE getElementsByTagName
 (DOC_TAG, NODE, NAME, NODE_LIST, LIST_LEN);

 VALUE DOC_TAG, NODE;
 INTEGER DOC_TAG, NODE, LIST_LEN;
 EBCDIC ARRAY NAME [*];

 INTEGER ARRAY NODE_LIST [*];

PROCEDURE GET-ELEMENTS-BY-TAGNAME (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

NODE identifies the node under which the procedure searches.

WEBAPPSUPPORT Library Interface for the XML Parser

6–54 3826 5286–007

NAME is the node name to search for and must be in the application character set. If

NAME is a local name without a namespace prefix, then the procedure returns all

nodes with the name, which might be a qualified name with prefixes. If NAME is a

qualified name with a namespace prefix, then the procedure returns all nodes with the

qualified name that includes the namespace prefix.

If NAME is an empty string, all nodes under NODE are returned.

NODE_LIST is the returned list of nodes.

LIST_LEN is the number of nodes in the NODE_LIST parameter.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD NODE A6

 SD NAME-SIZE N5

 SD NAME An

 SD NODE-LIST-SIZE N5

 SD NODE-LIST An

 SD LIST-LEN N5

[bin]

[bin]

NAME size, for example, 256

[longa]

NODE-LIST size, for example, 300 = 50*6

[longa]

NODE-LIST is an array of A6 [bin]. In the above example, a NODE-LIST-SIZE of 300

allows up to 50 node IDs to be returned.

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 No-op. The document does not have any elements that match the tag name.

−40 The procedure did not find the XML document.

−41 The specified node is not a valid node.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–55

GET_FIRST_CHILD

Returns the node that is the first child of the specified parent node. If the parent node

does not have children, the procedure returns a no-op result.

Syntax

INTEGER PROCEDURE GET_FIRST_CHILD

 (DOC_TAG, PARENT, FIRST_CHILD);
 INTEGER DOC_TAG, PARENT, FIRST_CHILD;

INTEGER PROCEDURE getFirstChild

 (DOC_TAG, PARENT, FIRST_CHILD);
 VALUE DOC_TAG, PARENT;
 INTEGER DOC_TAG, PARENT, FIRST_CHILD;

PROCEDURE GET-FIRST-CHILD (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

PARENT identifies the parent node.

FIRST_CHILD is the first child of the parent.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD PARENT A6

 SD FIRST-CHILD A6

[bin]

[bin]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 No-op. The specified parent node is not a parent node or does not have any

children

−40 The procedure did not find the XML document.

−41 The specified parent node is not a valid node.

WEBAPPSUPPORT Library Interface for the XML Parser

6–56 3826 5286–007

GET_LAST_CHILD

Returns the node that is the last child of the specified parent node. If the parent node

does not have children, the procedure returns a no-op result.

Syntax

INTEGER PROCEDURE GET_LAST_CHILD

 (DOC_TAG, PARENT, LAST_CHILD);
 INTEGER DOC_TAG, PARENT, LAST_CHILD;

INTEGER PROCEDURE getLastChild

 (DOC_TAG, PARENT, LAST_CHILD);
 VALUE DOC_TAG, PARENT;
 INTEGER DOC_TAG, PARENT, LAST_CHILD;

PROCEDURE GET-LAST-CHILD (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

PARENT identifies the parent node.

LAST_CHILD is the last child of the parent.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD PARENT A6

 SD LAST-CHILD A6

[bin]

[bin]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 No-op. The specified parent node is not a parent node or does not have any

children.

−40 The procedure did not find the XML document.

−41 The specified parent node is not a valid node.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–57

GET_NEXT_ITEM

Returns the following:

• The next node that follows the specified node

• The type of the returned node

Use this procedure in an application to access nodes in the XML document in SAX

mode, that is, sequentially.

If the procedure reaches the end of the XML document, the procedure returns a no-op

result.

Syntax

INTEGER PROCEDURE GET_NEXT_ITEM

 (DOC_TAG, NODE, NEXT_NODE, NODE_TYPE, NODE_NAME);
 INTEGER DOC_TAG, NODE, NEXT_NODE, NODE_TYPE;
 EBCDIC ARRAY NODE_NAME

[0];

INTEGER PROCEDURE getNextItem
 (DOC_TAG, NODE, NEXT_NODE, NODE_TYPE, NODE_NAME);

 VALUE DOC_TAG, NODE;
 INTEGER DOC_TAG, NODE, NEXT_NODE, NODE_TYPE;
 EBCDIC ARRAY NODE_NAME

[*];

PROCEDURE GET-NEXT-ITEM (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

NODE identifies that precedes the returned node.

NEXT_NODE is the next node that follows the node in the NODE parameter.

NODE_TYPE is the type of node that the NEXT_NODE parameter specifies. For the end

of an element node, attribute node, or entity reference node with children, the

application should pass the end of Element Node, End of Attribute Node, or End of

Entity Reference Node value, respectively.

NODE_TYPE can be any value listed in the following table:

 Value Description

0 end of document (for input or output) or processing error (only for output)

1 element node

2 attribute node

3 text node

WEBAPPSUPPORT Library Interface for the XML Parser

6–58 3826 5286–007

 Value Description

4 CDATA section node

5 entity reference node

7 processing instruction node

8 comment node

9 document node (only for input)

10 document type node

13 end of element node

14 end of attribute node

15 end of entity reference node

The application needs to pass

• The element node value (13) to indicate that the node is the end of an element

node

• The end of attribute node value (14) to indicate that the node is the end of an

attribute node

• The end of entity reference node value (15) to indicate that the node is the end of

an entity reference node with children

NODE_NAME is the name of the node that the NEXT_NODE parameter indicates and is

in the application character set. The NAMESPACE_PROCESSING option in the

SET_XML_OPTION procedure controls the format of the returned name.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD NODE A6

 SD NEXT-NODE A6

 SD NODE-TYPE N5

 SD NODE-NAME-SIZE N5

 SD NODE-NAME An

[bin]

[bin]

[bin]

NODE-NAME size, for example, 256

[longa]

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–59

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 No-op. The procedure reached the end of the document.

−40 The procedure did not find the XML document.

−41 The specified node is not a valid node.

GET_NEXT_SIBLING

Returns the sibling node that immediately follows the specified node. If no sibling

node follows the specified node, the procedure returns a no-op result.

Syntax

INTEGER PROCEDURE GET_NEXT_SIBLING
 (DOC_TAG, NODE, NEXT);

 INTEGER DOC_TAG, NODE, NEXT;

INTEGER PROCEDURE getNextSibling
 (DOC_TAG, NODE, NEXT);

 VALUE DOC_TAG, NODE;
 INTEGER DOC_TAG, NODE, NEXT;

PROCEDURE GET-NEXT-SIBLING (GLB_PARAM);

 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

NODE identifies the node that the application specifies and that precedes the returned

node.

NEXT is the next sibling of the node that the NODE parameter identifies.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD NODE A6

 SD NEXT A6

[bin]

[bin]

[bin]

WEBAPPSUPPORT Library Interface for the XML Parser

6–60 3826 5286–007

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 No-op. No node follows the specified node, or the specified node is the

document node.

−40 The procedure did not find the XML document.

−41 The specified node is not a valid node.

GET_NODE_BY_XPATH

Returns the first node in the XML document, relative to the context node supplied,

that matches the XPATH expression.

Refer to Section 1, “XML Language (XPath) Support” for any limitations.

See also the GET_NODES_BY_XPATH procedure.

Syntax

INTEGER PROCEDURE GET_NODE_BY_XPATH
 (DOC_TAG, CONTEXT_NODE, XPATH, NODE);
 INTEGER DOC_TAG, CONTEXT_NODE, NODE;
 EBCDIC ARRAY XPATH [0];

INTEGER PROCEDURE getNodeByXPath
 (DOC_TAG, CONTEXT_NODE, XPATH, NODE);
 VALUE DOC_TAG, CONTEXT_NODE;
 INTEGER DOC_TAG, CONTEXT_NODE, NODE;
 EBCDIC ARRAY XPATH [*];

PROCEDURE GET-NODE-BY-XPATH (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

CONTEXT_NODE identifies the context node for starting the XPath expression

evaluation.

XPATH is the XPath expression as a string in the application character set. For

example (not including quote characters): "//*[@class='city']"

NODE is the returned node.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–61

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD CONTEXT-NODE A6

 SD XPATH-SIZE N5

 SD XPATH An

 SD NODE A6

[bin]

[bin]

XPATH size, for example, 256

[longa]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 The document does not have any nodes that match the expression.

−90 The expression is an invalid/unsupported Xpath expression.

GET_NODE_NAME

Returns the name of the specified node.

The following table specifies the kind of name returned for each node type.

Node Type Node Name

attribute <name of attribute>

CDATA section #cdata-section

comment #comment

document #document

document type #DTD

element <tag name>

entity reference <name of entity referenced>

processing instruction <target>

text #text

Syntax

INTEGER PROCEDURE GET_NODE_NAME

 (DOC_TAG, NODE, NAMESPACE, NODE_NAME);
 INTEGER DOC_TAG, NODE;
 EBCDIC ARRAY NAMESPACE, NODE_NAME [0];

WEBAPPSUPPORT Library Interface for the XML Parser

6–62 3826 5286–007

INTEGER PROCEDURE getNodeName
 (DOC_TAG, NODE, NAMESPACE, NODE_NAME);

 VALUE DOC_TAG, NODE;
 INTEGER DOC_TAG, NODE;
 EBCDIC ARRAY NAMESPACE, NODE_NAME [*];

PROCEDURE GET-NODE-NAME (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

NODE identifies the node the name of which the procedure returns.

NAMESPACE is the Uniform Resource Identifier (URI) for the node namespace and is

returned in the application character set. If this URI is not declared for an element or

attribute node, the default string is returned. The default is

Ǵ

For a node that does not have a name that includes a namespace, the NAMESPACE

parameter is returned null.

NODE_NAME is the node name and is returned in the application character set. The

NAMESPACE_PROCESSING option of the SET_XML_OPTION procedure controls the

format of the NODE_NAME parameter.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD NODE A6

 SD NAMESPACE-SIZE N5

 SD NAMESPACE An

 SD NODE-NAME-SIZE N5

 SD NODE-NAME An

[bin]

[bin]

NAMESPACE size, for example, 256

[longa]

NODE-NAME size, for example, 256

[longa]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

−40 The procedure did not find the XML document.

−41 The specified node is not a valid node.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–63

GET_NODES_BY_XPATH

Returns the set of nodes in the XML document, relative to the context node supplied,

that matches the XPATH expression.

Refer to Section 1, “XML Language (XPath) Support” for any limitations.

See also the GET_NODE_BY_XPATH procedure.

Syntax

INTEGER PROCEDURE GET_NODES_BY_XPATH

 (DOC_TAG, CONTEXT_NODE, XPATH, NODE_LIST, LIST_LEN);
 INTEGER DOC_TAG, CONTEXT_NODE, LIST_LEN;
 EBCDIC ARRAY XPATH [0];

 INTEGER ARRAY NODE_LIST [0];

INTEGER PROCEDURE getNodesByXPath
 (DOC_TAG, CONTEXT_NODE, XPATH, NODE_LIST, LIST_LEN);

 VALUE DOC_TAG, CONTEXT_NODE;
 INTEGER DOC_TAG, CONTEXT_NODE, LIST_LEN;
 EBCDIC ARRAY XPATH [*];

 INTEGER ARRAY NODE_LIST [*];

PROCEDURE GET-NODES-BY-XPATH (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

CONTEXT_NODE identifies the context node for starting the XPath expression

evaluation.

XPATH is the XPath expression as a string in the application character set.

NODE_LIST is the returned list of nodes. Its size might be increased if needed to hold

the list of nodes.

LIST_LEN is the number of nodes in the NODE_LIST parameter.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD CONTEXT-NODE A6

 SD XPATH-SIZE N5

 SD XPATH An

 SD NODE-LIST-SIZE N5

 SD NODE-LIST An

 SD LIST-LEN N5

[bin]

[bin]

XPATH size, for example, 256

[longa]

NODE-LIST size, for example, 300 = 50*6

[longa]

WEBAPPSUPPORT Library Interface for the XML Parser

6–64 3826 5286–007

NODE-LIST is an array of A6 [bin]. In the above example, a NODE-LIST-SIZE of 300

allows up to 50 node IDs to be returned.

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 The document does not have any nodes that match the expression.

−90 The expression is an invalid/unsupported Xpath expression.

GET_NODE_TYPE

Returns the node type of the specified node.

Syntax

INTEGER PROCEDURE GET_NODE_TYPE
 (DOC_TAG, NODE, NODE_TYPE);

 INTEGER DOC_TAG, NODE, NODE_TYPE;

INTEGER PROCEDURE getNodeType
 (DOC_TAG, NODE, NODE_TYPE);

 VALUE DOC_TAG, NODE;
 INTEGER DOC_TAG, NODE, NODE_TYPE;

PROCEDURE GET-NODE-TYPE (GLB_PARAM);

 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

NODE identifies the node for which the procedure returns the node type.

NODE_TYPE is the returned node type and can be any value in the following table.

Value Node Type

1 element

2 attribute

 3 text node

 4 CDATA section node

 5 entity reference node

 7 processing instruction

node

 8 comment node

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–65

 9 document

10 document type

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD NODE A6

 SD NODE-TYPE N5

[bin]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

−40 The procedure did not find the XML document.

−41 The specified node is not a valid node.

GET_NODE_VALUE

Returns the value of a node. The node value of text, comment, cdata section, and

processing instruction nodes is their text content.

The node value of an attribute node is returned as follows:

• If the attribute node only contains one text node, the value of that text node is

returned as the node value.

• If the attribute node contains multiple text and entity reference nodes, a no-op

result is returned. The application should then check for children of the attribute

node by using a procedure such as the GET_CHILD_NODES procedure.

• All other nodes have null as their value, which is indicated by returning a no-op

result (zero) and a zero for the value length.

Syntax

 INTEGER PROCEDURE GET_NODE_VALUE
 (DOC_TAG, NODE, NODE_VALUE, VALUE_START,

VALUE_LENGTH);
 INTEGER DOC_TAG, NODE, VALUE_START, VALUE_LENGTH;
 EBCDIC ARRAY NODE_VALUE [0];

INTEGER PROCEDURE getNodeValue
 (DOC_TAG, NODE, NODE_VALUE, VALUE_START,
VALUE_LENGTH);

 VALUE DOC_TAG, NODE, VALUE_START;

WEBAPPSUPPORT Library Interface for the XML Parser

6–66 3826 5286–007

 INTEGER DOC_TAG, NODE, VALUE_START, VALUE_LENGTH;
 EBCDIC ARRAY NODE_VALUE [*];

PROCEDURE GET-NODE-VALUE (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

NODE identifies the node the value of which the procedure returns.

NODE_VALUE is the returned node value in the application character set.

• The node value of a text, comment, CDATA section, or processing instruction

node is the text in the node.

• If an attribute node contains only one text node, the procedure returns the text in

the node.

• If an attribute node contains multiple text and entity reference nodes, the

procedure returns a no-op result (zero). You can use a procedure such as the

GET_CHILD_NODES procedure in an application to check for children of the

attribute node.

• The value of all other nodes is null. For these nodes, the procedure returns a no-op

result and a zero for the VALUE_LENGTH parameter.

VALUE_START is a zero-based offset into the NODE_VALUE parameter and specifies

where the node value is returned.

VALUE_LENGTH is the length of the NODE_VALUE parameter.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD NODE A6

 SD NODE-VALUE-SIZE N5

 SD NODE-VALUE An

 SD VALUE-START N5

 SD VALUE-LEN N5

[bin]

[bin]

NODE-VALUE size, for example, 2048

[longa]

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–67

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 No-op. The attribute node has more than one child node, or the specified

node is a type that does not have a value.

−40 The procedure did not find the XML document.

−41 The specified node is not a valid node.

GET_PARENT_NODE

Returns the node that is the parent of the specified node. If the specified node does

not have a parent, the procedure returns a no-op result.

Syntax

INTEGER PROCEDURE GET_PARENT_NODE
 (DOC_TAG, NODE, PARENT);
 INTEGER DOC_TAG, NODE, PARENT;

INTEGER PROCEDURE getParentNode
 (DOC_TAG, NODE, PARENT);
 VALUE DOC_TAG, NODE;

 INTEGER DOC_TAG, NODE, PARENT;

PROCEDURE GET-PARENT-NODE (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

NODE identifies the node the parent of which the procedure returns.

PARENT is the parent of the node that the NODE parameter specifies.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD NODE A6

 SD PARENT A6

[bin]

[bin]

[bin]

WEBAPPSUPPORT Library Interface for the XML Parser

6–68 3826 5286–007

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 No-op. The specified node does not have a parent node.

-40 The procedure did not find the XML document.

-41 The specified node is not a valid node.

GET_PREVIOUS_SIBLING

Returns the sibling node that immediately precedes the specified node. If no sibling

node precedes the specified node, the procedure returns a no-op result.

Syntax

INTEGER PROCEDURE GET_PREVIOUS_SIBLING
 (DOC_TAG, NODE, PREVIOUS);

 INTEGER DOC_TAG, NODE, PREVIOUS;

INTEGER PROCEDURE getPreviousSibling
 (DOC_TAG, NODE, PREVIOUS);

 VALUE DOC_TAG, NODE;
 INTEGER DOC_TAG, NODE, PREVIOUS;

PROCEDURE GET-PREVIOUS-SIBLING (GLB_PARAM);

 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

NODE identifies the node that follows the returned node.

PREVIOUS is the previous sibling of the node that the NODE parameter identifies.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD NODE A6

 SD PREVIOUS A6

[bin]

[bin]

[bin]

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–69

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 No-op. No node precedes the specified node, or the specified node is the

document node.

-40 The procedure did not find the XML document.

-41 The specified node is not a valid node.

GET_XML_DOCUMENT

Retrieves the XML document, which the application might have modified, but does not

release the document from WEBAPPSUPPORT memory.

Based on the setting of the NAMESPACE_PROCESSING option setting in the

SET_XML_OPTION procedure namespace information is put into the generated XML

document.

If the XML declaration for the XML document specifies a character encoding string

that the procedure can identify, the procedure uses the specified encoding to encode

the content of the document. If the XML declaration does not specify an encoding

string, the procedure uses UTF-8 encoding for the document. If the XML declaration

specifies an encoding string that the procedure cannot identify, the procedure returns

an error.

See the topic “Specifying the Document Character Set” for information about

specifying the character set for the document.

If the document has element and attribute nodes with names that include namespace

prefixes, the generated XML document contains the prefixes.

If the application identifies a file as the destination of the document, the procedure

creates a stream file with the following attributes:

 BLOCKSTRUCTURE = FIXED
 EXTMODE = ASCII
 FILEORGANIZATION = NOTRESTRICTED
 FILESTRUCTURE = STREAM
 FILETYPE = DATA
 FRAMESIZE = 8
 MAXRECSIZE = 1
 MINRECSIZE = 1
 SECURITYTYPE = PRIVATE
 SECURITYUSE = IO

You can override the preceding attribute values by setting attributes in the

FILE_ATTRIBUTES option of the SET_XML_OPTION procedure.

WEBAPPSUPPORT Library Interface for the XML Parser

6–70 3826 5286–007

The application can identify a permanent directory as the document destination, if the

directory is part of a directory structure that already exists.

Syntax

INTEGER PROCEDURE GET_XML_DOCUMENT
 (DOC_TAG, DEST_TYPE, OUT_FORMAT, DEST, DEST_START, DEST_LEN

);
 INTEGER DOC_TAG, DEST_TYPE, OUT_FORMAT, DEST_START, DEST_LEN;
 EBCDIC ARRAY DEST [0];

INTEGER PROCEDURE getXMLDocument
 (DOC_TAG, DEST_TYPE, OUT_FORMAT, DEST, DEST_START, DEST_LEN
);

 VALUE DOC_TAG, DEST_TYPE, OUT_FORMAT, DEST_START;
 INTEGER DOC_TAG, DEST_TYPE, OUT_FORMAT, DEST_START, DEST_LEN;
 EBCDIC ARRAY DEST [*];

PROCEDURE GET-XML-DOCUMENT (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

DEST_TYPE identifies the type of destination for the document and can be either of

the following values:

• 1= When the procedure returns, the DEST parameter contains the XML document.

The maximum size of an XML document returned is 134 MB.

• 2= When the application calls the procedure, the DEST parameter contains the

MCP file name to which the procedure writes the XML document. The file name

can be in display format or pathname format. See the FILENAME_FORMAT option

in the SET_XML_OPTION procedure. If the file exists before the application calls

the procedure, the procedure overwrites the file.

OUT_FORMAT identifies the output format of the XML document and can be either of

the following values:

• 1= A carriage return and a line feed are at the end of each nontext node. Each line

is indented the number of spaces that the INDENT option in the SET_XML_OPTION

procedure specifies.

• 2= No carriage return, line feed, or white space is between nodes.

• 3= Canonical format. See the SET_XML_OPTION procedure, CANONICAL_METHOD

option.

DEST is the array containing destination information.

If the DEST_TYPE parameter is 1, DEST contains the XML document.

If the DEST_TYPE parameter is 2, DEST identifies the name of the MCP file that

contains the document, and this name is in the application character set. The

SET_TRANSLATION procedure sets the application character set.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–71

DEST_START is a zero-based offset into DEST and indicates where the procedure

returns the XML document.

DEST_LEN, in the procedure return, specifies the length in bytes of the XML

document. If the DEST_TYPE parameter is 2, then DEST_LEN, in the procedure call,

specifies the length in bytes of the DEST parameter. If DEST_LEN is zero, DEST

contains a string that is terminated by blanks or a null byte.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD DEST-TYPE N5

 SD OUT-FORMAT N5

 SD DEST-SIZE N5

 SD DEST An

 SD DEST-START N5

 SD DEST-LEN N12

[bin]

DEST size, for example, 2048

[longa]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

 0 No-op, for any of the following reasons:

• The destination length is invalid.

• The WEBAPPSUPPORT library does not support the destination type.

• The WEBAPPSUPPORT library does not support the output format.

• The document does not have children.

-13 An attribute error occurred while setting the file name.

−25 The procedure could not write to the file.

−40 The procedure did not find the XML document.

−46 The WEBAPPSUPPORT library does not support the XML document

encoding.

−64 Maximum exceeded.

GET_XML_RECORD

Retrieves data from the XML document into an application’s record structure. The

application specifies in this call the layout of the record structure and the data to be

retrieved from the XML document.

WEBAPPSUPPORT Library Interface for the XML Parser

6–72 3826 5286–007

Data is the text node that is the first child of the element. If you map data to a number,

and the number is invalid, zero is placed in the record field.

Note: The mapping of XML data into a record structure may not work for all XML

documents. This procedure is designed for simple XML documents with relatively

flat structures.

Syntax

INTEGER PROCEDURE GET_XML_RECORD
 (DOC_TAG, NODE, MAPPING, RECORD);

 INTEGER DOC_TAG, NODE;
 EBCDIC ARRAY MAPPING, RECORD [0];

INTEGER PROCEDURE getXMLRecord

 (DOC_TAG, NODE, MAPPING, RECORD);
 VALUE DOC_TAG, NODE;
 INTEGER DOC_TAG, NODE;

 EBCDIC ARRAY MAPPING, RECORD [*];

PROCEDURE GET-XML-RECORD (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

NODE identifies the node under which the procedure searches. It must be the

document node or an element.

MAPPING is a structured layout that identifies the XML elements containing data that

should be placed into RECORD. See “XML Mapping Structure” for more information.

RECORD is the parameter that receives the mapped data.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD NODE A6

 SD MAPPING-SIZE N5

 SD MAPPING An

 SD RECORD-SIZE N5

 SD RECORD An

[bin]

[bin]

MAPPING size, for example, 256

[longa]

RECORD size, for example, 2048

[longa]

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–73

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

 0 No-op, no matching data was found, or the NODE parameter is not an

element or the document node.

-91 The MAPPING parameter contains unsupported constructs.

HAS_ATTRIBUTE

Determines whether the element node has the specified attribute.

Attributes names are case-sensitive.

Syntax

INTEGER PROCEDURE HAS_ATTRIBUTE
 (DOC_TAG, NODE, ATTR_NAME);
 INTEGER DOC_TAG, NODE;

 EBCDIC ARRAY ATTR_NAME [0];

INTEGER PROCEDURE hasAttribute
 (DOC_TAG, NODE, ATTR_NAME);

 VALUE DOC_TAG, NODE;
 INTEGER DOC_TAG, NODE;
 EBCDIC ARRAY ATTR_NAME [*];

PROCEDURE HAS-ATTRIBUTE (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

NODE identifies the element node.

ATTR_NAME is the attribute name in the application character set. If ATTR_NAME is a

local name without a namespace prefix, then the procedure returns the first attribute

with the name, which might be a qualified name with prefixes. If ATTR_NAME is a

qualified name with a namespace prefix, then the procedure returns the first attribute

with the qualified name that includes the namespace prefix.

WEBAPPSUPPORT Library Interface for the XML Parser

6–74 3826 5286–007

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD NODE A6

 SD ATTR-NAME-SIZE N5

 SD ATTR-NAME An

[bin]

[bin]

ATTR-NAME size, for example, 256

[longa]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

 0 No-op. The specified node is not an element node.

-35 The procedure call did not specify a field.

-40 The procedure did not find the XML document.

-41 The specified node is not a valid node.

INSERT_CHILD_BEFORE

Inserts a child node and the tree of which the child is the root under the specified

parent node and immediately before another child.

If the application specifies null (-1) for the other child, then the child to be inserted

becomes the last subtree of the parent. You can also use the APPEND_CHILD

procedure in the application to do that.

If the child to be inserted is already a child of another node, the procedure detaches

this child before attaching this child to the new parent.

If the other child is not a child of the parent, the procedure returns a no-op result.

You cannot use this procedure to append attributes to elements.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–75

Syntax

INTEGER PROCEDURE INSERT_CHILD_BEFORE
 (DOC_TAG, PARENT, REF_CHILD, NEW_CHILD);

 INTEGER DOC_TAG, PARENT, REF_CHILD, NEW_CHILD;

INTEGER PROCEDURE insertChildBefore
 (DOC_TAG, PARENT, REF_CHILD, NEW_CHILD);

 VALUE DOC_TAG, PARENT, REF_CHILD, NEW_CHILD;
 INTEGER DOC_TAG, PARENT, REF_CHILD, NEW_CHILD;

PROCEDURE INSERT-CHILD-BEFORE (GLB_PARAM);

 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

PARENT identifies the parent node.

REF_CHILD identifies the child node before which the procedure inserts a child.

NEW_CHILD identifies the child node to insert.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD PARENT A6

 SD REF-CHILD A6

 SD NEW-CHILD A6

[bin]

[bin]

[bin]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

 0 No-op. The child before which the procedure is to insert a child is not a child

of the parent, or the child to insert is an attribute node.

−40 The procedure did not find the XML document.

−41 A specified node is not a valid node.

−42 The specified parent node is not a parent.

−43 The procedure cannot attach this node to the parent.

−44 The document already has an element.

−45 The document already has a DTD.

WEBAPPSUPPORT Library Interface for the XML Parser

6–76 3826 5286–007

PARSE_JSON_TO_XML

Converts JSON text to a parsed XML document stored in the WEBAPPSUPPORT

library.

See also the procedure CONVERT_JSON_TO_XML_DOCUMENT.

Syntax

INTEGER PROCEDURE PARSE_JSON_TO_XML (SOURCE_TYPE, SOURCE,

SOURCE_START, SOURCE_LEN, DOC_TAG, NODE);
INTEGER SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 DOC_TAG, NODE; EBCDIC ARRAY SOURCE [0];

INTEGER PROCEDURE parseJSONtoXML (SOURCE_TYPE, SOURCE,
SOURCE_START, SOURCE_LEN, DOC_TAG, NODE);
VALUE SOURCE_TYPE, SOURCE_START, SOURCE_LEN; INTEGER

SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 DOC_TAG, NODE; EBCDIC ARRAY SOURCE [*];

PROCEDURE PARSE-JSON-TO-XML (GLB_PARAM);

 EBCDIC ARRAY GLB_PARAM [0];

Parameters

SOURCE_TYPE identifies the type of source for the XML document.

If the value is 1, the SOURCE parameter contains the XML document to be parsed.

If the value is 2, the SOURCE parameter contains the MCP file name of the JSON text

to be parsed. The name is in display format or pathname format. See the

FILENAME_FORMAT option in the SET_XML_OPTION procedure.

If the value is 3, the SOURCE parameter contains an HTTP URL or JPM server file

system identifier that identifies the JSON document to be parsed.

SOURCE is the array containing source information. If the SOURCE_TYPE parameter is

2 or 3, SOURCE is coded in the application character set. If the SOURCE_TYPE

parameter is 1, the document is coded in UTF-8.

SOURCE_START is a zero-based offset into the SOURCE parameter and indicates

where the supplied information starts.

SOURCE_LEN is the length in bytes of the data in the SOURCE parameter. If zero,

SOURCE contains a string that is terminated by blanks or a null byte.

DOC_TAG can have a value in the procedure call or return as follows:

• In the procedure call, the application can set DOC_TAG to either of the following:

− 0 (zero) to indicate that the application does not currently have a document

parsed or to request that a currently parsed document not be released

− A document tag to release the document before parsing the new document

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–77

• In the procedure return, if the procedure can parse the document DOC_TAG

identifies the parsed document.

NODE is the returned document node.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD SOURCE-TYPE N5

 SD SOURCE-SIZE N5

 SD SOURCE An

 SD SOURCE-START N5

 SD SOURCE-LEN N5

 SD DOC-TAG A6

 SD NODE A6

SOURCE size, for example, 10000

[longa]

[bin]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

 0 No-op. WEBAPPSUPPORT already has the maximum number of

XML documents.

-11 The input file was not found or is not available.

-12 The input file was too long to be processed.

-13 An attribute error occurred while setting the file name.

-14 An I/O error occurred while reading the input file.

-16 A file character set was not available. The CENTRALSUPPORT

library and the CCSFILE data file installed on the system do not

support the EXTMODE value for the file.

-47 The SOURCE_START offset was invalid, or the SOURCE_TYPE

value is not supported.

-48 The procedure cannot open a socket to JPM.

-49 The procedure cannot write to the JPM.

-50 The procedure cannot read from the JPM.

-51 One or more parsing errors occurred.

-52 The URL in the SOURCE parameter is not available.

-54 JPM is not configured.

-56 The procedure cannot create another node because the

maximum number of nodes already exists.

WEBAPPSUPPORT Library Interface for the XML Parser

6–78 3826 5286–007

PARSE_XML_DOCUMENT

Parses the XML document. After the document is parsed, the application can access

or modify the document.

The application character set when the document is created in WEBAPPSUPPORT is

the character set that any application must use with the document. The

SET_TRANSLATION procedure sets this character set.

See the SET_XML_OPTION procedure, (PRESERVE_WHITESPACE) option, for control

over the whitespace when parsing an XML document.

XML Input Files

The PARSE_XML_DOCUMENT procedure can parse XML documents in stream files.

The procedure sets the DEPENDENTINTMODE of the input file to TRUE. Consequently,

the procedure does not translate the file contents into the document character set,

which must be an ASCII-based character set. The XML document must be encoded in

the document character set.

Syntax

INTEGER PROCEDURE PARSE_XML_DOCUMENT
 (SOURCE_TYPE, SOURCE, SOURCE_START, SOURCE_LEN,
 DOC_TAG, NODE);

 INTEGER SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 DOC_TAG, NODE;
 EBCDIC ARRAY SOURCE [0];

INTEGER PROCEDURE parseXMLDocument
 (SOURCE_TYPE, SOURCE, SOURCE_START, SOURCE_LEN,
 DOC_TAG, NODE);

 VALUE SOURCE_TYPE, SOURCE_START, SOURCE_LEN;
 INTEGER SOURCE_TYPE, SOURCE_START, SOURCE_LEN,
 DOC_TAG, NODE;

 EBCDIC ARRAY SOURCE [*];

PROCEDURE PARSE-XML-DOCUMENT (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–79

Parameters

SOURCE_TYPE identifies the type of source for the XML document.

If the value is 1, the SOURCE parameter contains the XML document to be parsed.

If the value is 2, the SOURCE parameter contains the MCP file name of the XML

document to be parsed. The name is in display format or pathname format. See the

FILENAME_FORMAT option in the SET_XML_OPTION procedure.

If the value is 3, the SOURCE parameter contains an HTTP URL or JPM server file

system identifier that identifies the XML document to be parsed.

SOURCE is the array containing source information. If the SOURCE_TYPE parameter is

2 or 3, SOURCE is coded in the application character set. If the SOURCE_TYPE

parameter is 1, the document is coded in the document character set. The

SET_TRANSLATION procedure sets the application character set.

The XML document must be encoded in an ASCII-based character set, for example,

us-ascii, UTF-8 or iso-8859-1.

SOURCE_START is a zero-based offset into the SOURCE parameter and indicates

where the supplied information starts.

SOURCE_LEN is the length in bytes of the data in the SOURCE parameter. If zero,

SOURCE contains a string that is terminated by blanks or a null byte.

DOC_TAG can have a value in the procedure call or return:

• In the procedure call, the application can set DOC_TAG to either of the following:

− 0 (zero), to indicate that the application does not currently have a document

parsed or to request that a currently parsed document not be released

− A document tag to release the document before parsing the new document

• In the procedure return, DOC_TAG identifies the parsed document, if the

procedure can parse the document.

NODE is the returned document node.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD SOURCE-TYPE N5

 SD SOURCE-SIZE N5

 SD SOURCE An

 SD SOURCE-START N5

 SD SOURCE-LEN N5

 SD DOC-TAG A6

 SD NODE A6

SOURCE size, for example, 10000

[longa]

[bin]

[bin]

WEBAPPSUPPORT Library Interface for the XML Parser

6–80 3826 5286–007

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

 0 No-op. WEBAPPSUPPORT already has the maximum number of

XML documents.

-11 The input file was not found or not available.

-12 The input file was too long to be processed.

-13 An attribute error occurred while setting file name.

-14 An I/O error occurred while reading the input file.

-16 A file character set was not available. The CENTRALSUPPORT

library and the CCSFILE data file installed on the system do not

support the EXTMODE value for the file.

-47 The SOURCE_START offset was invalid, or the SOURCE_TYPE

value is not supported.

-48 The procedure cannot open a socket to JPM.

-49 The procedure cannot write to the JPM.

-50 The procedure cannot read from the JPM.

-51 One or more parsing errors occurred.

-52 The URL in the SOURCE parameter is not available.

-54 JPM not configured.

-56 The procedure cannot create another node because the

maximum number of nodes already exists.

RELEASE_XML_DOCUMENT

Releases the XML document from WEBAPPSUPPORT memory. After this procedure

completes, the application cannot use the document.

Syntax

INTEGER PROCEDURE RELEASE_XML_DOCUMENT

 (DOC_TAG);
 INTEGER DOC_TAG;

INTEGER PROCEDURE releaseXMLDocument

 (DOC_TAG);
 INTEGER DOC_TAG;

PROCEDURE RELEASE_XML_DOCUMENT (GLB_PARAM);

 EBCDIC ARRAY GLB_PARAM [0];

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–81

Parameters

DOC_TAG identifies the XML document. If the procedure successfully releases the

document, the procedure returns the DOC_TAG parameter with the value 0 (zero).

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 DOC_TAG does not represent a document, or the document was already

released.

1 The procedure released the document.

REMOVE_NODE

Removes the node and the children of the node, if the node has children, from the

document. After this procedure completes, applications cannot use the node.

If the node is the document node or not a valid node, the procedure returns a no-op

result.

Syntax

INTEGER PROCEDURE REMOVE_NODE
 (DOC_TAG, NODE);

 INTEGER DOC_TAG, NODE;

INTEGER PROCEDURE removeNode
 (DOC_TAG, NODE);

 VALUE DOC_TAG, NODE;
 INTEGER DOC_TAG, NODE;

PROCEDURE REMOVE_NODE (GLB_PARAM);

 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

NODE identifies the node to be removed. The procedure sets this parameter to 0

(zero) if the procedure successfully removes the node.

WEBAPPSUPPORT Library Interface for the XML Parser

6–82 3826 5286–007

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD NODE A6

[bin]

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 No-op. The node is the document node or not a valid node.

−40 The procedure did not find the XML document.

SET_ATTRIBUTE

Adds or updates an attribute in a specified element node. The attribute value supplied

must be a simple text string. If the attribute value is null, the procedure removes the

attribute from the node.

If the attribute value is to contain text and entity reference nodes, code the application

so that it does the following:

1. Uses the CREATE_ATTRIBUTE_NODE procedure to create the attribute node

2. Uses the CREATE_TEXT_NODE procedure to create the text nodes

3. Uses the CREATE_ENTITYREF_NODE procedure to create the entity reference

nodes

4. Uses the APPEND_CHILD or INSERT_CHILD_BEFORE procedure to attach the text

and entity reference nodes to the attribute node

5. Uses the APPEND_CHILD procedure to attach the attribute node to the element

node

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–83

Syntax

INTEGER PROCEDURE SET_ATTRIBUTE
 (DOC_TAG, NODE, NAMESPACE, ATTR_NAME, ATTR_VALUE);

 INTEGER DOC_TAG, NODE;
 EBCDIC ARRAY NAMESPACE, ATTR_NAME, ATTR_VALUE
[0];

INTEGER PROCEDURE setAttribute
 (DOC_TAG, NODE, NAMESPACE, ATTR_NAME, ATTR_VALUE);
 VALUE DOC_TAG, NODE;

 INTEGER DOC_TAG, NODE;
 EBCDIC ARRAY NAMESPACE, ATTR_NAME, ATTR_VALUE
[*];

PROCEDURE SET-ATTRIBUTE (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

NODE identifies the element node.

NAMESPACE is the attribute namespace, as a Uniform Resource Identifier (URI, in the

application character set. An example of a NAMESPACE value is

http://somedomain/mynamespace

ATTR_NAME is the qualified name of the attribute. The name is in the application

character set and case-sensitive. If the name is specified with prefix text before a

colon (:), the prefix is a namespace prefix. The procedure does not validate the prefix

against an actual namespace declaration in an element that encloses the node.

ATTR_VALUE is the attribute value in the application character set.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD NODE A6

 SD NAMESPACE-SIZE N5

 SD NAMESPACE An

 SD ATTR-NAME-SIZE N5

 SD ATTR-NAME An

 SD ATTR-VALUE-SIZE N5

 SD ATTR-VALUE An

[bin]

[bin]

NAMESPACE size, for example, 256

[longa]

ATTR-NAME size, for example, 256

[longa]

ATTR-VALUE size, for example, 256

[longa]

http://somedomain/mynamespace

WEBAPPSUPPORT Library Interface for the XML Parser

6–84 3826 5286–007

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 No-op. The specified node is not an element node, or the procedure did not find

the attribute.

−35 The procedure call did not specify a field.

−40 The procedure did not find the XML document.

−41 The element node is not a valid node.

SET_NODE_VALUE

Sets the value of a node. The value can replace the current value.

The format of the value that the application supplies depends on the node type. For a

description of the value format for each node type, see the topics for following

procedures:

• CREATE_CDATA_NODE

• CREATE_COMMENT_ NODE

• CREATE_DOCTYPE_NODE

• CREATE_PI_NODE

• CREATE_TEXT_NODE

If the node is a type that does not define a value or if the value length is less than 1,

the procedure returns a no-op result.

The SET_NODE_VALUE procedure cannot set an attribute value. To set an attribute

value of an element node, use one of the following:

• The SET_ATTRIBUTE procedure

• The CREATE_ATTRIBUTE_NODE procedure to create an attribute node

• The CREATE_TEXT_NODE procedure, CREATE_ENTITYREF_NODE procedure, or

both procedures to create the attribute value

• The APPEND_CHILD or INSERT_CHILD_BEFORE procedure to attach the new

attribute value node or nodes to the attribute

• The APPEND_CHILD or INSERT_CHILD_BEFORE procedure to attach the attribute

node to an element node

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–85

Syntax

INTEGER PROCEDURE SET_NODE_VALUE
 (DOC_TAG, NODE, NODE_VALUE, VALUE_LENGTH);

 INTEGER DOC_TAG, NODE, VALUE_LENGTH;
 EBCDIC ARRAY NODE_VALUE [0];

INTEGER PROCEDURE setNodeValue

 (DOC_TAG, NODE, NODE_VALUE, VALUE_LENGTH);
 VALUE DOC_TAG, NODE;
 INTEGER DOC_TAG, NODE, VALUE_LENGTH;

 EBCDIC ARRAY NODE_VALUE [*];

PROCEDURE SET-NODE-VALUE (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

DOC_TAG identifies the XML document.

NODE identifies the node.

NODE_VALUE is the node value in the application character set.

VALUE_LENGTH is the length of the NODE_VALUE parameter.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD DOC-TAG A6

 SD NODE A6

 SD NODE-VALUE-SIZE N5

 SD NODE-VALUE An

 SD VALUE-LENGTH N5

[bin]

[bin]

NODE-VALUE size, for example, 2048

[longa]

Possible Results

In addition to the standard results, these possible values can be returned.

Value Description

 0 No-op. The procedure did not supply a value, or the specified node type

does not have a value that an application can set.

−40 The procedure did not find the XML document.

−41 The specified node is not a valid node.

WEBAPPSUPPORT Library Interface for the XML Parser

6–86 3826 5286–007

SET_XML_OPTION

Sets options for processing of XML documents for the application.

Syntax

INTEGER PROCEDURE SET_XML_OPTION

 (OPTION, OPTION_VALUE, OPTION_STRING);
 INTEGER OPTION, OPTION_VALUE;
 EBCDIC ARRAY OPTION_STRING [0];

INTEGER PROCEDURE setXMLOption
 (OPTION, OPTION_VALUE, OPTION_STRING);
 VALUE OPTION, OPTION_VALUE;

 INTEGER OPTION, OPTION_VALUE;
 EBCDIC ARRAY OPTION_STRING [*];

PROCEDURE SET-XML-OPTION (GLB_PARAM);

 EBCDIC ARRAY GLB_PARAM [0];

Parameters

OPTION is the option being set. The following options are supported.

1 (VALIDATE)

Specifies whether or not the JPM validates the XML document against a DTD or

schema when parsing. If the JPM finds an error in the document, the XML Parser

returns an error to the application.

If the value is 0, this option does not validate the document. This value is the default.

If the value is 1, this option validates the document. The document must specify a DTD

or schema.

2 (NAMESPACE_PROCESSING)

Controls how the XML Parser handles namespaces.

If the value is 1, this option returns namespace prefixes with element and attribute

names. This value is the default.

If the value is 2, this option returns namespace URLs as replacements for prefixes in

element and attribute names.

If the value is 3, this option removes namespace prefixes from returned element and

attribute names.

3 (EXPAND_ENTITY_REFERENCE)

Specifies whether the XML Parser replaces entity references with entities in a parsed

document for an application.

If the value is 0, this option does not replace general entities. This value is the default.

If the value is 1, this option replaces general entities.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–87

4 (EXTERNAL_GENERAL_ENTITIES)

Specifies whether the XML Parser places external general entities to be parsed in the

entity reference tree.

If the value is 0, this option does not put external general entities in the tree.

If the value is 1, this option puts general entities in the tree. This value is the default.

5 (LOCK_DOCUMENT)

Specifies whether access to documents is locked.

If the value is 0, this option does not lock access to XML documents that are created

or parsed after this procedure is executed. This value is the default.

If the value is 1, this option locks access to XML documents that are created or parsed

after this procedure is executed. This value is needed if an application might access a

document after another application changes the document.

6 (SCHEMA_SUPPORT)

Specifies whether the XML Parser uses schemas to validate XML document and to

define entities.

If the value is 0, the XML Parser does not support schemas.

If the value is 1, the XML Parser supports schemas. This value is the default.

7 (SCHEMA_FULL_CHECKING)

Specifies whether the XML Parser supports full schema constraint checking.

If the value is 0, the XML Parser does not support full schema constraint checking.

This value is the default.

If the value is 1, the XML Parser supports full schema constraint checking.

8 (SCHEMA_LOCATION)

Specifies the schema location in the application character set. The default for

OPTION_STRING is the null string.

If the schema location includes a namespace, the OPTION_STRING parameter must

specify the namespace URL and the schema file, separated by whitespace. For

example, the value of OPTION_STRING could be

http://library.org/library.xsd

The application does not the use OPTION_VALUE parameter.

9 (SCHEMA__LOCATION_TYPE)

Specifies whether the schema location includes a namespace.

http://library.org/library.xsd

WEBAPPSUPPORT Library Interface for the XML Parser

6–88 3826 5286–007

If the value is 0, the schema location does not include a namespace. This value is the

default.

If the value is 1, the schema location includes a namespace.

10 (FILENAME_FORMAT)

Specifies the format that the XML Parser uses for file names that applications pass to

the XML Parser. The SET_OPTION procedure, FILENAME_FORMAT (1) option has the

same value as this option.

If the value is 0 (LTITLE), the XML Parser uses the value NATIVE for the SEARCHRULE

file attribute. This value is the default.

If the value is 1 (PATHNAME), the XML Parser uses the value POSIX for the

SEARCHRULE file attribute.

11 (FILE_ATTRIBUTES)

Contains a comma-separated list of file attribute settings in the application character

set. The default for OPTION_STRING is a null string.

For example, the OPTION_STRING parameter can be

 SECURITYTYPE=PUBLIC, SECURITYUSE=IN

The procedure does not use the OPTION_VALUE parameter.

12 (INDENT)

Specifies the number of space characters to prefix each level in the output of

GET_XML_DOCUMENT when the OUT_FORMAT parameter is 1.

Specifies the number of space characters to add for each level of indentation for

JSON procedures. Zero means no whitespace is added to the JSON output and

produces the most compact representation.

The default value is 2, the minimum value is 0, and the maximum value is 10.

13 (LOGGING)

Controls JPM logging for events generated for this application. Each logging level from

1 to 5 includes the logging for the levels identified by higher numbers. For example,

level 1 includes the logging for levels 2 to 5.

If the value is 0, logging uses the JPM logging level setting. This value is the default.

If the value is 1 (Debug), logging provides detailed tracing that you can submit for a

JPM problem to Unisys.

If the value is 2 (Info), logging provides basic tracing, not the detailed tracing that

debug logging provides.

If the value is 3 (Warn), logging logs warnings that the parser generates.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–89

If the value is 4 (Error), logging logs errors that the parser generates.

If the value is 5 (Fatal), logging logs fatal errors which the parser generates and which

prevent document parsing.

If the value is 6 (Off), no logging is in place.

14 (CANONICAL_METHOD)

Controls the method by which XML is serialized, according to the Canonical XML

Version 1.0 W3C recommendation. This option affects the procedures

GET_XML_DOCUMENT, CONVERT_JSON_TO_XML_DOCUMENT,

ENCRYPT_DATA_TO_XML, and ENCRYPT_XML_DOCUMENT.

If the value is 1, XML is serialized using Inclusive Canonicalization, which includes the in

scope namespace and xml namespace attribute context from ancestors of the XML

being serialized, with comments removed.

If the value is 2, XML is serialized the same way when the value = 1, with comments

included.

If the value is 3, XML is serialized using the Exclusive Canonicalization, which includes

to the minimum extent practical the namespace prefix binding and xml namespace

attribute context inherited from ancestor elements, with comments removed.

If the value is 4, XML is serialized the same way when the value = 3, with comments

included. This is the default value.

15 (PRESERVE_WHITESPACE)

Controls whether or not to preserve whitespace when parsing an XML document. This

option affects the PARSE_XML_DOCUMENT procedure.

If the value is 0, whitespace in the XML document is not preserved. The

GET_XML_DOCUMENT procedure returns an XML document with whitespace that

might not match the whitespace in the original XML document. This is the default

value.

If the value is 1, whitespace in the XML document is preserved. This value should be

used for XML documents that are processed using XML Encryption or if the canonical

format is used in the GET_XML_DOCUMENT procedure.

OPTION_STRING

The OPTION parameter descriptions explain how an application uses the

OPTION_STRING parameter. If the value of OPTION does not require a value for

OPTION_STRING, the application needs to set OPTION_STRING to the null string.

GLB_PARAM

GLB_PARAM has the following format:

WEBAPPSUPPORT Library Interface for the XML Parser

6–90 3826 5286–007

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD OPTION N5

 SD OPTION-VALUE N12

 SD OPTION-STRING-SIZE N5

 SD OPTION-STRING An

OPTION-STRING size, for example, 256

[longa]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 The application specified an option or value that the procedure does not

support.

1 The procedure accepted all settings.

TRANSFORM_XML_DOCUMENT

Transforms an XML document into another document.

Syntax

INTEGER PROCEDURE TRANSFORM_XML_DOCUMENT
 (XML_SOURCE_TYPE, XML_SOURCE,

 XML_SOURCE_START, XML_SOURCE_LEN,
 XSL_SOURCE_TYPE, XSL_SOURCE,
 XSL_SOURCE_START, XSL_SOURCE_LEN,

 DEST_TYPE, DEST, DEST_START, DEST_LEN);
 INTEGER XML_SOURCE_TYPE,
 XML_SOURCE_START, XML_SOURCE_LEN,

 XSL_SOURCE_TYPE,
 XSL_SOURCE_START, XSL_SOURCE_LEN,
 DEST_TYPE, DEST_START, DEST_LEN;

 EBCDIC ARRAY XML_SOURCE [0],
 XSL_SOURCE [0],
 DEST [0];

INTEGER PROCEDURE transformXMLDocument
 (XML_SOURCE_TYPE, XML_SOURCE,
 XML_SOURCE_START, XML_SOURCE_LEN,

 XSL_SOURCE_TYPE, XSL_SOURCE,
 XSL_SOURCE_START, XSL_SOURCE_LEN,
 DEST_TYPE, DEST, DEST_START, DEST_LEN);

 VALUE XML_SOURCE_TYPE,
 XML_SOURCE_START, XML_SOURCE_LEN,
 XSL_SOURCE_TYPE,

 XSL_SOURCE_START, XSL_SOURCE_LEN,
 DEST_TYPE, DEST_START;
 INTEGER XML_SOURCE_TYPE,

 XML_SOURCE_START, XML_SOURCE_LEN,
 XSL_SOURCE_TYPE,
 XSL_SOURCE_START, XSL_SOURCE_LEN,

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–91

 DEST_TYPE, DEST_START, DEST_LEN;
 EBCDIC ARRAY XML_SOURCE [*],

 XSL_SOURCE [*],
 DEST [*];

PROCEDURE TRANSFORM-XML-DOCUMENT (GLB_PARAM);

 EBCDIC ARRAY GLB_PARAM [0];

Parameters

XML_SOURCE_TYPE identifies the type of source for the XML document and can be

any of the following values.

If the value is 1, the XML_SOURCE parameter contains the XML document to be

transformed.

If the value is 2, the XML_SOURCE parameter contains the MCP file name of the XML

document to be transformed. The name is in display format or pathname format. The

FILENAME_FORMAT option in the SET_OPTION procedure controls the format.

If the value is 3, the XML_SOURCE parameter contains an HTTP URL or JPM server file

system identifier that identifies the XML document to be transformed.

XML_SOURCE is the array containing source information. If the XML_SOURCE_TYPE

parameter is 1, XML_SOURCE is coded in the document is character set. If the

XML_SOURCE_TYPE parameter is 2 or 3, XML_SOURCE is coded in the application is

character set. The SET_TRANSLATION procedure sets the application character set.

The XML document must be encoded in an ASCII-based character set, for example

us-ascii, UTF-8, or iso-8859-1.

XML_SOURCE_START is the zero-based offset into the XML_SOURCE parameter and

indicates where the supplied information starts.

XML_SOURCE_LEN is the length in bytes of the data in the XML_SOURCE parameter.

If zero, XML_SOURCE contains a string that is terminated by blanks or a null byte.

XSL_SOURCE_TYPE identifies the type of source for the XSL stylesheet and can be any

of the following values.

If the value is 0, no XSL stylesheet is supplied (the XML document contains a

reference to the stylesheet to be used for transforming the document).

If the value is 1, the XSL_SOURCE parameter contains the XSL stylesheet to be applied

to the XML document.

If the value is 2, the XSL_SOURCE parameter contains the MCP file name of the XSL

stylesheet to be applied to the XML document. The name is in display format or

pathname format. The FILENAME_FORMAT option in the SET_OPTION procedure

controls the format.

WEBAPPSUPPORT Library Interface for the XML Parser

6–92 3826 5286–007

If the value is 3, the XSL_SOURCE parameter contains an HTTP URL or JPM server file

system identifier that identifies the XSL stylesheet to be applied to the XML

document.

The XSL stylesheet is an XML document and must be encoded in an ASCII-based

character set, for example us-ascii, UTF-8, or iso-8859-1.

XSL_SOURCE_START is the zero-based offset in the XSL_SOURCE parameter and

indicates where the supplied information starts.

XSL_SOURCE_LEN is the length in bytes of the data in the XSL_SOURCE parameter.

This value must be zero if XSL_SOURCE_TYPE is zero. If XSL_SOURCE_TYPE is not

zero and XSL_SOURCE_LEN is zero, XSL_SOURCE contains a string that is terminated

by blanks or a null byte.

DEST_TYPE identifies the type of destination for the document and can be either of

the following values.

If the value is 1, when the procedure returns, the DEST parameter contains the

transformed document.

If the value is 2, when the application calls the procedure, the DEST parameter

contains the MCP file name to which the procedure writes the transformed document.

The file name can be in display format or pathname format. The FILENAME_FORMAT

option in the SET_OPTION procedure controls the format. If the file exists before the

application calls the procedure, the procedure overwrites the file.

DEST is the array containing destination information. If the DEST_TYPE parameter is 1,

DEST contains the transformed document. If the DEST_TYPE parameter is 2, DEST

identifies the name of the MCP file that contains the transformed document, and this

name is in the application character set. The SET_TRANSLATION procedure sets the

application character set.

DEST_START is the zero-based offset in DEST and indicates where the procedure

returns the transformed document.

DEST_LEN in the procedure call specifies the length in bytes of the DEST parameter if

DEST_TYPE is 2. When the procedure returns, DEST_LEN specifies the length in bytes

of the transformed document.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–93

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD XML_SOURCE_TYPE N5

 SD XML-SOURCE-SIZE N5

 SD XML-SOURCE An

 SD XML-SOURCE_START N5

 SD XML-SOURCE_LEN N5

 SD XSL-SOURCE_TYPE N5

 SD XSL-SOURCE-SIZE N5

 SD XSL-SOURCE An

 SD XSL-SOURCE_START N5

 SD XSL-SOURCE_LEN N5

 SD DEST-TYPE N5

 SD DEST-SIZE N5

 SD DEST An

 SD DEST-START N5

 SD DEST-LEN N12

XML-SOURCE size, for example, 2048

[longa]

XSL-SOURCE size, for example, 2048

[longa]

DEST size, for example, 2048

[longa]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Values Description

0 No-op, exceeded maximum number of XML documents in WEBAPPSUPPORT

-11 Input file not found or not available

-12 Input file too long to be processed

-13 Attribute error setting file name.

-14 I/O error reading input file

-16 File character set not available. The EXTMODE of the file used is not

supported by the CENTRALSUPPORT and CCSFILE installed on the system.

-47 Source start/offset invalid, or source type not supported

-48 Cannot open socket to Java Parser Module

-49 Cannot write to Java Parser Module

-50 Cannot read from Java Parser Module

-51 Parsing error or errors

-52 URL not available

-54 JPM not configured

-56 Maximum nodes exceeded

-57 JPM too old

-58 Transformation error(s)

WEBAPPSUPPORT Library Interface for the XML Parser

6–94 3826 5286–007

XML_ESCAPE

Converts predefined entities in an array of characters into the escaped versions of the

entities. This procedure supports the entities listed in the following table:

Unescaped Entity Escaped Version

& (ampersand) &

< (less than) <

> (greater than) >

‘ (apostrophe) '

“ (quote) "

Syntax

INTEGER PROCEDURE XML_ESCAPE
 (CHARSET, SOURCE, SOURCE_START, SOURCE_LEN,

 DEST, DEST_START, DEST_LEN);
 INTEGER CHARSET, SOURCE_START, SOURCE_LEN,
 EBCDIC ARRAY SOURCE,

 DEST [0];

INTEGER PROCEDURE xmlEscape
 (CHARSET, SOURCE, SOURCE_START, SOURCE_LEN,

 DEST, DEST_START, DEST_LEN);
 VALUE CHARSET, SOURCE_START, SOURCE_LEN,
 DEST_START;

 INTEGER CHARSET, SOURCE_START, SOURCE_LEN,
 DEST_START, DEST_LEN;
 EBCDIC ARRAY SOURCE,

 DEST [*];

PROCEDURE XML-ESCAPE (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

CHARSET is the application character set and can be 0 (EBCDIC) or 1 (ASCII).

SOURCE is the array containing the characters to be escaped.

SOURCE_START is a zero-based offset into the SOURCE array and indicates where the

unescaped characters start.

SOURCE_LEN is the length of the data in SOURCE.

DEST is the array that receives the escaped characters.

DEST_START is a zero-based offset into the DEST array and indicates where the

escaped characters start.

DEST_LEN is the length of data returned in DEST.

 WEBAPPSUPPORT Library Interface for the XML Parser

3826 5286–007 6–95

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD CHARSET N5

 SD SOURCE-SIZE N5

 SD SOURCE An

 SD SOURCE-START N5

 SD SOURCE-LEN N5

 SD DEST-SIZE N5

 SD DEST An

 SD DEST-START N5

 SD DEST-LEN N5

SOURCE size, for example, 2048

[longa]

DEST size, for example, 2048

[longa]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

-47 The value in the SOURCE_START or SOURCE_LEN parameter is invalid.

WEBAPPSUPPORT Library Interface for the XML Parser

6–96 3826 5286–007

3826 5286–007 7–1

Section 7
Using Sample Source Code for Parsing
an XML Document

The following sample fragments of code show basic calls to the XML Parser API

procedures. For more complete working examples released with the XML Parser, see

the files in the directory *SYSTEM/CCF/XMLPARSER/SAMPLE/=.

COBOL85 Code for Parsing an XML Document

 77 SOURCE-ARRAY PIC 9(11) BINARY VALUE IS 1.
 01 XMLDOC PIC X(1000).
 77 START-AT-ZERO PIC 9(11) BINARY VALUE IS 0.
 77 XML-LENGTH PIC 9(11) BINARY.
 77 DOC-TAG PIC 9(11) BINARY VALUE IS 0.
 77 DOC-NODE PIC 9(11) BINARY VALUE IS 0.
 77 WEB-RESULT PIC S9(11) BINARY VALUE IS 0.
 88 WEB-OK VALUE 1.

 CALL "PARSE_XML_DOCUMENT OF WEBAPPSUPPORT"
 USING SOURCE-ARRAY, XMLDOC, START-AT-ZERO, XML-LENGTH,
 DOC-TAG, DOC-NODE
 GIVING WEB-RESULT.

The preceding procedure call has the following parameters:

• SOURCE-ARRAY indicates that the source for the XML document is the XMLDOC

array.

• XMLDOC contains the XML document.

• START-AT-ZERO indicates that the document starts at the beginning of the

XMLDOC array.

• XML-LENGTH is the length of the document in the XMLDOC parameter. The

application assigned this value to the parameter before calling the procedure.

• DOC-TAG has the returned document tag that the application uses to reference

the document in WEBAPPSUPPORT.

• DOC-NODE contains the reference to the document node.

• WEB-RESULT contains the result of the procedure call. The result is 1 if the call is

successful.

Using Sample Source Code for Parsing an XML Document

7–2 3826 5286–007

ALGOL Code for Parsing an XML Document

INTEGER xmlResult;
 DEFINE sourceTypeArray = 1 #;
 EBCDIC ARRAY xmlDocument [0:65535];
 INTEGER xmlDocumentLen;

 INTEGER DOC_TAG;
 INTEGER documentNode;

 xmlResult := parseXMLDocument
 (% indicate xml document is in parameter:
 sourceTypeArray,
 % the xml document:
 xmlDocument,
 % index into xmlDocument where doc starts:
 0,

 % document length in bytes, set by app:
 xmlDocumentLen,
 % tag that references the parsed document:
 DOC_TAG,
 % document node:
 documentNode);

In the preceding procedure call, the xmlResult parameter receives the result of the

procedure call.

3826 5286–007 8–1

Section 8
Monitoring the XML Parser

To monitor the status and usage of the XML Parser, do the following:

• Use the WEBAPPSUPPORT library STATUS command.

• Check the JPM log.

Using the WEBAPPSUPPORT Library STATUS

Command

You can enter the WEBAPPSUPPORT library STATUS command as either of the

following:

• An NA command, through the WEBPCM Protocol Converter Module (PCM)

• An ACCEPT (AX) command

The following is an example of the STATUS command as an NA command:

NA CCF WEBPCM WEBAPPSUPPORT STATUS

The preceding command returns a response like the following:

Unisys Corporation WEBAPPSUPPORT
Version 54.150.0035 Compiled 11/11/2009 @ 14:51
Connection To WEBPCM: Linked
3 Callers Linked
XML Parser JPM1:
 Host 192.63.212.61, Port 51117
 0 Sockets Open
 Status: Available
 Standby: True
 Version: 54.150.0021
 Threads: Current = 10, Min = 10, Max = 14
 Logging: Level = Error, File = JPM1/logs/log.txt
 Documents Parsed/Transformed = 3
 JVM:
 Version: 1.6.0_07
 Free = 1 MB, Total = 5 MB, Max = 63 MB

Monitoring the XML Parser

8–2 3826 5286–007

The XML Parser section of the above response shows the following:

• Host

This listing is the JPM host. This parameter is the HOST parameter in the JPM

configuration file (*SYSTEM/CCF/WEBAPPSUPPORT/PARAMS/XML).

• Port

This listing is the JPM port number. This parameter is the PORT parameter in the

JPM configuration file (*SYSTEM/CCF/WEBAPPSUPPORT/PARAMS/XML).

• <number of sockets> Sockets Open

This construct shows the number of TCP sockets currently open to the JPM.

• Status

This construct shows the whether or not the JPM is available or unavailable.

• Standby

If False, the JPM is an active JPM and will receive requests before standby JPMs.

If True, the JPM is a standby JPM and will receive requests if no active JPMs are

available.

• Version

This construct shows the JPM software version.

• Threads

− Current

The number of currently active JPM threads

− Min

The configured minimum number of JPM threads

− Max

The configured maximum number of JPM threads

• Logging

− Level

The JPM logging level

− File

The JPM log file name

• Documents Parsed/Transformed

This construct lists the number of documents that have been parsed or

transformed.

 Monitoring the XML Parser

3826 5286–007 8–3

• JVM

− Version

The JPM Java Virtual Machine version

− Free = <number of MB>, Total = <number of MB>, and Max = <number of

MB>

The Free parameter specifies the amount of free memory for the JVM. The

Total parameter specifies the amount of memory allocated to the JVM. The

Max parameter specifies the maximum amount of memory that can be

allocated to the JVM.

Checking the JPM Log

You can check the JPM log to monitor the JPM. The JPM log is a text file. The default

file name is log.out, but the file can have a time-stamped name if the JPM is run on

MCP Java and the STDOUT file is equated to a file name that has data and time stamps

in it.

Monitoring the XML Parser

8–4 3826 5286–007

3826 5286–007 9–1

Section 9
HTTP Client Applications

Developing HTTP Client Applications

The Custom Connect Facility (CCF) WEBAPPSUPPORT library provides an API to

COBOL85 and ALGOL applications allowing them to easily make HTTP requests and

process the responses.

The SOCKETSUPPORT library provides TCP sockets (including SSL). The

AUTHSUPPORT library supports NT LAN Manager (NTLM) processing.

This section provides information about objects, request handling, compression,

security, and HTTP Client WEBAPPSUPPORT procedures. Also, some scenarios are

included in this section to show how applications might use the HTTP Client capability.

These scenarios are provided as examples only and are not considered to be

complete.

Sample COBOL85 and ALGOL applications that demonstrate HTTP requests are

released with the CCF.

Objects

When an application makes HTTP requests, four types of objects might be created by

the application in the WEBAPPSUPPORT library: host objects, client objects, socket

objects, and request objects.

The host object contains the following information:

• Hostname or IP address of the server

• A list of IP addresses if the server has multiple addresses

• The TCP port of the server

The client object contains the following information

• The settings for cookie handling

• Cookies that are remembered for hosts

• Credentials

HTTP Client Applications

9–2 3826 5286–007

The socket object contains the following information

• Socket attributes, including SSL

• Socket state

The request object contains the following information:

• HTTP method

• Uniform Resource Locator (URL)

• Query string and/or content data

• Request headers

• Response status, headers, and content

Request Handling

The topics in this subsection deal with several aspects of request handling: default

request headers; tanking large data; the request header 100-continue; chunked

content; synchronous and asynchronous requests; cookie handling; character set

handling; compressed content; and security.

Default Request Headers

The following table lists the HTTP request headers that are sent by default. An

application can override these headers by setting its own headers.

Header Name Description

Accept-Encoding The header value sent is

identity

Authorization If credentials that match the request have been stored in the client

object, this header is sent with the request if the server has

requested authentication.

Connection The header value sent is

Keep-Alive

Content-Length If the SET_HTTP_REQUEST_CONTENT procedure has been called,

the length in bytes of the data passed is set in this header.

Content-Type If the request method is POST, by default this header value is set to:

application/x-www-form-urlencoded

If the request method is not POST, this header is not sent by default.

Cookie If one or more Netscape-style or RFC2109-style cookies are set in

the client object and match the request, this header is sent with the

cookies.

 HTTP Client Applications

3826 5286–007 9–3

Header Name Description

Cookie2 If one or more RFC2965-style cookies are set in the client object and

match the request, this header is sent with the cookies; otherwise,

the following value, which tells the server that the application

accepts RFC2965-style cookies, is sent:

$Version=1

Host The value set by the application for the HOST parameter of the

CREATE_HTTP_HOST procedure is sent as the header value.

TE

The header value sent is

chunked, identity, trailers

Also, see HTTP RFC 2616.

User-Agent See the USER_AGENT option of the SET_HTTP_OPTION procedure.

Tanking Large Data

WEBAPPSUPPORT tanks large data to temporary files on disk for the following

capabilities:

• Large HTTP Client response content that exceeds 1,000,000 bytes

• Large HTTP Client request content that exceeds 1,000,000 bytes (for example,

using the HTTP PUT method)

See “WEBAPPSUPPORT General Parameters File” in Section 3 for information about

the TEMPFAMILY directive.

Request Header—Expect: 100-Continue

If the application sets the request header Expect: 100-continue on a request that

contains content, the EXECUTE_HTTP_REQUEST procedure waits for a 100 (Continue)

response from the server before sending the content.

Chunked Content

An application can supply the content in “chunks,” which means that multiple calls to

SET_HTTP_REQUEST_CONTENT append the content. Chunked content allows the

application to send content that is dynamic in size and could come from multiple

sources. Sending chunked content is useful when it is difficult to determine the total

size of the content.

When using chunked content, the application should not set a Content-Length header.

Also, the application should not prefix the content chunks with size indicators.

For a chunked content request, trailing headers are not supported. Normally, the

request is sent with one block of content without using HTTP chunked transfer

encoding.

HTTP Client Applications

9–4 3826 5286–007

The HTTP server can respond with chunked content and WEBAPPSUPPORT then

concatenates the chunks into one block of content to give to the application.

WEBAPPSUPPORT also adds trailing response headers to the headers received at the

start of the response.

Synchronous and Asynchronous Requests

Applications can process requests synchronously, where the application stack does

not return from the EXECUTE_HTTP_REQUEST procedure until the response

processing is complete.

Applications can process requests asynchronously, where the application stack

returns from the EXECUTE_HTTP_REQUEST procedure when the request is sent, and

the application periodically checks for response completion.

Use the SYNCHRONOUS option in the SET_HTTP_OPTION procedure to control

whether requests are processed synchronously (the default) or asynchronously.

Asynchronous requests free the application stack so it can perform other processing,

such as making other HTTP requests. To determine that the request is complete, the

application can call the GET_HTTP_RESPONSE_STATUS procedure.

Cookie Handling

Cookies are supported to make it easier for the application to retain state for HTTP

servers. This functions similarly to how web browsers remember cookies for the

length of their current session.

By default cookies set by a server are stored in the client object, and are re-sent in

subsequent requests if the cookie’s attributes match that of the request. Also, the

cookie’s expires or Max-Age setting is honored and the cookie is deleted from the

client object when it is expired.

The application may also set or remove cookies in a client object with the

SET_CLIENT_ATTR procedure. And if a cookie is set in a request with the

SET_HTTP_REQUEST_HEADER procedure it will override the cookie of the same name

that comes from the client object.

The stored cookie information is lost if the application frees a client object, de-links

from WEBAPPSUPPORT, or the system halt/loads. The application can save cookies

externally from WEBAPPSUPPORT (GET_HTTP_CLIENT_COOKIES), such as in a file or

database, that need to persist across these events, and re-load them into the client

object (SET_CLIENT_ATTR) when processing is restarted.

Although multiple cookie specifications with varying support by HTTP servers and

other clients exist, only the following specifications are supported.

• The Netscape “Persistent Client State HTTP Cookies” preliminary specification.

(http://curl.haxx.se/rfc/cookie_spec.html). This specification is the original

specification for cookies developed by Netscape Corporation.

http://curl.haxx.se/rfc/cookie_spec.html
http://curl.haxx.se/rfc/cookie_spec.html

 HTTP Client Applications

3826 5286–007 9–5

• RFC 2109, “HTTP State Management Mechanism”

(http://www.w3.org/Protocols/rfc2109/rfc2109). This specification is the first

cookie specification from the Worldwide Web Consortium (WC3). It defines

version 1 cookies using the Cookie and Set-Cookie headers.

• RFC 2965, “HTTP State Management Mechanism”

(http://www.ietf.org/rfc/rfc2965.txt). This specification makes RFC 2109 obsolete.

It uses Cookie2 and Set-Cookie2 headers.

Character Set Handling

All data supplied by the application for the HTTP request except for the request

content is coded in the character set of the application and translated into the client

character set before sending the request. The application specifies the request

content coding by setting the TRANSLATE parameter in the

SET_HTTP_REQUEST_CONTENT procedure call. For example, setting this parameter

allows the WEBAPPSUPPORT library to translate EBCDIC data to an ASCII equivalent

before sending the request.

All data given to the application from the HTTP response except for the response

content is translated from the client character set to the character set of the

application before giving the data to the application. The application specifies the

response content coding by setting the TRANSLATE parameter in the

SET_HTTP_REQUEST_CONTENT procedure call. For example, setting this parameter

allows the WEBAPPSUPPORT library to translate ASCII response content to an EBCDIC

equivalent before giving it to the application

The character sets used for translation are specified by the setting of the application

and client character sets in the SET_TRANSLATION WEBAPPSUPPORT procedure. In

this context, the “client” character set represents the data sent to, and received from,

the HTTP server.

Compressed Content

HTTP Client applications can send or receive compressed content that is compressed

with the Deflate method (RFC 1951). Compression and decompression of data can also

be done separately from processing HTTP requests.

Sending Compressed Content

Applications can send compressed content in HTTP requests by following these

steps.

• Set the Content-Encoding request header to the value ‘deflate’ with the

SET_HTTP_REQUEST_HEADER procedure.

• Compress the data with the DEFLATE_DATA procedure.

• Set the request content with the compressed data using the

SET_HTTP_REQUEST_CONTENT procedure. This action also sets the Content-

Length request header to the compressed content length.

• Set any other request headers and execute the request.

http://www.w3.org/Protocols/rfc2109/rfc2109
http://www.ietf.org/rfc/rfc2965.txt

HTTP Client Applications

9–6 3826 5286–007

Compressing content with the DEFLATE_DATA procedure requires that the Java

Parser Module (JPM) of the XML Parser is available.

Receiving Compressed Content

When servers send responses with compressed content, the application can either

receive the content compressed or decompressed, depending on the DECOMPRESS

option of the SET_HTTP_OPTION procedure.

If applications receive content compressed by the HTTP server, the INFLATE-DATA

procedure can be called to decompress the data.

If applications do not want response content to be compressed by the HTTP server,

the Accept-Encoding request header should be set by the application to remove the

deflate option that is sent by default. For example, the application can set

Accept-Encoding: identity

The JPM of the XML Parser can be used to decompress data. See the

INFLATE_METHOD option of the SET_OPTION procedure.

Security

Security considerations include encrypted sessions, authentication, and storing

credentials.

Encrypted Sessions (https)

Encrypted HTTP using TLS/SSL is supported. This functionality is equivalent to a web

browser making an https request.

To have encrypted sessions, the requirements for the MCP system are the following:

• SSL must be enabled in MCP TCPIP.

• The CA certificates of the signers of all HTTP servers must be in a root store of

the MCP—either the default root store or a root store specified by the application.

• If a client certificate is to be sent to the HTTP server, the certificate must be in the

key container specified by the application.

• The application must configure the socket object to use SSL, minimally setting the

SSL_Client_Mode option to Client Mode.

Authentication

The methods of authenticating the client to the server are

• HTTP Basic

• NTLM

• Client Certificates

 HTTP Client Applications

3826 5286–007 9–7

If the application sets an Authorization header in the request, that Authorization header

is sent to the server. If the application does not set an Authorization header in the

request, WEBAPPSUPPORT can automatically send an Authentication header if

challenged by the server and if the client object has credentials stored that match the

challenge by the server.

If credentials sent from the client object are rejected by the server, the rejection

response, usually a 401 (Unauthorized) response, is returned to the application.

HTTP Basic

HTTP Basic (RFC 2617) is supported.

If the HTTP server replies with a 401 (Unauthorized) response that requests Basic

authentication and the client object has been configured with Basic credentials

matching the host and realm of the request, the username and password are

automatically sent to the server. See the SET_HTTP_CLIENT_ATTR procedure,

SET_CREDENTIAL attribute.

Once Basic credentials have been automatically sent for a particular URI, all

subsequent requests that begin with that URI also have the Basic credentials sent.

If the client object is not configured with credentials that match the request, the 401

response is given to the application.

NTLM

NTLM versions 1 and 2 are supported for authentication.

If the HTTP server replies with a 401 (Unauthorized) response that requests NTLM

authentication and the client object has been configured with NTLM credentials

matching the host of the request, the credentials are automatically sent to the server.

See the SET_HTTP_CLIENT_ATTR procedure, SET_CREDENTIAL attribute.

The credentials for NTLM processing can either be a username, password and

authentication domain supplied by the application or a username and credentials file

created with the MAKECREDENTIALS utility.

If a credentials file is used, the application must be running under the usercode that

was used to create the credentials file.

If the client object is not configured with credentials that match the request, the 401

response is given to the application.

Client Certificates

Client certificates can be sent to the HTTP server along with the SSL connection open.

Before the socket is opened, the application modifies the socket object to specify a

key container that contains the client certificate. See the SET_HTTP_SOCKET_OPTION

procedure.

HTTP Client Applications

9–8 3826 5286–007

Storing Credentials

Credentials supplied by the application as clear text strings, such as username and

password, are stored in the WEBAPPSUPPORT memory in encrypted form and

decrypted temporarily for authentication processing.

Scenarios

The scenarios for application use of the HTTP Client function described in this section

are basic request, subsequent request and SSL request (https). These scenarios serve

as examples only and are not intended to describe all possible ways to complete

tasks.

Basic Request Scenario

In this basic request scenario, the application makes a simple HTTP request to a

remote server. The steps for making a basic request are as follow:

• The application creates a host object (CREATE_HTTP_HOST), specifying the

hostname (for example, “www.serverhost.com”) and port (for example, 80) of the

server.

• The application creates a client object (CREATE_HTTP_CLIENT), specifying any

credentials needed for the request. (SET_HTTP_CLIENT_ATTR)

• The application creates a socket object (CREATE_HTTP_SOCKET), specifying any

special socket attributes needed. (SET_HTTP_SOCKET_OPTION)

• The application creates a request object (CREATE_HTTP_REQUEST), specifying the

URL and any query string or post data, request headers, and so on.

(SET_HTTP_REQUEST_QUERY, SET_HTTP_REQUEST_CONTENT,

SET_HTTP_REQUEST_HEADER, and so on.)

• The application executes the request (EXECUTE_HTTP_REQUEST), associating the

request with the host, client, and socket objects. The request is sent to the server.

On return from the procedure, the application gets the parameters of the

response. (GET_HTTP_RESPONSE_CONTENT, GET_HTTP_RESPONSE_HEADER, and

so on)

Subsequent Request Scenario

In this scenario, the application is making another request to the same host in the

basic request scenario. Assume that the host, client, and socket objects are in the

same state as they were after the response in the basic request scenario was

received.

• The application creates a new request object (CREATE_HTTP_REQUEST).

• The application executes the request (EXECUTE_HTTP_REQUEST), associating the

request with the same host, client, and socket objects. If the HTTP server has not

closed the socket, the same socket is reused. The response is handled the same

as in the basic request scenario.

http://www.serverhost.com%E2%80%9D

 HTTP Client Applications

3826 5286–007 9–9

SSL Request (https) Scenario

In this scenario, the application is making a request to a secure Web site using SSL to

encrypt the messages sent and received.

• The applications completes the steps as given for the basic request except that

the port in the host object must be a secure port on the HTTP server, such as port

443.

• After the application creates the socket object, the application modifies the socket

with SET_HTTP_SOCKET_OPTION as follows:

− Set SSL client mode (required).

− Set any other optional SSL attributes as needed. For example, the application

might set a key container to specify a client certificate.

Request Complete

When the request is complete and the application no longer needs the objects that it

created for the requests, the application should release the objects.

(FREE_HTTP_CLIENT, FREE_HTTP_HOST, FREE_HTTP_SOCKET, and

FREE_HTTP_REQUEST)

WEBAPPSUPPORT HTTP Client Procedures

The procedure topics describe the syntax, parameters, and possible return values.

Each topic presents the syntax for

• A COBOL85 entry point, which has uppercase characters and underscores

An example is CREATE_HTTP_CLIENT.

• An ALGOL entry point, which has lower-case and upper-case characters and no

underscores

An example is createHttpClient.

• An EAE entry point, which has upper-case characters and dashes

An example is CREATE-HTTP-CLIENT.

Note: For more information on EAE and the notes used in the procedure

description text of this guide, refer to Section 3, “WEBAPPSUPPORT EAE

Interface.”

BIND_HTTP_SOCKET

Binds a socket object to a local address.

This procedure must be called after creating the socket object with the

CREATE_HTTP_SOCKET procedure and before calling EXECUTE_HTTP_REQUEST. See

the SockLib_Bind function in the MCP Sockets Service Programming Guide for more

information about socket binding.

HTTP Client Applications

9–10 3826 5286–007

Syntax

INTEGER PROCEDURE BIND_HTTP_SOCKET
 (SOCKET_TAG, SOCKADDR, ADDRLENGTH, BINDRESULT);
 INTEGER SOCKET_TAG, ADDRLENGTH, BINDRESULT;
 REAL ARRAY SOCKADDR [0];

INTEGER PROCEDURE bindHttpSocket
 (SOCKET_TAG, SOCKADDR, ADDRLENGTH, BINDRESULT);
 VALUE SOCKET_TAG, ADDRLENGTH;
 INTEGER SOCKET_TAG, ADDRLENGTH, BINDRESULT;
 REAL ARRAY SOCKADDR [*];

PROCEDURE BIND-HTTP-SOCKET (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

SOCKET_TAG identifies the socket object.

SOCKADDR and ADDRLENGTH are described in the MCP Sockets Service

Programming Guide, SockLib_Bind function.

BINDRESULT is the result returned from the Socklib_Bind function.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD SOCKET-TAG A6

 SD SOCKADDR-SIZE N5

 SD SOCKADDR An

 SD BIND-RESULT S12

SOCKADDR size, for example, 255

[longa]

SOCKADDR is the local socket address in display format (EAE only).

Possible Return Values

In addition to the standard results, these possible values can be returned.

Value Description

-59 A socket bind error occurred.

-60 The IP address is not valid format.

-73 The socket tag is invalid.

 HTTP Client Applications

3826 5286–007 9–11

CREATE_HTTP_CLIENT

Creates a client object in the WEBAPPSUPPORT library.

Syntax

INTEGER PROCEDURE CREATE_HTTP_CLIENT
 (CLIENT_TAG);
 INTEGER CLIENT_TAG;

INTEGER PROCEDURE createHttpClient
 (CLIENT_TAG);
 INTEGER CLIENT_TAG;

PROCEDURE CREATE-HTTP-CLIENT (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

CLIENT_TAG identifies the created client object.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD CLIENT-TAG A6

[bin]

Possible Return Values

In addition to the standard results, these possible values can be returned.

Value Description

-75 Maximum HTTP Objects was exceeded.

HTTP Client Applications

9–12 3826 5286–007

CREATE_HTTP_HOST

Creates a host object in the WEBAPPSUPPORT library.

Syntax

INTEGER PROCEDURE CREATE_HTTP_HOST
 (HOST, PORT, HOST_TAG);
 EBCDIC ARRAY HOST [0];
 INTEGER PORT, HOST_TAG;

INTEGER PROCEDURE createHttpHost
 (HOST, PORT, HOST_TAG);
 VALUE PORT;
 EBCDIC ARRAY HOST [*];
 INTEGER PORT, HOST_TAG;

PROCEDURE CREATE-HTTP-HOST (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

HOST identifies the host name, which can be a domain name or an IP address.

PORT identifies the port number of the host.

HOST_TAG identifies the created host object.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD HOST-SIZE N5

 SD HOST An

 SD PORT N5

 SD HOST-TAG A6

HOST size, for example, 256

[longa]

[bin]

Possible Return Values

In addition to the standard results, these possible values can be returned.

Value Description

-75 Maximum HTTP Objects exceeded

-76 No IP addresses available.

-77 Not a valid host/port number

 HTTP Client Applications

3826 5286–007 9–13

CREATE_HTTP_OBJECTS

Creates a set of objects for an HTTP Client operation.

Syntax

INTEGER PROCEDURE CREATE_HTTP_OBJECTS
 (CLIENT_TAG, HOST, PORT, HOST_TAG, METHOD, URL,
 REQUEST_TAG, SOCKET_TAG);
 INTEGER CLIENT_TAG, PORT, HOST_TAG,
 REQUEST_TAG, SOCKET_TAG;

 EBCDIC ARRAY HOST, METHOD, URL [0];

INTEGER PROCEDURE createHTTPobjects

 (CLIENT_TAG, HOST, PORT, HOST_TAG, METHOD, URL,
 REQUEST_TAG, SOCKET_TAG);
 VALUE PORT;
 INTEGER CLIENT_TAG, PORT, HOST_TAG,
 REQUEST_TAG, SOCKET_TAG;
 EBCDIC ARRAY HOST, METHOD, URL [*];

PROCEDURE CREATE-HTTP-OBJECTS (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

CLIENT_TAG identifies the created client object.

HOST identifies the host name, which can be a domain name or an IP address in

display format.

PORT identifies the port number of the host.

HOST_TAG identifies the created host object.

METHOD identifies the HTTP method used in the request, for example, GET or POST.

URL identifies the request URL, not including a query string.

REQUEST_TAG identifies the created request object.

SOCKET_TAG identifies the created socket object.

Value Description

-75 Maximum HTTP Objects exceeded

-76 No IP addresses available

-77 Not a valid host/port number

-78 Invalid method or URL

HTTP Client Applications

9–14 3826 5286–007

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD CLIENT-TAG A6

 SD HOST-SIZE N5

 SD HOST An

 SD PORT N5

 SD HOST-TAG A6

 SD METHOD-SIZE N5

 SD METHOD An

 SD URL-SIZE N5

 SD URL An

 SD REQUEST-TAG A6

 SD SOCKET-TAG A6

[bin]

HOST size, for example, 256

[longa]

[bin]

METHOD size, for example, 256

[longa]

URL size, for example, 256

[longa]

[bin]

[bin]

CREATE_HTTP_REQUEST

Creates a request object in the WEBAPPSUPPORT library.

Syntax

INTEGER PROCEDURE CREATE_HTTP_REQUEST
 (METHOD, URL, REQUEST_TAG);
 EBCDIC ARRAY METHOD, URL [0];
 INTEGER REQUEST_TAG;

INTEGER PROCEDURE createHttpRequest
 (METHOD, URL, REQUEST_TAG);
 EBCDIC ARRAY METHOD, URL [*];
 INTEGER REQUEST_TAG;

PROCEDURE CREATE-HTTP-REQUEST (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

METHOD identifies the HTTP method used in the request. Examples are GET, POST,

and so on.

URL identifies the request URL, not including a query string.

 For example, the URL /abc requests the resource identified by /abc from the host

identified in the host object. This URL http://host2/abc is a proxy request to the

host identified in the host object to make a request to host2 for the resource identified

by /abc.

REQUEST_TAG identifies the created request object.

http://host2/abc

 HTTP Client Applications

3826 5286–007 9–15

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD METHOD-SIZE N5

 SD METHOD An

 SD URL-SIZE N5

 SD URL An

 SD REQUEST-TAG A6

METHOD size, for example, 256

[longa]

URL size, for example, 256

[longa]

[bin]

Possible Return Values

In addition to the standard results, these possible values can be returned.

Value Description

−75 Maximum HTTP Objects exceeded

−78 Invalid method or URL

CREATE_HTTP_SOCKET

Creates a socket object in the WEBAPPSUPPORT library.

Syntax

INTEGER PROCEDURE CREATE_HTTP_SOCKET
 (SOCKET_TAG);
 INTEGER SOCKET_TAG;

INTEGER PROCEDURE createHttpSocket
 (SOCKET_TAG);
 INTEGER SOCKET_TAG;

PROCEDURE CREATE-HTTP-SOCKET (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

SOCKET_TAG identifies the created socket object.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD SOCKET-TAG A6

[bin]

HTTP Client Applications

9–16 3826 5286–007

Possible Return Values

In addition to the standard results, these possible values can be returned.

Value Description

−75 Maximum HTTP Objects exceeded

EXECUTE_HTTP_REQUEST

Causes the HTTP request to be sent to the HTTP server and returns a response from

the server. See the REQUEST_TIMEOUT option of the SET_HTTP_OPTION procedure.

Syntax

INTEGER PROCEDURE EXECUTE_HTTP_REQUEST
 (HOST_TAG, CLIENT_TAG, SOCKET_TAG, REQUEST_TAG,
 STATUS_CODE);
 INTEGER HOST_TAG, CLIENT_TAG, SOCKET_TAG, REQUEST_TAG,
 STATUS_CODE;

INTEGER PROCEDURE executeHttpRequest
 (HOST_TAG, CLIENT_TAG, SOCKET_TAG, REQUEST_TAG,
 STATUS_CODE);
 VALUE HOST_TAG, CLIENT_TAG, SOCKET_TAG, REQUEST_TAG;
 INTEGER HOST_TAG, CLIENT_TAG, SOCKET_TAG, REQUEST_TAG,
 STATUS_CODE;

PROCEDURE EXECUTE-HTTP-REQUEST (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

HOST_TAG identifies the host object.

CLIENT_TAG identifies the client object.

SOCKET_TAG identifies the socket object.

REQUEST_TAG identifies the request object. If the request object contains the results

of a previous request, the response information from that request is cleared before

attempting to execute the request.

STATUS_CODE is the HTTP response code if a server response was received before

returning from the procedure, else zero.

 HTTP Client Applications

3826 5286–007 9–17

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD HOST-TAG A6

 SD CLIENT-TAG A6

 SD SOCKET-TAG A6

 SD REQUEST-TAG A6

 SD STATUS-CODE N5

[bin]

[bin]

[bin]

[bin]

Possible Result Values

In addition to the standard return results, these possible values can be returned.

Value Description

-70 Invalid host tag

-71 Invalid client tag

-72 Invalid request tag

-73 Invalid socket tag

-75 Maximum HTTP Objects exceeded

-79 The procedure cannot open a socket to the HTTP server.

-80 The procedure cannot read from the HTTP server.

-81 The procedure cannot write to the HTTP server.

-82 The HTTP response cannot be parsed.

FREE_HTTP_CLIENT

Frees a client object in the WEBAPPSUPPORT library.

Syntax

INTEGER PROCEDURE FREE_HTTP_CLIENT
 (CLIENT_TAG);
 INTEGER CLIENT_TAG;

INTEGER PROCEDURE freeHttpClient
 (CLIENT_TAG);
 VALUE CLIENT_TAG;
 INTEGER CLIENT_TAG;

PROCEDURE GET-ATTRIBUTE-BY-NAME (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

HTTP Client Applications

9–18 3826 5286–007

Parameters

CLIENT_TAG identifies the client object.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD CLIENT-TAG A6

[bin]

Possible Return Values

In addition to the standard results, these possible values can be returned.

Value Description

−71 Invalid client tag

FREE_HTTP_HOST

Frees a host object in the WEBAPPSUPPORT library.

Syntax

INTEGER PROCEDURE FREE_HTTP_HOST
 (HOST_TAG);
 INTEGER HOST_TAG;

INTEGER PROCEDURE freeHttpHost
 (HOST_TAG);
 VALUE HOST_TAG;
 INTEGER HOST_TAG;

PROCEDURE GET-ATTRIBUTE-BY-NAME (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

HOST_TAG identifies the host object.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD HOST-TAG A6

[bin]

 HTTP Client Applications

3826 5286–007 9–19

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

−70 Invalid host tag

FREE_HTTP_REQUEST

Frees a request object in the WEBAPPSUPPORT library.

Syntax

INTEGER PROCEDURE FREE_HTTP_REQUEST
 (REQUEST_TAG);
 INTEGER REQUEST_TAG;
INTEGER PROCEDURE freeHttpRequest
 (REQUEST_TAG);
 VALUE REQUEST_TAG;
 INTEGER REQUEST_TAG;

PROCEDURE GET-ATTRIBUTE-BY-NAME (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

REQUEST_TAG identifies the request object.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD REQUEST-TAG A6

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

−72 Invalid request tag

HTTP Client Applications

9–20 3826 5286–007

FREE_HTTP_SOCKET

Frees a socket object in the WEBAPPSUPPORT library.

Syntax

INTEGER PROCEDURE FREE_HTTP_SOCKET
 (SOCKET_TAG);
 INTEGER SOCKET_TAG;
INTEGER PROCEDURE freeHttpHost
 (SOCKET_TAG);
 VALUE SOCKET_TAG;
 INTEGER SOCKET_TAG;

PROCEDURE GET-ATTRIBUTE-BY-NAME (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

SOCKET_TAG identifies the host object.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD SOCKET-TAG A6

[bin]

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

−73 Invalid socket tag

GET_HTTP_COOKIE_STRINGS

Returns to the application the cookies stored in a client object, with their attributes.

The cookies are returned as an array of strings, one cookie per array row string. See

the SET_HTTP_CLIENT_ATTR procedure, SET_COOKIE attribute, for the format of a

cookie string.

Only unexpired cookies are returned. Cookies that are set by the server with no

expiration, meaning Max-Age or expires was not set, are returned with no expires

setting. If Max-Age was set by the server, the expiration time of the cookie is

returned as a Netscape-style expires attribute, not the original setting of the server.

 HTTP Client Applications

3826 5286–007 9–21

Syntax

INTEGER PROCEDURE GET_HTTP_COOKIE_STRINGS
 (CLIENT_TAG, MAX_COOKIE_LEN,
 BUFFER, NUM_COOKIES);
 INTEGER CLIENT_TAG, MAX_COOKIE_LEN,
 NUM_COOKIES;
 EBCDIC ARRAY BUFFER [0];

INTEGER PROCEDURE getHttpCookieStrings
 (CLIENT_TAG, MAX_COOKIE_LEN,
 BUFFER, NUM_COOKIES);
 VALUE CLIENT_TAG, MAX_COOKIE_LEN;
 INTEGER CLIENT_TAG, MAX_COOKIE_LEN,
 NUM_COOKIES;
 EBCDIC ARRAY BUFFER [*];

PROCEDURE GET-HTTP-COOKIE-STRINGS (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

CLIENT_TAG identifies the client object.

MAX_COOKIE_LEN is the size of the cookie column. If attributes are present, the

cookie value is terminated by a semicolon and the attributes follow.

BUFFER is the buffer in which the data is returned. The buffer is in the character set of

the application, represented as one string per cookie.

NUM_COOKIES is the number of cookies returned.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD CLIENT-TAG A6

 SD MAX-COOKIE-LEN N5

 SD BUFFER-SIZE N5

 SD BUFFER An

 SD NUM-COOKIES N5

[bin]

BUFFER size, for example, 1200 = 200*6

[longa]

BUFFER-SIZE should be a multiple of MAX-COOKIE-LEN. BUFFER contains the cookie

strings in portions of BUFFER, each portion MAX-COOKIE-LEN bytes long.

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 No cookies

HTTP Client Applications

9–22 3826 5286–007

Value Description

-20 Maximum length too small

-71 Invalid client tag

Example

In COBOL, you might declare the following:

 01 COOKIE-BUFFER.
 03 COOKIE-PAIR OCCURS 10 TIMES.
 05 COOKIE-STRING PIC X(1000).

The call to GET_HTTP_CLIENT_COOKIES passes COOKIE-BUFFER, with

MAX_COOKIE_LEN set to1000. Each occurrence of COOKIE_STRING contains a

separate cookie, up to NUM_COOKIES cookiesL

GET_HTTP_RESPONSE_COOKIES

Returns to the application the cookies received in the response, into a structured
buffer.

See also GET_HTTP_COOKIE_STRINGS.

Syntax

INTEGER PROCEDURE GET_HTTP_RESPONSE_COOKIES
 (REQUEST_TAG, MAX_NAME_LEN, MAX_VALUE_LEN,
 MAX_PATH_LEN, MAX_DOMAIN_LEN,
 BUFFER, NUM_COOKIES);
 INTEGER REQUEST_TAG, MAX_NAME_LEN, MAX_VALUE_LEN,
 NUM_COOKIES;
 EBCDIC ARRAY BUFFER [0];

INTEGER PROCEDURE getHttpResponseCookies
 (REQUEST_TAG, MAX_NAME_LEN, MAX_VALUE_LEN,
 MAX_PATH_LEN, MAX_DOMAIN_LEN,
 BUFFER, NUM_COOKIES);
 VALUE REQUEST_TAG, MAX_NAME_LEN, MAX_VALUE_LEN;
 INTEGER REQUEST_TAG, MAX_NAME_LEN, MAX_VALUE_LEN,
 MAX_PATH_LEN, MAX_DOMAIN_LEN,
 NUM_COOKIES;
 EBCDIC ARRAY BUFFER [*];

PROCEDURE GET-HTTP-RESPONSE-COOKIES (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

REQUEST_TAG identifies the response object.

MAX_NAME_LEN is the size of the cookie name column and must be greater than
zero.

 HTTP Client Applications

3826 5286–007 9–23

MAX_VALUE_LEN is the size of the cookie value column and must be greater than
zero.

MAX_PATH_LEN is the size of the cookie path column and can be zero.

MAX_DOMAIN_LEN is the size of the cookie domain column and can be zero.

BUFFER is the buffer into which the data is returned, in the character set of the
application, represented as a repeating set of strings with one set per cookie. The
string set is as follows:

• A one character string that represents the cookie type: “1” for Netscape, “2” for
RFC2109, or “3” for RFC 2965.

• A one character string that indicates if the cookie is secure: “1” for secure and a
space character if not secure.

• A one character string that indicates if the cookie should be discarded: “1” for
discard and a space character if not to discard.

• A binary word that stores the expires time as an integer since day 0 time 0 and is
compatible with the INT_TO_TIME57 and INT_TO_HTTP_DATA WEBAPPSUPPORT
procedures. If the cookie does not specify an expires time, this word is zero.

• The cookie name, up to MAX_NAME_LEN bytes.

• The cookie value, up to MAX_VALUE_LEN bytes.

• The cookie path, up to MAX_PATH_LEN bytes.

• The cookie domain, up to MAX_DOMAIN_LEN bytes.

NUM_COOKIES is the number of pairs of cookies returned.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD REQUEST-TAG A6

 SD MAX-NAME-LEN N5

 SD MAX-VALUE-LEN N5

 SD MAX-PATH-LEN N5

 SD MAX-DOMAIN-LEN N5

 SD BUFFER-SIZE N5

 SD BUFFER An

 SD NUM-COOKIES N5

[bin]

BUFFER size, for example, 7390 = 739*10
[longa]

The format of the data returned in BUFFER is the same as for COBOL programs. The
following EAE example matches the COBOL example:

SD; SD-COOKIES ED A LE 739 INDEXED.BY SD-COOKIE-INX (10)

HTTP Client Applications

9–24 3826 5286–007

SD; SD-COOKIE GROUP
 SD; SD-CTYPE ED A LE 1
 SD; SD-CSECURE ED A LE 1
 SD; SD-CDISCARD ED A LE 1
 SD; SD-CEXPIRES ED A LE 6
 SD; SD-CNAME ED A LE 20
 SD; SD-CPATH ED A LE 255
 SD; SD-CDOMAIN ED A LE 255
 END.GROUP;

MOVE; (1) SD-COOKIE-INX
MOVE; SD-COOKIES SD-COOKIE

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 The response has no cookies.

-20 Maximum length too small

-72 Invalid client tag

Example

In COBOL, you might declare the following:

 01 COOKIE-BUFFER.
 03 COOKIE-PAIR OCCURS 10 TIMES.
 05 COOKIE-TYPE PIC X(1).
 05 COOKIE-SECURE PIC X(1).
 05 COOKIE-DISCARD PIC X(1).
 05 COOKIE-EXPIRES PIC 9(11) BINARY.
 05 COOKIE-NAME PIC X(20).
 05 COOKIE-VALUE PIC X(200).
 05 COOKIE-PATH PIC X(255).
 05 COOKIE-DOMAIN PIC X(255).

The call to GET_HTTP_RESPONSE_COOKIES passes COOKIE-BUFFER with
MAX_NAME_LEN set to 20, MAX_VALUE_LEN set to 200, MAX_PATH_LEN set to 255,
and MAX_DOMAIN_LEN set to 255.

GET_HTTP_RESPONSE_CONTENT

Returns the content of the response to the application or writes the content to an
MCP file.

If the destination is an application array, you can retrieve the data through multiple
calls to this procedure. If all of the data has been retrieved, a zero (No-op) procedure
result is returned.

 HTTP Client Applications

3826 5286–007 9–25

If the destination is a file, the file must be a stream file with the following attributes:

 BLOCKSTRUCTURE = FIXED
 EXTMODE = ASCII
 FILEORGANIZATION = NOTRESTRICTED
 FILESTRUCTURE = STREAM
 FILETYPE = DATA
 FRAMESIZE = 8
 MAXRECSIZE = 1
 MINRECSIZE = 1
 SECURITYTYPE = PRIVATE
 SECURITYUSE = IO

The preceding attributes override setting attributes in the FILE_ATTRIBUTES option of
the SET_OPTION procedure.

If the destination is a permanent directory, the directory structures must have been
previously created.

Syntax

INTEGER PROCEDURE GET_HTTP_RESPONSE_CONTENT
 (REQUEST_TAG, DEST_TYPE, TRANSLATE,
 CONTENT, CONTENT_START, CONTENT_LEN);
 INTEGER REQUEST_TAG, DEST_TYPE, TRANSLATE,
 CONTENT_START, CONTENT_LEN;
 EBCDIC ARRAY CONTENT [0];

INTEGER PROCEDURE getHttpResponseContent
 (REQUEST_TAG, DEST_TYPE, TRANSLATE,
 CONTENT, CONTENT_START, CONTENT_LEN);
 VALUE REQUEST_TAG, DEST_TYPE, TRANSLATE,
 CONTENT_START;
 INTEGER REQUEST_TAG, DEST_TYPE, TRANSLATE,
 CONTENT_START, CONTENT_LEN;
 EBCDIC ARRAY CONTENT [*];

PROCEDURE GET-HTTP-RESPONSE-CONTENT (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

REQUEST_TAG identifies the response.

DEST_TYPE is the destination for the response content.

If the DEST_TYPE value is 1, the CONTENT parameter contains the response content.

If the DEST_TYPE value is 2, on input the CONTENT parameter contains the MCP file
name to which to write the response content. See the FILE_ATTRIBUTES and
FILENAME_FORMAT options in the SET_OPTION procedure.

TRANSLATE indicates whether or not to translate the content before returning.

If the TRANSLATE value is 0, do not translate the content.

HTTP Client Applications

9–26 3826 5286–007

If the TRANSLATE value is 1, translate the content from the character set of the client
of the application to the character set of the application. See SET_TRANSLATION
procedure.

CONTENT contains the response content on output if DEST_TYPE = 1 or if the MCP
filename on input is DEST_TYPE = 2.

If DEST_TYPE = 1 on input, CONTENT_LEN is the maximum number of bytes of
response content to return. A value of zero for CONTENT_LEN means return all
content. If DEST_TYPE = 2 on input, CONTENT_LEN is the length of the MCP file name,
and all content from the response is written to the file.

CONTENT_LEN on output is the length in bytes of the content either returned in the
CONTENT parameter or written to the file.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD REQUEST-TAG A6

 SD DEST-TYPE N5

 SD TRANSLATE N5

 SD CONTENT-SIZE N5

 SD CONTENT An

 SD CONTENT-START N5

 SD CONTENT-LEN N12

[bin]

CONTENT size, for example, 2048

[longa]

Possible Result Values

In addition to the standard return results, these possible values can be returned.

Value Description

0 Invalid request tag

-72 Response contains no content.

-83 Response is not complete (asynchronous mode).

GET_HTTP_RESPONSE_HEADER

Returns the value of the specified response header to the application. If the same
header occurs more than once in the response only the first header is returned. Also,
see GET_HTTP_RESPONSE_HEADERS.

Syntax

INTEGER PROCEDURE GET_HTTP_RESPONSE_HEADER
 (REQUEST_TAG, NAME, VALUE);
 INTEGER REQUEST_TAG;

 HTTP Client Applications

3826 5286–007 9–27

 EBCDIC ARRAY NAME, VALUE [0];
INTEGER PROCEDURE getHttpResponseHeader
 (REQUEST_TAG, NAME, VALUE);
 VALUE REQUEST_TAG;
 INTEGER REQUEST_TAG;
 EBCDIC ARRAY NAME, VALUE [*];

PROCEDURE GET-HTTP-RESPONSE-HEADER (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

REQUEST_TAG identifies the response.

NAME identifies the response header, coded in the character set of the application. An
example is Last-Modified. Matching is case-insensitive.

VALUE identifies the returned header value, coded in the character set of the
application. An example is Mon, 23 Mar 2009 19:44:26 GMT.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD REQUEST-TAG A6

 SD NAME-SIZE N5

 SD NAME An

 SD VALUE-SIZE N5

 SD VALUE An

[bin]

NAME size, for example, 256

[longa]

VALUE size, for example, 2048

[longa]

Possible Result Values

In addition to the standard return results, these possible values can be returned.

Value Description

0 Invalid request tag

-72 Response contains no content.

-83 Response is not complete (asynchronous mode).

GET_HTTP_RESPONSE_HEADERS

Returns the set of response headers to the application.

Syntax

INTEGER PROCEDURE GET_HTTP_RESPONSE_HEADERS
 (REQUEST_TAG, MAX_NAME_LEN, MAX_VALUE_LEN,
 BUFFER, NUM_PAIRS);
 INTEGER REQUEST_TAG, MAX_NAME_LEN, MAX_VALUE_LEN,

HTTP Client Applications

9–28 3826 5286–007

 NUM_PAIRS;
 EBCDIC ARRAY BUFFER [0];

INTEGER PROCEDURE getHttpResponseHeaders
 (REQUEST_TAG, MAX_NAME_LEN, MAX_VALUE_LEN,
 BUFFER, NUM_PAIRS);
 VALUE REQUEST_TAG, MAX_NAME_LEN, MAX_VALUE_LEN;
 INTEGER REQUEST_TAG, MAX_NAME_LEN, MAX_VALUE_LEN,
 NUM_PAIRS;
 EBCDIC ARRAY BUFFER [*];

PROCEDURE GET-HTTP-RESPONSE-HEADERS (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

REQUEST_TAG identifies the response.

MAX_NAME_LEN is the size of the header name column.

MAX_VALUE_LEN is the size of the header value column.

BUFFER is the buffer into which the data is returned, in the character set of the
application, represented as pairs of strings.

NUM_PAIRS is the number of pairs returned.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD REQUEST-TAG A6

 SD MAX-NAME-LEN N5

 SD MAX-VALUE-LEN N5

 SD BUFFER-SIZE N5

 SD BUFFER An

 SD NUM-PAIRS N5

[bin]

BUFFER size, for example, 1200 = 120*10

[longa]

The format of the data returned in BUFFER is the same as for COBOL programs.

Possible Result Values

In addition to the standard return results, these possible values can be returned.

Value Description

-72 Response contains no content.

-83 Response is not complete (asynchronous mode).

 HTTP Client Applications

3826 5286–007 9–29

Example

In COBOL, you might declare the following:

 01 NAME-VALUE-BUFFER.

 03 NAME-VALUE-PAIR OCCURS 10 TIMES.

 05 HEADER-NAME PIC X(20).

 05 HEADER-VALUE PIC X(100).

The call to GET_HTTP_RESPONSE_HEADERS passes NAME-VALUE-BUFFER, with
MAX_NAME_LEN set to 20 and MAX_VALUE_LEN set to 100.

GET_HTTP_RESPONSE_STATUS

Returns the status of the response to the application with information from the HTTP
response status line. The application can use this procedure on asynchronous
requests to determine whether or not the response is complete.

Syntax

INTEGER PROCEDURE GET_HTTP_RESPONSE_STATUS
 (REQUEST_TAG, VERSION, STATUS_CODE, REASON);
 INTEGER REQUEST_TAG, STATUS_CODE;
 EBCDIC ARRAY VERSION, REASON [0];

INTEGER PROCEDURE getHttpResponseStatus
 (REQUEST_TAG, VERSION, STATUS_CODE, REASON);
 VALUE REQUEST_TAG;
 INTEGER REQUEST_TAG, STATUS_CODE;
 EBCDIC ARRAY VERSION, REASON [*];

PROCEDURE GET-HTTP-RESPONSE-STATUS (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

REQUEST_TAG identifies the response.

VERSION is the HTTP version of the response in the character set of the application.
An example is 1.1.

STATUS_CODE is the HTTP response code if the response is complete; otherwise, the
value is zero.

REASON is the HTTP reason phrase in the character set of the application.

GLB_PARAM has the following format:

HTTP Client Applications

9–30 3826 5286–007

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD REQUEST-TAG A6

 SD VERSION-SIZE N5

 SD VERSION An

 SD STATUS-CODE N12

 SD REASON-SIZE N5

 SD REASON An

[bin]

VERSION size, for example, 256

[longa]

REASON size, for example, 256

[longa]

Possible Result Values

In addition to the standard return results, these possible values can be returned.

Value Description

-72 Response contains no content.

-83 Response is not complete (asynchronous mode) or request not placed.

GET_HTTP_SOCKET_OPTION

Inquiries on a socket object in the WEBAPPSUPPORT library. The socket options
supported are those supported by the SOCKETSUPPORT library. See the MCP Sockets
Service Programming Guide, SockLib_GetSockOpt function for more information.

Two procedures are available for EAE applications to get socket options—one passing
integers and one passing a string.

Syntax

INTEGER PROCEDURE GET_HTTP_SOCKET_OPTION
 (SOCKET_TAG, LEVEL, OPTION, OPTVAL, OPTLEN,
OPTRESULT);
 INTEGER SOCKET_TAG, LEVEL, OPTION, OPTLEN,
OPTRESULT;
 EBCDIC ARRAY OPTVAL [0];

INTEGER PROCEDURE getHttpSocketOption
 (SOCKET_TAG, LEVEL, OPTION, OPTVAL, OPTLEN,
OPTRESULT);
 VALUE SOCKET_TAG, LEVEL, OPTION;
 INTEGER SOCKET_TAG, LEVEL, OPTION, OPTLEN,
OPTRESULT;
 EBCDIC ARRAY OPTVAL [*];

PROCEDURE GET-HTTP-SOCKET-INTOPTION (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

PROCEDURE GET-HTTP-SOCKET-STROPTION (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

 HTTP Client Applications

3826 5286–007 9–31

Parameters

SOCKET_TAG identifies the socket object.

LEVEL, OPTION, OPTVAL, OPTLEN are described in the MCP Sockets Service
Programming Guide, SockLib_GetSockOpt function.

OPTRESULT is the result returned from the SockLib_GetSockOpt function.

For the GET-HTTP-SOCKET-INTOPTION procedure, GLB_PARAM has the following
format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD SOCKET-TAG A6

 SD LEVEL N12

 SD OPTION N12

 SD OPTLEN N5

 SD OPTVAL-INT1 S12

 SD OPTVAL-INT2 S12

 SD OPTRESULT S12

[bin]

6 if only INT1 is needed; otherwise, 12

For the GET-HTTP-SOCKET-STROPTION procedure, GLB_PARAM has the following
format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD SOCKET-TAG A6

 SD LEVEL N12

 SD OPTION N12

 SD OPTVAL-SIZE N5

 SD OPTVAL An

 SD OPTLEN N12

 SD OPTRESULT S12

[bin]

OPTVAL size, for example, 2048

[longa]

Possible Result Values

In addition to the standard return results, these possible values can be returned.

Value Description

−73 Invalid socket tag

HTTP Client Applications

9–32 3826 5286–007

INIT_HTTP_REQUEST

Initializes a request object so that it can be reused for another request. Request
information set on the request object, such as request headers, is not changed.

Syntax

INTEGER PROCEDURE INIT_HTTP_REQUEST
 (REQUEST_TAG);
 INTEGER REQUEST_TAG;

INTEGER PROCEDURE initHttpRequest
 (REQUEST_TAG);
 VALUE REQUEST_TAG;
 INTEGER REQUEST_TAG;

PROCEDURE INIT-HTTP-REQUEST (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

REQUEST_TAG identifies the request object.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD REQUEST-TAG A6

[bin]

Possible Result Values

In addition to the standard return results, these possible values can be returned.

Value Description

−72 The request tag is invalid.

 HTTP Client Applications

3826 5286–007 9–33

SET_HTTP_CLIENT_ATTR

Sets optional attributes of the HTTP client object.

Syntax

INTEGER PROCEDURE SET_HTTP_CLIENT_ATTR
 (CLIENT_TAG,ATTR, ATTR_VALUE,
ATTR_STRING);
 INTEGER CLIENT_TAG,ATTR, ATTR_VALUE;
 EBCDIC ARRAY
ATTR_STRING [0];

INTEGER PROCEDURE setHTTPclientAttr
 (CLIENT_TAG,ATTR, ATTR_VALUE,
ATTR_STRING);
 VALUE CLIENT_TAG,ATTR, ATTR_VALUE;
 INTEGER CLIENT_TAG,ATTR, ATTR_VALUE;
 EBCDIC ARRAY
ATTR_STRING [*];

PROCEDURE SET-HTTP-CLIENT-ATTR (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

CLIENT_TAG identifies the client object.

ATTR is the attribute being set.

1 (SET_COOKIE)

This attribute sets or clears a cookie stored in the client object. See “Cookie Handling”
previously in this section for links to specifications with details on cookie attribute
values.

If the domain attribute is not specified, then the nonstandard host attribute must be
specified. Host is the domain name or IP address of the originating server. Cookies are
only sent to the originating host if a domain is not specified.

If expires is set to a date in the past or Max-Age is set to zero, then the cookie is
deleted from the client object.

The following points list the values for the ATTR_VALUE parameter for the
SET_COOKIE attribute.

• If the value is 1, a Netscape-style cookie is set in the client object. If the cookie
already exists (matching the domain or host and the path), its value is overwritten
with the new value. The format of the ATTR_STRING parameter must be

name=value[; expires=date][; path=path][; domain=domain_name][;
secure][; host=host]

where name is the cookie name; value is the value of the cookie; and host is the
domain name or IP address that matches the name of the HOST in the host object.
The following is an example.

HTTP Client Applications

9–34 3826 5286–007

step=step1; domain=.httphost.com

• If the value is 2, an RFC 2109-style cookie is set in the client object. If the cookie
already exists, its value is overwritten with the new value. The format of the
ATTR_STRING parameter must be

name=value[; Comment=comment][; Domain=domain][; Max-Age=delta-
seconds][; Path=path][; Secure][; Version=digit] [; host=host]

where name is the cookie name; value is the value of the cookie; and host is the
domain name or IP address that matches the name of the HOST in the host object.
The following is an example.

step=″step1″; Version=″1″; Domain=″.httphost.com″

• if the value is 3, an RFC 2965-style cookie is set in the client object. If the cookie
already exists, its value is overwritten with the new value. The format of the
ATTR_STRING parameter must be.

name=value[; Comment=comment][; CommentURL=http-url][; Discard][;
Domain=domain][; Max-Age=delta-seconds][; Path=path][; Port=port-
list][; Secure][; Version=digit] [; host=host]

where name is the cookie name; value is the value of the cookie; and host is the
domain name or IP address that matches the name of the HOST in the host object.
If Port is specified, a port list must be specified. The following is an example.

step=″step1″; Version=″1″; Domain=″.httphost.com″; Port=″80″

2 (SET_CREDENTIAL)

This attribute sets or clears a credential stored in the client object.

The following points list the values for the ATTR_VALUE parameter for the
SET_CREDENTIAL attribute.

• If the value is 1, a HTTP Basic credential is set in the client object. The format of
the ATTR_STRING parameter must be

username:password;host;realm

where username and password are the username and password to be sent in the
request; host is the domain name or IP address that matches the name of the
server in the host object; and realm is the realm of the request.

If an HTTP Basic credential matching the same host and realm exists, the old
credential is replaced by the new one. The following is an example.

sjones:pass1;paymentserver.com;/

• The value of 2 is reserved.

• If the value is 3, an NTLM credential with a username and password is set in the
client object. The format of the ATTR_STRING parameter must be

username:password;host;domain

 HTTP Client Applications

3826 5286–007 9–35

where username and password are the username and password to be sent in the
request; host is the domain name or IP address that matches the name of the
server in the host object; and domain is the domain in which the user is
authenticated. The following is an example.

sjones:pass1;paymentserver.com;na

• If the value is 4, an NTLM credential using a credentials file is set in the client
object. The format of the ATTR_STRING parameter must be

username;host;server

where username is the username for the request; host is the domain name or IP
address that matches the name of the server in the host object; and server is the
host name used for creating the credentials file. The following is an example.

sjones:paymentserver.com;paymentserver

The use of ATTR_STRING is described in the previous points. For any settings that do
not define a use for it, the application should set it to a null string.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD CLIENT-TAG A6

 SD ATTR N5

 SD ATTR-VALUE S12

 SD ATTR-STRING-SIZE N5

 SD ATTR-STRING An

[bin]

ATTR-STRING size, for example, 256

[longa]

Possible Result Values

In addition to the standard return results, these possible values can be returned.

Value Description

−84 Invalid credential

−85 Invalid cookie

SET_HTTP_OPTION

SET_HTTP_OPTION controls options specific to processing of HTTP client requests.

Syntax

INTEGER PROCEDURE SET_HTTP_OPTION
 (OPTION, OPTION_VALUE, OPTION_STRING);
 INTEGER OPTION, OPTION_VALUE;
 EBCDIC ARRAY OPTION_STRING [0];

HTTP Client Applications

9–36 3826 5286–007

INTEGER PROCEDURE setHTTPOption
 (OPTION, OPTION_VALUE, OPTION_STRING);
 VALUE OPTION, OPTION_VALUE;
 INTEGER OPTION, OPTION_VALUE;
 EBCDIC ARRAY OPTION_STRING [*];

PROCEDURE SET-HTTP-OPTION (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

OPTION is the option being set. Supported options are 1 (DECOMPRESS), 2
(FOLLOW_REDIRECTS), 3 (REQUEST_LEVEL), 4 (STORE_COOKIES), 5 (SYNCHRONOUS),
6 (USER_AGENT), and 7(REQUEST_TIMEOUT).

1 (DECOMPRESS)

This option controls whether or not to automatically decompress compressed content
in the response.

If the value of OPTION_VALUE is 0, do not compress. The compressed content is
returned to the application in the GET_HTTP_RESPONSE_CONTENT procedure.

If the value of OPTION_VALUE is 1, automatically decompress response content that
was compressed by the server. This value is the default.

2 (FOLLOW_REDIRECTS)

This option controls whether or not to automatically follow redirects from the server.

If the OPTION_VALUE is 0, do not follow redirects to the server. The redirect response
is returned to the application.

If the OPTION_VALUE is 1, automatically follow redirects from the server. This value is
the default.

If the server redirects the request from a non-SSL request (http://) to an SSL request
(https://), the only SSL socket option set on behalf of the client is the SSL_Client_Mode
option that is set to Client Mode. If other SSL socket settings are needed to process
the redirected request, the application should set this option to 0 and handle the
redirect itself.

3 (REQUEST_LEVEL)

This option sets the HTTP level to use on requests.

If the OPTION_VALUE is 0, use HTTP/1.0.

If the OPTION_VALUE is 1, use HTTP/1.1. This value is the default.

4 (STORE_COOKIES)

This option controls whether or not to save cookies received from the server and
automatically resend them on subsequent requests.

 HTTP Client Applications

3826 5286–007 9–37

If the OPTION_VALUE is 0, do not store cookies received from the server.

If the OPTION_VALUE is 1, store cookies received from the server in the client object,
and resend them on subsequent requests to the same path and domain. This value is
the default.

5 (SYNCHRONOUS)

This option controls whether or not requests are made synchronously or
asynchronously.

If the OPTION_VALUE is 0, requests are made synchronously. This value is the default.

If the OPTION_VALUE is 1, requests are made asynchronously.

6 (USER_AGENT)

This option controls whether or not the HTTP header User-Agent is sent by default
with the request.

If the OPTION_VALUE is 0, do not send a User-Agent header by default.

If the OPTION_VALUE is 1, send the NAME task attribute of the application as the
User-Agent header. This value is the default.

7 (REQUEST_TIMEOUT)

This option specifies the number of seconds to wait for a response from the HTTP
server.

OPTION_VALUE is the number of seconds. The default is 15 seconds. If
OPTION_VALUE is less than 1, then 1 second is used.

The use of OPTION_STRING is described in the previous option descriptions. If the
option does not use OPTION_STRING, the application should set OPTION_STRING to a
null string.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD OPTION A6

 SD OPTION-VALUE N12

 SD OPTION-STRING-SIZE N5

 SD OPTION-STRING An

[bin]

OPTION-STRING size, for example, 5000

[longa]

HTTP Client Applications

9–38 3826 5286–007

Possible Result Values

In addition to the standard results, these possible values can be returned.

Value Description

0 Option or value not supported

1 Setting accepted.

SET_HTTP_REQUEST_CONTENT

Sets content for the request.

The content can come either from an array in the application or from an MCP file. If the
content comes from an MCP file, the file must be accessible by the application and
can be cached by the WEBAPPSUPPORT library.

This procedure can translate the content before including into the response. An
example is translating from ASERIESEBCDIC supplied by the application to ASCII.

Content can either be supplied as one block of data, or with multiple calls to this
procedure, it can be supplied in “chunks.” Chunked input allows sending content that
is dynamic in size. This technique is valuable when supplying the total content in one
call to this procedure is difficult.

Syntax

INTEGER PROCEDURE SET_HTTP_REQUEST_CONTENT
 (REQUEST_TAG, SOURCE_TYPE, TRANSLATE, CHUNKED,
 CONTENT, CONTENT_START, CONTENT_LEN);
 INTEGER REQUEST_TAG, SOURCE_TYPE, TRANSLATE, CHUNKED,
 CONTENT_START, CONTENT_LEN;
 EBCDIC ARRAY CONTENT [0];

INTEGER PROCEDURE setHttpRequestContent
 (REQUEST_TAG, SOURCE_TYPE, TRANSLATE, CHUNKED,
 CONTENT, CONTENT_START, CONTENT_LEN);
 VALUE REQUEST_TAG, SOURCE_TYPE, TRANSLATE, CHUNKED,
 CONTENT_START, CONTENT_LEN;
 INTEGER REQUEST_TAG, SOURCE_TYPE, TRANSLATE, CHUNKED,
 CONTENT_START, CONTENT_LEN;
 EBCDIC ARRAY CONTENT [*];

PROCEDURE SET-HTTP-REQUEST-CONTENT (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

REQUEST_TAG identifies the request object.

SOURCE_TYPE identifies the source of the content.

 HTTP Client Applications

3826 5286–007 9–39

If SOURCE_TYPE is 1, the CONTENT parameter contains the content to be put into the
response.

If SOURCE_TYPE is 2, the CONTENT parameter contains the MCP file name of the
content to be put into the response. See the FILENAME_FORMAT option in the
SET_OPTION procedure.

TRANSLATE indicates whether or not to translate the content before including it in the
response.

If TRANSLATE is 0, do not translate the content.

If TRANSLATE is 1, translate the content before including it in the response and use
the character sets of the application and client, respectively, as the source and
destination character sets. See the SET_TRANSLATION procedure.

CHUNKED indicates whether or not the content is supplied in one or multiple calls to
this procedure.

IF CHUNKED is 0, the content supplied is the only content for the response.

If CHUNKED is 1, the content supplied is one of a set of content chunks.

CONTENT identifies the request content.

CONTENT_START is the zero-based offset into CONTENT and indicates where the
procedure finds the start of the content.

CONTENT_LEN is the length of the content in bytes. The maximum supported length is
approximately 0.5 TB. (See the TEMPFAMILY information in Section 3,
“WEBAPPSUPPORT General Parameters File.”) If zero or less is specified, the content
stored in the request is cleared.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD REQUEST-TAG A6

 SD SOURCE-TYPE N5

 SD TRANSLATE N5

 SD CHUNKED N5

 SD CONTENT-SIZE N5

 SD CONTENT An

 SD CONTENT-START N5

 SD CONTENT-LEN N5

[bin]

CONTENT size, for example, 2048

[longa]

HTTP Client Applications

9–40 3826 5286–007

Possible Result Values

In addition to the standard return results, these possible values can be returned.

Value Description

0 The TRANSLATE or CHUNKED value is not supported.

-47 The CONTENT_START offset is invalid.

-72 Invalid request tag

SET_HTTP_REQUEST_HEADER

Enables setting multiple headers with the same name in the request.

Syntax

INTEGER PROCEDURE SET_HTTP_REQUEST_HEADER
 (REQUEST_TAG, NAME, VALUE);
 INTEGER REQUEST_TAG;
 EBCDIC ARRAY NAME, VALUE [0];

INTEGER PROCEDURE setHttpRequestHeader
 (REQUEST_TAG, NAME, VALUE);
 VALUE REQUEST_TAG;
 INTEGER REQUEST_TAG;
 EBCDIC ARRAY NAME, VALUE [*];

PROCEDURE SET-HTTP-REQUEST-HEADER (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

REQUEST_TAG identifies the request object.

NAME identifies the response header, coded in the character set of the application,
and it must not be an empty string. An example is User-Agent.

VALUE identifies the returned header value, coded in the character set of the
application, and it can be an empty string. An example is Acme Accounts Receivable.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD REQUEST-TAG A6

 SD NAME-SIZE N5

 SD NAME An

 SD VALUE-SIZE N5

 SD VALUE An

[bin]

NAME size, for example, 256

[longa]

VALUE size, for example, 256

[longa]

 HTTP Client Applications

3826 5286–007 9–41

Possible Result Values

In addition to the standard return results, these possible values can be returned.

Value Description

−72 Invalid request tag

SET_HTTP_REQUEST_QUERY

Sets a query string for the response. The application can either supply a query string
or a set of name-value pairs.

The maximum length of a URL-encoded query string is 2048 bytes.

If name-value pairs are given, the procedure does the following URL encoding of the
data:

• Embedded space characters in the string(s) are replaced by plus (+) signs.

• Non-alphanumeric characters are escaped as percent-encoded, a percent sign (%)
followed by two hexadecimal characters of the ASCII-equivalent. For example. an
ampersand (&) is encoded as %26.

Syntax

INTEGER PROCEDURE SET_HTTP_REQUEST_QUERY
 (REQUEST_TAG, MAX_NAME_LEN, MAX_VALUE_LEN,
 BUFFER, NUM_PAIRS);
 INTEGER REQUEST_TAG, MAX_NAME_LEN, MAX_VALUE_LEN,
 NUM_PAIRS;
 EBCDIC ARRAY BUFFER [0];

INTEGER PROCEDURE setHttpRequestQuery
 (REQUEST_TAG, MAX_NAME_LEN, MAX_VALUE_LEN,
 BUFFER, NUM_PAIRS);
 VALUE REQUEST_TAG, MAX_NAME_LEN, MAX_VALUE_LEN;
 INTEGER REQUEST_TAG, MAX_NAME_LEN, MAX_VALUE_LEN,
 NUM_PAIRS;
 EBCDIC ARRAY BUFFER [*];

PROCEDURE SET-HTTP-REQUEST-QUERY (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

REQUEST_TAG identifies the response.

MAX_NAME_LEN is the size of the header name column.

MAX_VALUE_LEN is the size of the header value column.

HTTP Client Applications

9–42 3826 5286–007

BUFFER is the array containing the query string or set of name-value pairs in the
character set of the application. If BUFFER is a null string, the query string is cleared in
the request.

NUM_PAIRS is the number of name-value pairs. If set to zero, BUFFER contains a
query string; otherwise, it contains name-value pairs.

GLB_PARAM has the following format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD REQUEST-TAG A6

 SD MAX-NAME-LEN N5

 SD MAX-VALUE-LEN N5

 SD BUFFER-SIZE N5

 SD BUFFER An

 SD NUM-PAIRS N5

[bin]

BUFFER size, for example, 2048

[longa]

Possible Result Values

In addition to the standard return results, these possible values can be returned.

Value Description

−72 Invalid request tag

Example

In COBOL, you might declare the following:

 01 NAME-VALUE-BUFFER.
 03 NAME-VALUE-PAIR OCCURS 10 TIMES.
 05 QUERY-NAME PIC X(20).
 05 QUERY -VALUE PIC X(100).

The call to SET_HTTP_REQUEST_QUERY passes NAME-VALUE-BUFFER with
MAX_NAME_LEN set to 20, MAX_VALUE_LEN set to 100, and NUM_PAIRS set to the
number of pairs.

SET_HTTP_SOCKET_OPTION

Modifies a socket object in the WEBAPPSUPPORT library. The socket options
supported are those supported by the SOCKETSUPPORT library. See the MCP Sockets
Service Programming Guide, SockLib_SetSockOpt function for more information.

The options shown in the following table are set by default on each HTTP socket. The
application can override these settings by calling the SET_HTTP_SOCKET_OPTION
procedure.

 HTTP Client Applications

3826 5286–007 9–43

Level Option Value Description

SOL_Socket SO_RcvTimeO 1 second The application should not change this

setting; response timeouts are managed by

the WEBAPPSUPPORT library.

Two procedures are available for EAE applications to set socket options—one passing
integers and one passing a string.

Syntax

INTEGER PROCEDURE SET_HTTP_SOCKET_OPTION
 (SOCKET_TAG, LEVEL, OPTION, OPTVAL, OPTLEN,
OPTRESULT);
 INTEGER SOCKET_TAG, LEVEL, OPTION, OPTLEN,
OPTRESULT;
 EBCDIC ARRAY OPTVAL [0];

INTEGER PROCEDURE setHttpSocketOption
 (SOCKET_TAG, LEVEL, OPTION, OPTVAL, OPTLEN,
OPTRESULT);
 VALUE SOCKET_TAG, LEVEL, OPTION, OPTLEN;
 INTEGER SOCKET_TAG, LEVEL, OPTION, OPTLEN,
OPTRESULT;
 EBCDIC ARRAY OPTVAL [*];

PROCEDURE SET-HTTP-SOCKET-INTOPTION (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

PROCEDURE SET-HTTP-SOCKET-STROPTION (GLB_PARAM);
 EBCDIC ARRAY GLB_PARAM [0];

Parameters

SOCKET_TAG identifies the socket object.

LEVEL, OPTION, OPTVAL, OPTLEN are described in the MCP Sockets Service
Programming Guide, SockLib_SetSockOpt function.

OPTRESULT is the result returned from the SockLib_SetSockOpt function.

HTTP Client Applications

9–44 3826 5286–007

For the SET-HTTP-SOCKET-INTOPTION procedure, GLB_PARAM has the following
format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD SOCKET-TAG A6

 SD LEVEL N12

 SD OPTION N12

 SD OPTLEN N5

 SD OPTVAL-INT1 S12

 SD OPTVAL-INT2 S12

 SD OPTRESULT S12

[bin]

6 if only INT1 is needed; otherwise, 12

For the SET-HTTP-SOCKET-STROPTION procedure, GLB_PARAM has the following
format:

Format Notes

SG-GLB-PARAM GROUP

 SG-PARAM GROUP

 SD RESULT S5

 SD SOCKET-TAG A6

 SD LEVEL N12

 SD OPTION N12

 SD OPTVAL-SIZE N5

 SD OPTVAL An

 SD OPTLEN N12

 SD OPTRESULT S12

[bin]

OPTVAL size, for example, 2048

[longa]

Possible Result Values

In addition to the standard return results, these possible values can be returned. Other
errors are returned by the SockLib_SetSockOpt function.

Value Description

−73 Invalid socket tag

3826 5286–007 10–1

Section 10
Using Regular Expressions

The Regular Expressions feature enables applications to apply expressions to data,

similar to the way that the Perl compatible Regular Expressions (PCRE)

(http://www.pcre.org/) package is used. The PCRE library is a set of functions that

implement regular expression pattern matching using the same syntax and semantics

as Perl 5.

The product component for Regular Expressions in the CCF is REGEXPRESSION.

The CCF product also provides sample applications that demonstrate using Regular

Expressions. The COBOL85 sample application is

*SYSTEM/CCF/REGULAREXPRESSION/SAMPLE/COBOL, and the ALGOL sample

application is *SYSTEM/CCF/REGULAREXPRESSION/SAMPLE/ALGOL. These sample

applications use basic, regular expressions to show multiple dates extracted from a

string.

See Section 1, “Regular Expressions” for limitations and character set handling

information about the Regular Expressions feature.

PCRE API Mapping to WEBAPPSUPPORT

Procedures

Table 10–1 summarizes the mapping of PCRE functions to WEBAPPSUPPORT

procedures.

Table 10–1. PCRE Functions Mapped to WEBAPPSUPPORT Procedures

PCRE WEBAPPSUPPORT

pcre *pcre_compile(const char *pattern,

int options, const char **errptr, int

*erroffset, const unsigned char

*tableptr);

Compiles a pattern into an internal form.

pcre_compile2 also returns an error

code.

The COMPILE_RE_PATTERN procedure performs

the equivalent function of pcre_compile2,

returning an error code.

http://www.pcre.org/

Using Regular Expressions

10–2 3826 5286–007

Table 10–1. PCRE Functions Mapped to WEBAPPSUPPORT Procedures

PCRE WEBAPPSUPPORT

int pcre_config(int what, void *where);

Allows a pcre client to find out what

features have been compiled into the

pcre library.

An equivalent procedure is not provided; the

defaults for the SET_RE_OPTION procedure

identify the compiled settings.

int pcre_copy_named_substring(const

pcre *code, const char *subject, int

*ovector, int stringcount, const char

*stringname, char *buffer, int

buffersize);

Extracts a captured substring by name.

An equivalent procedure is not provided; the

application gets all substrings that were found

from an execute call.

int pcre_copy_substring(const char

*subject, int *ovector, int stringcount,

int stringnumber, char *buffer, int

buffersize);

Extracts a captured substring by

number.

An equivalent procedure is not provided; the

application gets all substrings that were found

from an execute call.

int pcre_dfa_exec(const pcre *code,

const pcre_extra *extra, const char

*subject, int length, int startoffset, int

options, int *ovector, int ovecsize, int

*workspace, int wscount);

Matches a subject string against a

compiled pattern; returns multiple

matches.

The EXECUTE_RE procedure returns multiple

matches if the MATCH_ALGORITHM option is set

in the SET_RE_OPTION procedure.

int pcre_exec(const pcre *code, const

pcre_extra *extra, const char *subject,

int length, int startoffset, int options, int

*ovector, int ovecsize);

Matches a subject string against a

compiled pattern; returns the first

match.

The EXECUTE_RE procedure returns the first

match if the MATCH_ALGORITHM option is reset

in the SET_RE_OPTION procedure.

void pcre_free_substring(const char

*stringptr);

Frees the memory of a call to

pcre_get_substring.

An equivalent procedure is not provided; all

substrings are given to the application in the

EXECUTE_RE call.

 Using Regular Expressions

3826 5286–007 10–3

Table 10–1. PCRE Functions Mapped to WEBAPPSUPPORT Procedures

PCRE WEBAPPSUPPORT

void pcre_free_substring_list(const char

**stringptr);

Frees the memory of a call to

pcre_get_substring_list.

An equivalent procedure is not provided; all

substrings are given to the application in the

EXECUTE_RE call.

int pcre_fullinfo(const pcre *code, const

pcre_extra *extra, int what, void

*where);

int pcre_info(const pcre *code, int

*optptr, int *firstcharptr);

pcre_fullinfo returns information about a

compiled pattern; pcre_info returns

partial information and is obsolete.

An equivalent procedure is not provided.

int pcre_get_named_substring(const

pcre *code, const char *subject, int

*ovector, int stringcount, const char

*stringname, const char **stringptr);

Extracts a captured substring by name.

An equivalent procedure is not provided; all

substrings are given to the application in the

EXECUTE_RE call.

int pcre_get_stringnumber(const pcre

*code, const char *name);

Gets the number of a captured

substring by name.

An equivalent procedure is not provided; all

substrings are given to the application in the

EXECUTE_RE call.

int pcre_get_stringtable_entries(const

pcre *code, const char *name, char

**first, char **last);

Gets full details of all captured

substrings for a given name.

An equivalent procedure is not provided; all

substrings are given to the application in the

EXECUTE_RE call.

int pcre_get_substring(const char

*subject, int *ovector, int stringcount,

int stringnumber, const char **stringptr);

Extracts a captured substring by

number.

An equivalent procedure is not provided; all

substrings are given to the application in the

EXECUTE_RE call.

Using Regular Expressions

10–4 3826 5286–007

Table 10–1. PCRE Functions Mapped to WEBAPPSUPPORT Procedures

PCRE WEBAPPSUPPORT

int pcre_get_substring_list(const char

*subject, int *ovector, int stringcount,

const char ***listptr);

Extracts a captured list of substrings by

number.

An equivalent procedure is not provided; all

substrings are given to the application in the

EXECUTE_RE call.

const unsigned char

*pcre_maketables(void);

Builds a set of external tables in the

current locale for passing to

pcre_compile, pcre_exec, or

pcre_dfa_exec.

An equivalent procedure is not provided.

int pcre_refcount(pcre *code, int adjust);

Maintains a reference count in a data

block that contains a compiled pattern.

An equivalent procedure is not provided.

pcre_extra *pcre_study(const pcre

*code, int options, const char **errptr);

Analyzes a compiled pattern to speed

up matching.

Studying patterns is an option of the

COMPILE_RE_PATTERN procedure (STUDY option

of the SET_RE_OPTION procedure). The studied

data is stored in the WEBAPPSUPPORT library

along with the compiled pattern.

char *pcre_version(void);

Returns a string containing the PCRE

version and its date of release.

The GET_RE_VERSION procedure provides similar

functionality.

void *(*pcre_malloc)(size_t);

void (*pcre_free)(void *);

void *(*pcre_stack_malloc)(size_t);

void (*pcre_stack_free)(void *);

int (*pcre_callout)(pcre_callout_block *);

These procedures are not needed by the

application.

 Using Regular Expressions

3826 5286–007 10–5

WEBAPPSUPPORT Library Procedures for Regular

Expressions

The procedures in this section each describe an entry point compatible with COBOL

with all uppercase and with underscores, for example EXECUTE_RE, and an entry point

compatible with ALGOL with mixed upper- and lowercase containing no underscores,

for example executeRE.

COMPILE_RE_PATTERN

Compiles a pattern for use with the EXECUTE_RE procedure.

See the SET_RE_OPTION procedure for options that affect pattern compilation.

Syntax

INTEGER PROCEDURE COMPILE_RE_PATTERN
 (PATTERN, PATTERN_START, PATTERN_LENGTH, PATTERN_TAG,
 ERROR_CODE, ERROR_TEXT);
 EBCDIC ARRAY PATTERN, ERROR_TEXT [0];
 INTEGER PATTERN_START, PATTERN_LENGTH, PATTERN_TAG,
 ERROR_CODE;

INTEGER PROCEDURE compileREpattern
 (PATTERN, PATTERN_START, PATTERN_LENGTH, PATTERN_TAG,
 ERROR_CODE, ERROR_TEXT);
 VALUE PATTERN_START, PATTERN_LENGTH;
 EBCDIC ARRAY PATTERN, ERROR_TEXT [*];
 INTEGER PATTERN_START, PATTERN_LENGTH, PATTERN_TAG,
 ERROR_CODE;

Parameters

PATTERN is the pattern string to be compiled in the application character set.

PATTERN_START is the zero-based offset into PATTERN where the pattern string

starts.

PATTERN_LENGTH is the length in bytes of the pattern string. If the application

character set is translatable to 7-bit ASCII, PATTERN_LENGTH can be zero and

PATTERN contains a string terminated by blanks or a null byte.

PATTERN_TAG is the tag that references the compiled pattern.

ERROR_CODE is the error code returned by PCRE when a compilation fails. Zero is

returned if the compile succeeds.

ERROR_TEXT is the text for the error code in the application character set. This string

is null if the compile succeeds.

Using Regular Expressions

10–6 3826 5286–007

Possible Return Values

In addition to the standard results, these possible values can be returned.

Value Description

100 The regular expression pattern is invalid.

101 The maximum number of patterns stored is exceeded.

EXECUTE_RE

Executes a regular expression against a subject string using a pattern compiled with

the COMPILE_RE_PATTERN procedure.

See the SET_RE_OPTION procedure for options that affect pattern execution.

Syntax

INTEGER PROCEDURE EXECUTE_RE
 (PATTERN_TAG, SUBJECT, SUBJECT_START, SUBJECT_LEN,
 NUM_SUBSTRINGS, SUBSTRING_OFFSETS,
 SUBSTRING_LENS, MAX_SUBSTRING_LEN,
 SUBSTRING_BUFFER);
 INTEGER PATTERN_TAG, SUBJECT_START, SUBJECT_LEN,
 NUM_SUBSTRINGS; MAX_SUBSTRING_LEN;
 EBCDIC ARRAY SUBJECT,
 SUBSTRING_BUFFER [0];
 INTEGER ARRAY SUBSTRING_OFFSETS,
 SUBSTRING_LENS [0];

INTEGER PROCEDURE executeRE
 (PATTERN_TAG, SUBJECT, SUBJECT_START, SUBJECT_LEN,
 NUM_SUBSTRINGS, SUBSTRING_OFFSETS,
 SUBSTRING_LENS, MAX_SUBSTRING_LEN,
 SUBSTRING_BUFFER);
 VALUE PATTERN_TAG, SUBJECT_START, SUBJECT_LEN,
MAX_SUBSTRING_LEN;
 INTEGER PATTERN_TAG, SUBJECT_START, SUBJECT_LEN,
 NUM_SUBSTRINGS; MAX_SUBSTRING_LEN;
 EBCDIC ARRAY SUBJECT,
 SUBSTRING_BUFFER [*];
 INTEGER ARRAY SUBSTRING_OFFSETS,
 SUBSTRING_LENS [*];

Parameters

PATTERN_TAG is the tag that references the compiled pattern.

SUBJECT is the subject string in the application character set.

SUBJECT_START is the zero-based offset into SUBJECT where the subject string

starts.

SUBJECT_LEN is the length in bytes of the subject string. If zero, SUBJECT contains a

string terminated by blanks or a null byte.

 Using Regular Expressions

3826 5286–007 10–7

NUM_SUBSTRINGS is the number of substrings that the expression yielded.

SUBSTRING_OFFSETS is the array of zero-based offsets into SUBJECT where each

resulting substring starts.

SUBSTRING_LENS is the array of lengths for each resulting substring.

MAX_SUBSTRING_LEN is the maximum length of a substring returned in

SUBSTRING_BUFFER. If less than or equal to zero, no substrings are copied into

SUBSTRING_BUFFER.

SUBSTRING_BUFFER is the buffer in the application character set where each

substring is stored.

Possible Return Values

In addition to the standard results, these possible values can be returned.

Value Description

0 No matching strings were found.

1 One or more matching substrings were found.

−102 The pattern tag is invalid.

−103 The UTF-8 sequence is invalid.

−104 The NEWLINE combination is invalid.

Example

Here is an example of SUBSTRING_BUFFER used for this procedure in COBOL:

 01 SUBSTRING-BUFFER.

 03 SUBSTRING-LIST OCCURS 10 TIMES.

 05 SUBSTRING PIC X(30).

The call to EXECUTE_RE passes SUBSTRING-BUFFER with MAX_SUBSTRING_LEN set

to 30.

Using Regular Expressions

10–8 3826 5286–007

FREE_RE_PATTERN

Frees a pattern no longer needed, which frees up resources in WEBAPPSUPPORT.

Syntax

INTEGER PROCEDURE FREE_RE_PATTERN
 (PATTERN_TAG);
 INTEGER PATTERN_TAG;

INTEGER PROCEDURE freeREpattern
 (PATTERN_TAG);
 VALUE PATTERN_TAG;
 INTEGER PATTERN_TAG;

Parameters

PATTERN_TAG is the tag that references the compiled pattern.

Possible Return Values

In addition to the standard results, these possible values can be returned.

Value Description

−102 The pattern tag is invalid.

GET_RE_VERSION

Returns the PCRE version supported.

Syntax

INTEGER PROCEDURE GET_RE_VERSION (VERSION);
 EBCDIC ARRAY VERSION [0];

INTEGER PROCEDURE getREversion (VERSION);
 EBCDIC ARRAY VERSION [*];

Parameters

VERSION is the PCRE version as a string in the application character set. For example:

8.02.

 Using Regular Expressions

3826 5286–007 10–9

SET_RE_OPTION

Sets an option for Regular Expressions compilation or processing.

Syntax

INTEGER PROCEDURE SET_RE_OPTION
 (OPTION, OPTION_VALUE, OPTION_STRING);
 INTEGER OPTION, OPTION_VALUE;
 EBCDIC ARRAY OPTION_STRING [0];

INTEGER PROCEDURE setREoption
 (OPTION, OPTION_VALUE, OPTION_STRING);
 VALUE OPTION, OPTION_VALUE;
 INTEGER OPTION, OPTION_VALUE;
 EBCDIC ARRAY OPTION_STRING [*];

Parameters

OPTION is the option being set. The following options are supported.

1 (STUDY)

Controls whether or not to perform an extra study of a pattern when compiling the

pattern. Using this option might improve the performance of executing regular

expressions

If the value is 0, this option specifies to not study the pattern. This value is the default.

If the value is 1, this option specifies to study the pattern when compiling.

2 (MATCH_ALGORITHM)

Controls the searching for pattern matches in the subject string.

If the value is 0, this option specifies the standard PCRE matching algorithm. The

searching stops at the first match to the pattern. The substrings of the match are also

returned. This value is the default.

If the value is 1, this option specifies an alternative PCRE matching algorithm. The

searching finds all matches to the pattern. The matches are returned in the substring

fields. Substrings of the matches are not returned.

3 (ANCHORED)

Controls whether or not to anchor the matching to the first matching point in the

string. If the value is set to 1 when the pattern is compiled, resetting this option before

an execute call has no effect.

If the value is 0, the pattern is not anchored. This value is the default.

If the value is 1, the pattern is anchored and matches only at the first matching point in

the string.

Using Regular Expressions

10–10 3826 5286–007

4 (BSR)

Controls the interpretation of the \R escape sequence in a pattern.

If the value is 0, the \R escape sequence is CRLF. This value is the default.

If the value is 1, the \R escape sequence is any combination of LF, CR, or CRLF.

If the value is 2, the \R escape sequence is any Unicode newline sequence. See the

NEWLINE option for a description of Unicode newline sequences.

5 (CASELESS)

Controls whether or not the pattern matches both upper- and lowercase characters.

If the value is 0, pattern matching is case sensitive. This value is the default.

If the value is 1, pattern matching is not case sensitive.

6 (DOLLAR_ENDONLY)

Controls whether or not a dollar meta-character in the pattern matches only at the end

of the subject string. This option is ignored if the MULTILINE option is set to 1.

If the value is 0, a dollar meta-character matches immediately before the end of each

newline. This value is the default.

If the value is 1, a dollar meta-character matches only at the end of the subject string.

7 (DOTALL)

Controls the matching of a dot meta-character in a pattern. A negative class such as

[^a] always matches newline characters, independent of the setting of this option.

If the value is 0, a dot meta-character does not match when the current position is at a

newline. This value is the default.

If the value is 1, a dot meta-character in the pattern matches all characters, including

those that indicate newline.

8 RESERVED

9 (EXTENDED)

Controls the handling of whitespace characters in a pattern. Whitespace does not

include the VT character (ASCII code 11).

If the value is 0, the whitespace characters in a pattern are not ignored. This value is

the default.

If the value is 1, the whitespace characters in a pattern are ignored unless escaped or

inside a character class.

 Using Regular Expressions

3826 5286–007 10–11

10 (EXTRA)

Controls handling of a backslash character in a pattern that is followed by a character

with no special meaning.

If the value is 0, a backslash followed by a character with no special meaning is treated

as a literal. This value is the default.

If the value is 1, a backslash followed by a character with no special meaning causes

an error.

11 (FIRSTLINE)

Controls whether or not an unanchored pattern is required to match at the first line.

If the value is 0, the pattern is not required to match at the first line. This value is the

default.

If the value is 1, the pattern is required to match before or at the first newline in the

subject string. The matched text can continue over a newline.

12 (JAVASCRIPT_COMPAT)

Controls whether to be compatible with Perl or JavaScript for the cases that are

different between the two.

If the value is 0, this value retains the Perl compatibility. This value is the default.

If the value is 1, this value changes the behavior to be compatible with JavaScript.

13 (MULTILINE)

Controls whether or not the subject string is treated as a single line or as multiple

lines. Setting this option has no effect in these three cases: if no newlines exist in a

subject string; if no occurrences of ^ exist; or if $ exists in a pattern. See also the

DOLLAR_ENDONLY option.

If the value is 0, the subject string is treated as a single line of characters. The "start of

line" meta-character (^) matches only at the start of the string, while the "end of line"

meta-character ($) matches only at the end of the string, or before a terminating

newline (unless PCRE_DOLLAR_ENDONLY is set). This value is the default

If the value is 1, the "start of line" and "end of line" constructs match immediately

following or immediately before internal newlines in the subject string, respectively, as

well as at the very start and end.

14 (NEWLINE)

Controls the interpretation of newlines.

If the value is 0, the character sequence CRLF is a newline. This value is the default

If the value is 1, the character sequence CR is a newline.

Using Regular Expressions

10–12 3826 5286–007

If the value is 2, the character sequence LF is a newline.

If the value is 3, any occurrence of the character sequence CR, LR, or CRLF is a

newline.

If the value is 4, any Unicode newline sequence is a newline. The Unicode newline

sequences are the settings in OPTION_VALUE = 3, plus the single characters VT

(vertical tab, U+000B), FF (form feed, U+000C), NEL (next line, U+0085), LS (line

separator, U+2028), and PS (paragraph separator, U+2029).

15 (NO_AUTO_CAPTURE)

Controls whether or not to make use of numbered capturing parenthesis in a pattern.

If the value is 0, the use of numbered capturing parenthesis in a pattern is enabled.

This value is the default.

If the value is 1, the use of numbered capturing parenthesis in a pattern is disabled.

16 (UNGREEDY)

Controls the “greediness” of the quantifiers.

If the value is 0, the quantifiers are greedy by default. This value is the default.

If the value is 1, the quantifiers are not greedy by default.

OPTION_STRING use is described in the previous option descriptions. The application

should set it to a null string for any settings that do not define a use for it.

Possible Return Values

In addition to the standard results, these possible values can be returned.

Value Description

0 Option or value is not supported.

These PCRE options are not exported to the application.

Option Explanation

PCRE_UTF8 This option is set internally if the pattern or subject strings are

passed to PCRE as UTF-8 strings.

PCRE_NO_UTF8_CHECK If WEBAPPSUPPORT performs the translation to UTF-8 as part of

compiling the pattern or executing the expression, it sets this

option internally. If the application supplies the UTF-8 string this

option is reset to PCRE.

3826 5286–007 Index–1

Index

A

access to external DTD and schema files,

locating the files to facilitate, 4-19

ALGOL code for parsing an XML

document, 7-2

ALGOL example application code, 2-33

allocating enough memory to the JVM, 4-18

API for the XML Parser, 5-1

APPEND_CHILD procedure, 6-8

application character sets

specifying, 5-9

supported by XML Parser, 5-9

application programming interface for the

XML Parser

examples of using, 5-1

using, 5-1

application response from WEBPCM

Transaction Server, 2-23

applications

ALGOL example (WEBPCM), 2-33

COBOL example (WEBPCM), 2-29

design considerations, 2-10

enabling for the Web, 2-5

localizing, 2-16

process for working with WEBPCM, 2-7

remote files and direct window

applications, 2-10

serving Web and nonWeb users, 2-12

architecture of

HTTP Client, 1-21

XML Parser, 1-13

attribute node entity references, using, 5-13

attribute value, setting or deleting, 5-3

authorizing users, 2-14

B

BIND_HTTP_SOCKET procedure, 9-9

C

character entity references, using, 5-13

character set handling in HTTP

applications, 9-5

character set handling of Regular

Expressions, 1-24

character set, application

specifying, 5-9

supported by XML Parser, 5-9

character set, document

encoding strings that specify, 5-10

example, 5-12

specifying, 5-10

character sets

processing with WEBPCM, 2-17

supported by WEBPCM, 2-12

character sets, overview of specifying, 5-9

checking the log file for the JPM, 8-3

children of a node, deleting, 5-4

cipher reference, 5-5, 5-6

CLEANUP procedure, 3-12

COBOL85 code for parsing an XML

document, 7-1

code for parsing an XML document

ALGOL, 7-2

COBOL85, 7-1

code sample, using, 5-17

command in the WEBAPPSUPPORT library,

STATUS, 8-1

communication between the JPM and HTTP

servers, ensuring the efficiency

of, 4-20

communication between the

WEBAPPSUPPORT library and the

JPM, 4-17

COMPILE_RE_PATTERN procedure, 10-5

configuration file

JPM, 4-17

XML Parser, 4-16

configuring

EVLAN communication between the MCP

and the JProcessor, 4-19

Java Parser Module (JPM), 4-9

Index

Index–2 3826 5286–007

permanent stations, 2-20

single request stations, 2-20

XML Parser, 4-3, 4-10

CONVERT_COMMA_TEXT_TO_JSON

procedure, 6-10

CONVERT_XML_DOCUMENT_TO_JSON

procedure, 6-14

CONVERT_XML_TO_JSON procedure, 6-16

CREATE_ATTR_NODE procedure, 6-18

CREATE_CDATA_NODE procedure, 6-20

CREATE_CIPHER_REFERENCE

procedure, 6-21

CREATE_COMMENT_NODE procedure, 6-23

CREATE_DOCTYPE_NODE procedure, 6-24

CREATE_ELEMENT_NODE procedure, 6-26

CREATE_ENTITYREF_NODE procedure, 6-27

CREATE_HTTP_CLIENT procedure, 9-11

CREATE_HTTP_HOST procedure, 9-12

CREATE_HTTP_OBJECTS procedure, 9-13

CREATE_HTTP_REQUEST procedure, 9-14

CREATE_HTTP_SOCKET procedure, 9-15

CREATE_KEY procedure, 3-12

CREATE_PI_NODE procedure, 6-28

CREATE_TEXT_ELEMENT procedure, 6-30

CREATE_TEXT_NODE procedure, 6-33

CREATE_XML_DOCUMENT procedure, 6-34

creating an XML document, 5-2

crunching files, 3-55

CURRENT_UTIME procedure, 3-14

D

data, merging, 2-17

DATE_TO_TIME57 procedure, 3-15

DECODE_BINARY64 procedure, 3-16

DECODE_UTF8 procedure, 3-17

DECRYPT_DATA procedure, 3-19

DECRYPT_XML_DOCUMENT

procedure, 6-36

DECRYPT_XML_TO_DATA procedure, 6-37

default values in the jpmconfig.xml file, 4-9

DEFLATE_DATA procedure, 3-21

deleting

attribute value, 5-3

node and node children, 5-4

dialogs

HTTP, 2-18

stateless, 2-19

document character set

encoding strings that specify, 5-10

specifying, 5-10

document in XML, 5-1

document in XML, 5-2

document structure that the XML Parser

supports, 1-17

documentation updates, 1-1
documents on HTTP servers, securing, 4-18

DTD and schema files

locating for fast access, 4-19

on an MCP file system, identifying, 5-15

DTD, validating, 5-8

E

EAE interface

[bin], 3-3

[longa], 3-3

efficient communication between the JPM

and HTTP servers, ensuring, 4-20

ENCODE_BINARY64 procedure, 3-24

ENCODE_UTF8 procedure, 3-25

encoding strings that specify a document

character set

example, 5-12

list of, 5-10

ENCRYPT_DATA procedure, 3-26

ENCRYPT_DATA_TO_XML procedure, 6-39

ENCRYPT_XML_DOCUMENT

procedure, 6-43

encryption

decrypting an XML document containing

a cipher reference, 5-6

decrypting an XML element, 5-6

element, 1-19

encrypting an element, 5-5

encrypting data into a file and generating

a cipher reference, 5-5

encrypting data into an XML

document, 5-5

general information, 1-19

key management, 1-20

key objects, 1-20

public key, 1-20

site requirements, 1-20

entity references, using, 5-12

attribute node, 5-13

character, 5-13

predefined, 5-13

text node, 5-12

ESCAPE_TEXT procedure, 3-29

EVLAN communication between the MCP

and the JProcessor, configuring, 4-19

 Index

3826 5286–007 Index–3

EXECUTE_HTTP_REQUEST procedure, 9-16

EXECUTE_RE procedure, 10-6

external DTD and schema files

locating for fast access, 4-19

on an MCP file system, identifying, 5-15

external HTML, 2-14

F

fast access to external DTD and schema

files, locating the files for, 4-19

file mappings for the MCP Web Transaction

Server, required, 5-8

file system, identifying files on

JPM server, 5-16

MCP, 5-15

files

configuration file for the JPM, 4-17

crunching, 3-55

installed for the XML Parser, 4-2

jpmconfig.xml, See jpmconfig.xml file

trace, 4-16

WEBAPPSUPPORT library trace, 5-17

files, identifying, 5-14

on a JPM server file system, 5-16

on an HTTP server, 5-16

on an MCP file system, 5-15

FREE_HTTP_CLIENT procedure, 9-17

FREE_HTTP_HOST procedure, 9-18

FREE_HTTP_REQUEST procedure, 9-19

FREE_HTTP_SOCKET procedure, 9-20

FREE_RE_PATTERN procedure, 10-8

functions of the XML Parser, 1-15

G

GENERATE_UUID procedure, 3-32

generating a simple data set as JSON

text, 5-6

generating a structured data set as JSON

text, 5-7

GET_ATTRIBUTE_BY_NAME procedure, 6-46

GET_ATTRIBUTES procedure, 6-47

GET_CHILD_NODES procedure, 6-49

GET_COOKIE procedure, 3-63

GET_DIALOG_ID procedure, 3-63

GET_DOCUMENT_ELEMENT procedure, 6-50

GET_DOCUMENT_ENCODING

procedure, 6-51

GET_DOCUMENT_NODE procedure, 6-52

GET_DOCUMENT_VERSION procedure, 6-53

GET_ELEMENTS_BY_TAGNAME

procedure, 6-54

GET_FIRST_CHILD procedure, 6-56

GET_HEADER, GET_n_HEADERS

procedure, 3-64

GET_HTTP_COOKIE_STRINGS

procedure, 9-20

GET_HTTP_RESPONSE_CONTENT

procedure, 9-25

GET_HTTP_RESPONSE_COOKIES

procedure, 9-22

GET_HTTP_RESPONSE_HEADER

procedure, 9-27

GET_HTTP_RESPONSE_HEADERS

procedure, 9-28

GET_HTTP_RESPONSE_STATUS

procedure, 9-30

GET_HTTP_SOCKET_OPTION

procedure, 9-31

GET_LAST_CHILD procedure, 6-57

GET_MESSAGE_LENGTH procedure, 3-67

GET_MIME_TYPE procedure, 3-68

GET_NEXT_ITEM procedure, 6-58

GET_NEXT_SIBLING procedure, 6-60

GET_NODE_BY_XPATH procedure, 6-61

GET_NODE_NAME procedure, 6-62

GET_NODE_TYPE procedure, 6-65

GET_NODE_VALUE procedure, 6-66

GET_NODES_BY_XPATH procedure, 6-64

GET_PARENT_NODE procedure, 6-68

GET_POSTED_DATA procedure, 3-68

GET_PREVIOUS_SIBLING procedure, 6-69

GET_RE_VERSION procedure, 10-8

GET_REAL_PATH procedure, 3-69

GET_REQUEST_INFO procedure, 3-70

GET_SERVER_PORT procedure, 3-71

GET_USER_AUTHORIZED procedure, 3-71

GET_USER_PRIVILEGE procedure, 3-72

GET_USER_PRIVILEGED procedure, 3-73

GET_XML_DOCUMENT procedure, 6-70

H

hardware requirements

HTTP Client, 1-22

XML Parser, 1-15

HAS_ATTRIBUTE procedure, 6-74

HTML

external vs. internal, 2-14

Index

Index–4 3826 5286–007

maintaining session state with hidden

fields or links, 2-18

HTML_ESCAPE procedure, 3-33

HTML_UNESCAPE procedure, 3-34

HTTP Client, 1-21

architecture, 1-21

features, 1-22

hardware requirements, 1-22

software requirements, 1-22

standards supported, 1-22

What is HTTP Client, 1-21

HTTP client applications

authentication, 9-6

basic request scenario, 9-8

character set handling, 9-5

chunked content, 9-3

client certification authentication, 9-7

compressed content, 9-5

cookie handling, 9-4

default request headers, 9-2

developing, 9-1

encrypted sessions, 9-6

HTTP Basic (RFC 2617 authentication), 9-7

NTLM authentication, 9-7

objects, 9-1

request handling, 9-2

request header—Expect 100-Continue, 9-3

scenarios, 9-8

security, 9-6

SSL request scenario, 9-9

storing credentials, 9-8

subsequent request scenario, 9-8

synchronous and asynchronous

requests, 9-4

tanking large data, 9-3

HTTP client procedures

BIND_HTTP_SOCKET, 9-9

CREATE_HTTP_CLIENT, 9-11

CREATE_HTTP_HOST, 9-12

CREATE_HTTP_OBJECTS, 9-13

CREATE_HTTP_REQUEST, 9-14

CREATE_HTTP_SOCKET, 9-15

EXECUTE_HTTP_REQUEST, 9-16

FREE_HTTP_CLIENT, 9-17

FREE_HTTP_HOST, 9-18

FREE_HTTP_REQUEST, 9-19

FREE_HTTP_SOCKET, 9-20

GET_HTTP_COOKIE_STRINGS, 9-20

GET_HTTP_RESPONSE_CONTENT, 9-25

GET_HTTP_RESPONSE_COOKIES, 9-22

GET_HTTP_RESPONSE_HEADER, 9-27

GET_HTTP_RESPONSE_HEADERS, 9-28

GET_HTTP_RESPONSE_STATUS, 9-30

GET_HTTP_SOCKET_OPTION, 9-31

INIT_HTTP_REQUEST, 9-33

SET_HTTP_CLIENT_ATTR, 9-34

SET_HTTP_OPTION, 9-36

SET_HTTP_REQUEST_CONTENT, 9-39

SET_HTTP_REQUEST_HEADER, 9-41

SET_HTTP_REQUEST_QUERY, 9-42

SET_HTTP_SOCKET_OPTION, 9-43

HTTP message format, 2-27

http proxy host property in the

jpmconfig.xml file, 4-10

http proxy port property in the

jpmconfig.xml file, 4-10

HTTP servers

ensuring efficient communication with

the JPM, 4-20

identifying files on, 5-16

securing XML documents on, 4-18

using, 5-7

HTTP tutorial, 2-27

HTTP_DATE_TO_INT procedure, 3-35

HTTP_ESCAPE procedure, 3-36

HTTP_UNESCAPE procedure, 3-37

hyphens in place of underscores in names,

using, 3-1

I

identifying files, 5-14

improving XML Parser performance, 4-18

inactivity timeout, 2-13

INFLATE_DATA procedure, 3-38

INIT_HTTP_REQUEST procedure, 9-33

input and output header format for

WEBPCM Transaction Server, 2-26

input header format for WEBPCM

Transaction Server, 2-25

INSERT_CHILD_BEFORE procedure, 6-75

installed XML Parser files, 4-2

installing

WEBPCM, 2-1

XML Parser, 4-1

installing the XML Parser

on MCP Java 5.0, 4-1

on Microsoft Windows, 4-1

INT_TO_HTTP_DATE procedure, 3-40

INT_TO_TIME57 procedure, 3-41

INTERFACE_VERSION procedure, 3-41

internal HTML, 2-14

internationalization of applications, 2-16

 Index

3826 5286–007 Index–5

J

Java Parser Module (JPM)

checking the log file for, 8-3

communication with the

WEBAPPSUPPORT library, 4-17

configuration file, 4-17

configuring, 4-9

ensuring efficient communication with

the HTTP servers, 4-20

identifying files on the server file

system, 5-16

log files, 4-17

maximum number of threads for,

setting, 4-18

port address, 4-17

updating, 4-12

Java Virtual Machine (JVM), allocating

enough memory to, 4-18

JavaScript Object Notation, 1-20, 5-6, 5-7

JPM, See Java Parser Module

jpmconfig.xml file

defaults, 4-9

properties, 4-9

http proxy host, 4-10

http proxy port, 4-10

logging level, 4-10

logging logfile, 4-10

port address, 4-9

port number, 4-9

threads max, 4-10

threads min, 4-9

JProcessor communication with the MCP,

configuring, 4-19

JVM, allocating enough memory to, 4-18

K

key objects, 1-20

L

library

WEBAPPSUPPORT, 3-1

WEBAPPSUPPORT trace files, 5-17

limitations of Regular Expressions, 1-23

limitations of the XML Parser, 1-18

localizing applications, 2-16

locating external DTD and schema files for

fast access, 4-19

locking an XML document, 5-16

log files for the JPM

checking, 8-3

using to secure the XML Parser, 4-17

logging level property in the jpmconfig.xml

file, 4-10

logging logfile property in the jpmconfig.xml

file, 4-10

M

mappings of files for the MCP Web

Transaction Server, required, 5-8

maximum number of JPM threads,

setting, 4-18

MCP communication with the JProcessor,

configuring, 4-19

MCP file system, identifying files on, 5-15

MCP Java 5.0 or 6.0, installing the XML

Parser on, 4-1

MCP Web Transaction Server, required file

mappings for, 5-8

memory, allocating enough to the JVM, 4-18

MERGE_DATA procedure, 3-43

MERGE_FILE_AND_DATA procedure, 3-45

MERGE_I18NFILE_AND_DATA

procedure, 3-50

merging data, 2-17

message format, HTTP, 2-27

message interface for WEBPCM Transaction

Server, 2-24

Microsoft Windows, installing the XML

Parser on, 4-1

modifying a node value, 5-3

N

namespaces, using, 5-14

naming

using underscores in WEBAPPSUPPORT

library procedures, 3-1

node and node children, deleting, 5-4

node value, modifying, 5-3

O

output header format for WEBPCM

Transaction Server, 2-26

Index

Index–6 3826 5286–007

P

PARSE_COOKIES procedure, 3-73

PARSE_HEADER procedure, 3-75

PARSE_POST_DATA procedure, 3-76

PARSE_QUERY_STRING procedure, 3-77

PARSE_XML_DOCUMENT procedure, 6-79

parsing an XML document, code for

ALGOL, 7-2

COBOL85, 7-1

PCRE, 1-23, 10-1

performance of the XML Parser

improving, 4-18

permanent stations

configuring, 2-20

performance considerations, 2-20

port address for the JPM, 4-17

port address property in the jpmconfig.xml

file, 4-9

port number property in the jpmconfig.xml

file, 4-9

predefined entity references, using, 5-13

WEBAPPSUPPORT library, 3-10

programming considerations

Transaction Server

input and output header format, 2-26

WEBPCM Transaction Server

application response, 2-23

input header format, 2-25

message interface, 2-24

output header format, 2-26

properties in the jpmconfig.xml

file, See jpmconfig.xml file

R

reading data in an XML document

sequentially, 5-2

specific, 5-1

Regular Expressions, 1-23

CCF component, 10-1

character set handling, 1-24

limitations, 1-23

PCRE API mapping to WEBAPPSUPPORT

procedures, 10-1

PCRE explanation, 10-1

sample applications, 10-1

WEBAPPSUPPORT library

procedures, 10-5

Regular Expressions procedures

COMPILE_RE_PATTERN, 10-5

EXECUTE_RE, 10-6

FREE_RE_PATTERN, 10-8

GET_RE_VERSION, 10-8

SET_RE_OPTION, 10-9

RELEASE_KEY procedure, 3-52

RELEASE_XML_DOCUMENT procedure, 6-81

releasing an XML document, 5-4

REMOVE_NODE procedure, 6-82

required file mappings for the MCP Web

Transaction Server, 5-8

requirements

HTTP Client, hardware, 1-22

HTTP Client, software, 1-22

XML Parser, hardware, 1-15

XML Parser, software, 1-15

S

sample ALGOL WEBAPPSUPPORT

Connection Library interface, 3-2

sample source code, using, 5-17

schema

specifying, 5-8

validating, 5-8

schema and DTD files

locating for fast access, 4-19

on an MCP file system, identifying, 5-15

securing

XML documents on HTTP servers, 4-18

XML Parser, 4-16

security

checking, 2-14

HTTP client applications, 9-6

server for JPM, identifying files on, 5-16

Server Side Includes (SSI)

Web Transaction Server, 2-21

Server Side Includes (SSIs)

definition, 2-21

servers, HTTP, See HTTP servers

session state

maintaining dialogs, 2-18

maintaining dialogs with hidden HTML

fields, 2-18

SET_ ATTRIBUTE procedure, 6-83

SET_CONTENT procedure, 3-78

SET_CONTENT_TYPE procedure, 3-79

SET_COOKIE procedure, 3-80

SET_HEADER procedure, 3-81

SET_HTTP__OPTION procedure, 9-36

SET_HTTP__REQUEST_CONTENT

procedure, 9-39

 Index

3826 5286–007 Index–7

SET_HTTP__REQUEST_HEADER

procedure, 9-41

SET_HTTP__REQUEST_QUERY

procedure, 9-42

SET_HTTP__SOCKET_OPTION

procedure, 9-43

SET_HTTP_CLIENT_ATTR procedure, 9-34

SET_NODE_VALUE procedure, 6-85

SET_OPTION procedure, 3-53

CACHE_TIMEOUT parameter, 3-54

CRUNCH_FILE parameter, 3-55

DEFLATE_LEVEL parameter, 3-54

FILE_ATTRIBUTES parameter, 3-55

FILENAME_FORMAT parameter, 3-54

MAX_CACHE_FILES parameter, 3-54

MAX_CACHE_FILESIZE parameter, 3-54

SET_RE_OPTION procedure, 10-9

SET_REDIRECT procedure, 3-82

SET_SSI procedure, 3-83

SET_STATUS_CODE procedure, 3-83

SET_STRING_TERMINATE procedure, 3-56

SET_TRACING procedure, 3-56

SET_TRANSLATION procedure, 3-57

SET_XML_OPTION procedure, 6-87

setting

attribute value, 5-3

maximum number of JPM threads, 4-18

single request stations

configuring, 2-20

software modules that support

WEBPCM, 2-6

software requirements

HTTP Client, 1-22

XML Parser, 1-15

source code sample, using, 5-17

standards that the XML Parser supports

XML document structure, 1-17

stateless dialogs, maintaining, 2-19

stations

permanent

configuring, 2-20

performance considerations, 2-20

single request, configuring, 2-20

STATUS command, using, 8-1

structure of documents that the XML Parser

supports, 1-17

T

TEMPFAMILY directive, 3-4, 9-3

text node entity references, using, 5-12

threads for the JPM, setting the maximum

number of, 4-18

threads max property in the jpmconfig.xml

file, 4-10

threads min property in the jpmconfig.xml

file, 4-9

TIME57_TO_HTTP_DATE procedure, 3-58

TIME57_TO_INT procedure, 3-59

trace file, WEBAPPSUPPORT, 3-60

trace files for the WEBAPPSUPPORT, 5-17

trace files for the WEBAPPSUPPORT library

securing, 4-16

TRACE_WEB_MSG procedure, 3-59

TRACEFAMILY directive, 3-4

transaction flow for WEBPCM, 2-21

Transaction Server

HTTP tutorial, 2-27

TRANSFORM_XML_DOCUMENT

procedure, 6-91

U

updates

to documentation, 1-1
to the XML Parser, installing, 4-3

updating the XML Parser JPM, 4-12

when the JPM uses one server and

multiple ports, 4-14

when the JPM uses one server and one

port, 4-13

when the JPM uses two servers, 4-16

UUID, 3-32

V

VALIDATE_REQUEST procedure, 3-84

validating an XML schema or DTD, 5-8

W

web enablement APIs, 1-2

Web Transaction Server, 1-2

WEBAPPSUPPORT

command syntax, 3-5

control tracing, 3-60

EAE interface, 3-2

example of using Accept command, 3-5

general parameters file, 3-3

general procedures, 3-11

Index

Index–8 3826 5286–007

HTTP client procedures, 9-9

initialization, 3-3

using thetrace file, 3-60

XML Parser configuration file, 4-3

WEBAPPSUPPORT Connection Library

interface, 3-1

WEBAPPSUPPORT general procedures

CLEANUP, 3-12

CREATE_KEY, 3-12

CURRENT_UTIME, 3-14

DATE_TO_TIME57, 3-15

DECODE_BINARY64, 3-16

DECODE_UTF8, 3-17

DECRYPT_DATA, 3-19

DEFLATE_DATA, 3-21

ENCODE_BINARY64, 3-24

ENCODE_UTF8, 3-25

ENCRYPT_DATA, 3-26

ESCAPE_TEXT, 3-29

GENERATE_UUID, 3-32

GET_COOKIE, 3-63

HTML_ESCAPE, 3-33

HTML_UNESCAPE, 3-34

HTTP_DATE_TO_INT, 3-35

HTTP_ESCAPE, 3-36

HTTP_UNESCAPE, 3-37

INFLATE_DATA, 3-38

INT_TO_HTTP_DATE, 3-40

INT_TO_TIME57, 3-41

INTERFACE_VERSION, 3-41

MERGE_DATA, 3-43

MERGE_FILE_AND _DATA, 3-45

MERGE_I18NFILE_AND _DATA, 3-50

RELEASE_KEY, 3-52

SET_OPTION, 3-53

SET_STRING_TERMINATE, 3-56

SET_TIME57_TO_HTTP, 3-58

SET_TRACING, 3-56

SET_TRANSLATION, 3-57

TIME57_TO_INT, 3-59

TRACE_WEB_MSG, 3-59

WEBAPPSUPPORT library, 2-6

commands, 3-4

communication with the JPM, 4-17

examples of commands, 3-7

STATUS command, using, 8-1

trace files, using, 5-17

using, 3-1

WEBAPPSUPPORT Library APIs

miscellaneous APIs, 1-4

overview, 1-4

Web-enabling existing applications, 2-5

WEBPCM

acquiring and installing, 2-1

application design considerations, 2-10

authentication methods, 2-14

benefits, 1-8

demonstrations, 1-10

environment, 1-6

example COBOL application, 2-29

example of ALGOL application, 2-33

example of Web enabling an

application, 2-5

how the WEBPCM works, 1-10

HTTP server applications, 1-5

installing, 2-1

modifying Transaction Server

applications, 2-1

necessary software modules, 2-6

overview, 1-5

process for applications to work with

WEBPCM, 2-7

user authorization, 2-14

using without modifying Transaction

Server application, 2-3

WEBAPPSUPPORT procedures, 3-63

Why use the WEBPCM, 1-8

WEBPCM procedures

GET_DIALOG_ID, 3-63

GET_HEADER, GET_n_HEADERS, 3-64

GET_MESSAGE_LENGTH, 3-67

GET_MIME_TYPE, 3-68

GET_POSTED_DATA, 3-68

GET_REAL_PATH, 3-69

GET_REQUEST_INFO, 3-70

GET_SERVER_PORT, 3-71

GET_USER_AUTHORIZED, 3-71

GET_USER_PRIVILEGE, 3-72

GET_USER_PRIVILEGED, 3-73

PARSE_COOKIES, 3-73

PARSE_HEADER, 3-75

PARSE_POST_DATA, 3-76

PARSE_QUERY_STRING, 3-77

SET_CONTENT, 3-78

SET_CONTENT_TYPE, 3-79

SET_COOKIE, 3-80

SET_HEADER, 3-81

SET_REDIRECT, 3-82

SET_SSI, 3-83

SET_STATUS_CODE, 3-83

WEBPCM Transaction Server

application programming languages

supported, 2-10

character set processing, 2-17

character sets supported, 2-12

delivery confirmation, 2-11

 Index

3826 5286–007 Index–9

inactivity timeout, 2-13

modifying to serve HTTP, 2-1

processing items, 2-11

programming considerations, 2-23

application response, 2-23

input and output header format, 2-26

input header format, 2-25

message interface, 2-24

output header format, 2-26

string terminations, 2-12

supported character sets, 2-16

synchronized recovery, 2-11

transaction flow, 2-21

using without modifying the Transaction

Server application, 2-3

What's New, 1-1

X

XML document

creating, 5-2

locking, 5-16

reading data in sequentially, 5-2

reading data in specifically, 5-1

releasing, 5-4

XML document code for parsing

ALGOL, 7-2

COBOL85, 7-1

XML document structure that the XML

Parser supports, 1-17

XML documents on HTTP servers,

securing, 4-18

XML Encryption, 1-19

XML JSON support, 1-20, 5-6, 5-7

XML Parser, 1-12

API, 5-1

architecture, 1-13

configuration file, 4-3, 4-16

configuring, 4-3

definition, 1-13

encryption, 1-19

examples of using the API, 5-1

functions of, 1-15

hardware requirements, 1-15

improving performance, 4-18

installing, 4-1

installing updates, 4-3

limitations, 1-18

multiple JPMs, 4-10

securing, 4-16

software requirements, 1-15

standards supported, 1-16

trace files, 4-16

updating the JPM, 4-12

XSL Transformations support, 1-19

XML Parser procedures

APPEND_CHILD, 6-8

CONVERT_COMMA_TEXT_TO_JSON, 6-10

CONVERT_JSON_TO_XML_DOCUMENT, 6
-12

CONVERT_XML_DOCUMENT_TO_JSON, 6
-14

CONVERT_XML_TO_JSON, 6-16

CREATE_ATTRIBUTE_NODE, 6-18

CREATE_CDATA_NODE, 6-20

CREATE_CIPHER_REFERENCE, 6-21

CREATE_COMMENT_NODE, 6-23

CREATE_DOCTYPE_NODE, 6-24

CREATE_ELEMENT_NODE, 6-26

CREATE_ENTITYREF_NODE, 6-27

CREATE_PI_NODE, 6-28

CREATE_TEXT_ELEMENT, 6-30

CREATE_TEXT_NODE, 6-33

CREATE_XML_DOCUMENT, 6-34

DECRYPT_XML_DOCUMENT, 6-36

DECRYPT_XML_TO_DATA, 6-37

ENCRYPT_DATA_TO_ XML, 6-39

ENCRYPT_XML_DOCUMENT, 6-43

GET_ATTRIBUTE_BY_NAME, 6-46

GET_ATTRIBUTES, 6-47

GET_CHILD_NODES, 6-49

GET_DOCUMENT_ELEMENT, 6-50

GET_DOCUMENT_ENCODING, 6-51

GET_DOCUMENT_NODE, 6-52

GET_DOCUMENT_VERSION, 6-53

GET_ELEMENTS_BY_TAGNAME, 6-54

GET_FIRST_CHILD, 6-56

GET_LAST_CHILD, 6-57

GET_NEXT_ITEM, 6-58

GET_NEXT_SIBLING, 6-60

GET_NODE_BY_XPATH, 6-61

GET_NODE_NAME, 6-62

GET_NODE_TYPE, 6-65

GET_NODE_VALUE, 6-66

GET_NODES_BY_XPATH, 6-64

GET_PARENT_NODE, 6-68

GET_PREVIOUS_SIBLING, 6-69

GET_XML_DOCUMENT, 6-70

HAS_ATTRIBUTE, 6-74

INSERT_CHILD_BEFORE, 6-75

PARSE_XML_DOCUMENT, 6-79

RELEASE_XML_DOCUMENT, 6-81

REMOVE_NODE, 6-82

SET_ATTRIBUTE, 6-83

Index

Index–10 3826 5286–007

SET_NODE_VALUE, 6-85

SET_XML_OPTION, 6-87

TRANSFORM_XML_DOCUMENT, 6-91

XML_ESCAPE, 6-95

XML Path Language (XPath), 1-16, 1-19

XML schema or DTD, validating, 5-8

XML, definition of, 1-12

XML_ESCAPE procedure, 6-95

XSL Transformations (XSLT), 1-18

.

© 2017 Unisys Corporation.

All rights reserved.

38265286-007
 3826 5286–007

	Contents
	Figures
	Tables
	Section 1. Introduction to Application Support
	Documentation Updates
	What's New?
	MCP Web Enablement Application Programming Interfaces
	Web Transaction Server
	WEBAPPSUPPORT Library APIs

	WEBPCM HTTP Server Applications
	WEBPCM Overview
	Why Use the WEBPCM?
	How the WEBPCM Works

	XML Parser
	What Is XML?
	What is the XML Parser?
	XML Parser Architecture
	Hardware Requirements
	Software Requirements
	Major Functions
	Standards Supported
	XSL Transformations (XSLT) Support
	XML Path Language (XPath) Support
	XML Encryption
	JavaScript Object Notation (JSON) Support

	HTTP Client
	What is HTTP Client?
	HTTP Client Architecture
	HTTP Client Features
	Hardware Requirements
	Software Requirements
	Standards Supported

	Regular Expressions

	Section 2. WEBPCM Transaction Server to Internet Application Programming
	Acquiring and Installing WEBPCM
	Modifying Transaction Server Applications to Serve HTTP
	Using WEBPCM without Modifying the Transaction Server Application
	Example: Web Enabling Existing Applications
	Software Modules Necessary to Support the WEBPCM
	Summary: Getting Applications to Work with the WEBPCM

	Application Design Considerations
	Programming Languages Supported by WEBPCM
	Remote Files versus Direct-Window Applications
	Transaction Server Synchronized Recovery
	Delivery Confirmation
	Processing Items
	Character Sets
	String Terminations
	Serving Both Web and Non-Web Users
	Inactivity Timeout
	Transaction Server Station Closure
	Learning About HTTP and HTML
	Using External HTML Versus Internal HTML
	User Authorization
	Internationalization Considerations
	Processing Input and Generating Output
	Merging Data

	Maintaining Session State Dialogs
	Using Cookies to Maintain Session State
	Using Hidden HTML Fields to Maintain Session State

	Maintaining Stateless Dialogs
	Performance Considerations
	Transaction Flow
	Server Side Includes (SSIs)

	Programming Considerations
	Application Response
	Transaction Server Message Interface
	Header and Message Formats
	HTTP Tutorial

	Sample Applications
	COBOL Examples
	ALGOL Examples

	Section 3. WEBAPPSUPPORT Library Interface
	Overview
	WEBAPPSUPPORT Connection Library Interface
	WEBAPPSUPPORT EAE Interface
	WEBAPPSUPPORT General Parameters File
	WEBAPPSUPPORT Commands
	Returned Result Values for WEBAPPSUPPORT Procedures
	Procedure Groupings
	General Procedures
	CLEANUP
	CREATE_KEY
	CURRENT_UTIME
	DATE_TO_TIME57
	DECODE_BINARY64
	DECODE_UTF8
	DECRYPT_DATA
	DEFLATE_DATA
	ENCODE_BINARY64
	ENCODE_UTF8
	ENCRYPT_DATA
	ESCAPE_TEXT
	GENERATE_UUID
	HTML_ESCAPE
	HTML_UNESCAPE
	HTTP_DATE_TO_INT
	HTTP_ESCAPE
	HTTP_UNESCAPE
	INFLATE_DATA
	INT_TO_HTTP_DATE
	INT_TO_TIME57
	INTERFACE_VERSION
	MERGE_DATA
	MERGE_FILE_AND_DATA
	MERGE_I18NFILE_AND_DATA
	RELEASE_KEY
	SET_OPTION
	SET_STRING_TERMINATE
	SET_TRACING
	SET_TRANSLATION
	TIME57_TO_HTTP_DATE
	TIME57_TO_INT
	TRACE_WEB_MSG

	Using the WEBAPPSUPPORT Trace File
	WEBPCM Procedures
	GET_COOKIE
	GET_DIALOG_ID
	GET_HEADER, GET_n_HEADERS
	GET_MESSAGE_LENGTH
	GET_MIME_TYPE
	GET_POSTED_DATA
	GET_REAL_PATH
	GET_REQUEST_INFO
	GET_SERVER_PORT
	GET_USER_AUTHORIZED
	GET_USER_PRIVILEGE
	GET_USER_PRIVILEGED
	PARSE_COOKIES
	PARSE_HEADER
	PARSE_POST_DATA
	PARSE_QUERY_STRING
	SET_CONTENT
	SET_CONTENT_TYPE
	SET_COOKIE
	SET_HEADER
	SET_REDIRECT
	SET_SSI
	SET_STATUS_CODE
	VALIDATE_REQUEST

	XML Procedures
	HTTP Client Procedures
	Regular Expressions Procedures

	Section 4. XML Parser Administration
	Installing the XML Parser
	On MCP Java
	On Microsoft Windows
	Installed Files
	Installing Updates

	Configuring the XML Parser
	WEBAPPSUPPORT XML Parser Configuration File
	Java Parser Module (JPM
	Multiple JPMs

	Updating the XML Parser JPM
	Updating the JPM When the JPM Runs on One Server and Always Uses the Same Port
	Updating the JPM When the JPM Uses a Non-Default Port
	Updating the JPM When the JPM Runs on Two Servers

	Preparing to Use the XML Parser
	Securing the XML Parser
	XML Parser Configuration File
	XML Parser Trace Files
	Communication between the WEBAPPSUPPORT Library and the JPM
	JPM Port
	JPM Log Files
	JPM Configuration File
	Securing XML documents on HTTP servers

	Improving XML Parser Performance
	Allocating Enough Memory to the JVM
	Setting the Maximum Number of JPM Threads
	Configuring EVLAN Communication between the MCP and the JProcessor
	Locating External DTD and Schema Files for Fast Access
	Ensuring Efficient Communication between the JPM and HTTP Servers
	Disabling Processing of External General Entity References

	Section 5. Developing an XML Parser Application
	Using the XML Parser API
	Examples of Using the API
	Reading Specific Data in an XML Document
	Reading Data in an XML Document Sequentially
	Creating an XML Document
	Modifying a Node Value
	Setting or Deleting an Attribute Value
	Deleting a Node and the Children of the Node
	Releasing an XML Document
	Encrypting an Element
	Encrypting Data into an XML Document
	Encrypting Data into a File and Generating a Cipher Reference
	Decrypting an XML Element
	Decrypting an XML Document Containing a Cipher Reference
	Generating a Simple Data Set as JSON Text from an MCP Application
	Generating a Structured Data Set as JSON Text from an XML Source

	Using HTTP Servers
	Validating an XML Document by Using a Schema or DTD
	Specifying a Schema
	Specifying Character Sets
	Specifying the Application Character Set
	Specifying the Document Character Set

	Using Entity References
	Using General Entity References
	Using Attribute Node Entity References
	Using Predefined and Character Entity References

	Using Namespaces
	Identifying Files
	Identifying Files on an MCP File System
	Identifying Files on an HTTP Server
	Identifying Files on a JPM Server File System

	Locking an XML Document
	Using Sample Source Code
	Using WEBAPPSUPPORT Library Trace Files

	Section 6. WEBAPPSUPPORT Library Interface for the XML Parser
	XML Mapping Structure
	Level 1 Formatting
	Examples

	WEBAPPSUPPORT Library Procedures for the XML Parser
	APPEND_CHILD
	CONVERT_COMMA_TEXT_TO_JSON
	CONVERT_JSON_TO_XML_DOCUMENT
	CONVERT_XML_DOCUMENT_TO_JSON
	CONVERT_XML_TO_JSON
	CREATE_ATTRIBUTE_NODE
	CREATE_CDATA_NODE
	CREATE_CIPHER_REFERENCE
	CREATE_COMMENT_NODE
	CREATE_DOCTYPE_NODE
	CREATE_ELEMENT_NODE
	CREATE_ENTITYREF_NODE
	CREATE_PI_NODE
	CREATE_TEXT_ELEMENT
	CREATE_TEXT_NODE
	CREATE_XML_DOCUMENT
	DECRYPT_XML_DOCUMENT
	DECRYPT_XML_TO_DATA
	ENCRYPT_DATA_TO_XML
	ENCRYPT_XML_DOCUMENT
	GET_ATTRIBUTE_BY_NAME
	GET_ATTRIBUTES
	GET_CHILD_NODES
	GET_DOCUMENT_ELEMENT
	GET_DOCUMENT_ENCODING
	GET_DOCUMENT_NODE
	GET_DOCUMENT_VERSION
	GET_ELEMENTS_BY_TAGNAME
	GET_FIRST_CHILD
	GET_LAST_CHILD
	GET_NEXT_ITEM
	GET_NEXT_SIBLING
	GET_NODE_BY_XPATH
	GET_NODE_NAME
	GET_NODES_BY_XPATH
	GET_NODE_TYPE
	GET_NODE_VALUE
	GET_PARENT_NODE
	GET_PREVIOUS_SIBLING
	GET_XML_DOCUMENT
	GET_XML_RECORD
	HAS_ATTRIBUTE
	INSERT_CHILD_BEFORE
	PARSE_JSON_TO_XML
	PARSE_XML_DOCUMENT
	RELEASE_XML_DOCUMENT
	REMOVE_NODE
	SET_ATTRIBUTE
	SET_NODE_VALUE
	SET_XML_OPTION
	TRANSFORM_XML_DOCUMENT
	XML_ESCAPE

	Section 7. Using Sample Source Code for Parsing an XML Document
	COBOL85 Code for Parsing an XML Document
	ALGOL Code for Parsing an XML Document

	Section 8. Monitoring the XML Parser
	Using the WEBAPPSUPPORT Library STATUS Command
	Checking the JPM Log

	Section 9. HTTP Client Applications
	Developing HTTP Client Applications
	Objects
	Request Handling
	Default Request Headers
	Tanking Large Data
	Request Header—Expect: 100-Continue
	Chunked Content
	Synchronous and Asynchronous Requests
	Cookie Handling
	Character Set Handling
	Compressed Content
	Security
	Storing Credentials

	Scenarios
	Basic Request Scenario
	Subsequent Request Scenario
	SSL Request (https) Scenario
	Request Complete

	WEBAPPSUPPORT HTTP Client Procedures
	BIND_HTTP_SOCKET
	CREATE_HTTP_CLIENT
	CREATE_HTTP_HOST
	CREATE_HTTP_OBJECTS
	CREATE_HTTP_REQUEST
	CREATE_HTTP_SOCKET
	EXECUTE_HTTP_REQUEST
	FREE_HTTP_CLIENT
	FREE_HTTP_HOST
	FREE_HTTP_REQUEST
	FREE_HTTP_SOCKET
	GET_HTTP_COOKIE_STRINGS
	GET_HTTP_RESPONSE_COOKIES
	GET_HTTP_RESPONSE_CONTENT
	GET_HTTP_RESPONSE_HEADER
	GET_HTTP_RESPONSE_HEADERS
	GET_HTTP_RESPONSE_STATUS
	GET_HTTP_SOCKET_OPTION
	INIT_HTTP_REQUEST
	SET_HTTP_CLIENT_ATTR
	SET_HTTP_OPTION
	SET_HTTP_REQUEST_CONTENT
	SET_HTTP_REQUEST_HEADER
	SET_HTTP_REQUEST_QUERY
	SET_HTTP_SOCKET_OPTION

	Section 10. Using Regular Expressions
	PCRE API Mapping to WEBAPPSUPPORT Procedures
	WEBAPPSUPPORT Library Procedures for Regular Expressions
	COMPILE_RE_PATTERN
	EXECUTE_RE
	FREE_RE_PATTERN
	GET_RE_VERSION
	SET_RE_OPTION

	Index

